
interference microscope, are also shown in Table 1. The two
zero-dispersion wavelength values agree well. The small differ-
ences between the calculated and measured wavelengths may
be due to the core-diameter fluctuation along the fibre length.
The zero-dispersion wavelength of the 20 km long fibre cal-
culated from the fibre parameters was 1-48 fim.

Pulse broadening was measured with the 20 km long fibre.
Fig. 1 shows the input and output pulse waveform. The full
width AT at half maximum of the optical pulse before and after
propagation, AT^ and ATOU,, were 380 ps and 400 ps, respec-
tively. The laser output spectrum consisted of three longitu-
dinal modes with 4-8 nm width at half-maximum intensity.
From these measurements, pulse dispersion was found from
the formula (Atom - AT?B)1/2 to be 26 ps/nm, which was found
to agree well with the estimated value from each single-mode
fibre.

Conclusion: Low-loss dispersion-free single-mode fibres at 1-5
/an were fabricated by choosing the waveguide parameters so
as to cancel the material dispersion. The total loss of the
20 km long fibre was 24-2 dB and 210 dB, at 1-50 and 1-52 /mi,
respectively. The measured dispersion of the fibre was 26
ps/nm. The loss was slightly higher than estimated,13 owing to
waveguide imperfection, which will be reduced by improving
the fabrication technique.

This experiment suggests the feasibility and desirability of
large-capacity and long-distance single-mode-fibre transmis-
sion in the 1-5 /an wavelength region.
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COMMENT

MIXED TIME/FREQUENCY DOMAIN
APPROACH TO MODEL REDUCTION

Indexing terms: Modelling, Systems

Given a high-order system described by the transfer function
H(s) and the impulse response h(t), a method has been in-
troduced in Reference A that obtains a reduced pth order
model such that the first terms in the power-series expansions
about zero of its transfer function G(s) and its impulse response
g{t) match the first k and 2p — k terms of the corresponding
expansions of the system:

H(s)=

h(t)=

(1)

(2)

respectively.
This method has been termed by the authors 'mixed

time/frequency approach' owing to the fact that the exprs. 1
and 2 are written in the frequency- and the time«lomain
formulation, respectively.

Taking the Laplace transform of expr. 2 term by term, it is
readily obtained that

H(s)=

(3)

It follows, therefore, that the suggested method is equivalent to
methods of mixed Pade approximations at both s = 0 and
s = oo, which have been suggested in References B-D. The
constants M, in expr. 3, which are termed Markov parameters,
are easily obtained by expanding the rational function H(s)
about s = oo using long division, and the reduced model can
be derived entirely from frequency-domain considerations.

The proposed method may also be interpreted as a pure
time-domain approach, considering expr. 2 and noting that //,
in expr. 1 are related to the time moments T{ of the impulse
response

Tt= j tlh(t) dt = /! (-1)1//,, i = 0, 1, ... (4)

with the following further 'time-domain' properties:

(i) There is no steady-state error between the outputs of a
model that matches k time moments and the system for inputs
that can be written in the form

(5)

with any a,.

(ii) Hi and M, (and thus 7] and h{) can be obtained also from
the state-space representation (A, b, c) of the system by

(6)
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Every method that obtains reduced models by matching k
terms of expr. 1 or expr. 4 and 2p — k terms of exprs. 2 or 4
yields the same pth-order model and has four different inter-
pretations (a pure s domain, a pure time domain and two
complementary mixed time/s domain). Among these possible
combinations, the terms that can be derived and matched most
directly are the coefficients of the expansion of the transfer
function about s = 0 and s = oo.

Y. BISTRITZ 8th January 1980
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(ii) There exist M > 0 such that n(s, t)> -M for all s < 0 and
t>0;

(iii) For every bounded set B of real numbers there exists a
constant cB > 0 such that n(s, t) < cB whenever s e B and r > 0.

Assumptions on g: g(s, t) is defined on R2+; it is a measurable
function of s for all t and

(iv) g(s, t)>0 for.all (s, r) 6 R2+

(v) For some constant C,

r

G{t)=jg{s,t)ds<C
o

for all f > 0.

We shall further assume that eqns. 1-2 have at least one solu-
tion in e and y. Our results are as follows.

Theorem 1: Suppose that conditions (i)-(v) hold. Then when-
ever u is bounded, so are e and y.

Proof: Let \u(t)\ < R. Put

[0, u(t)],

[0, -u(t)]

' and define e+ and e~ similarly. Let

STABILITY OF CERTAIN TIME-VARYING
NONLINEAR SYSTEMS

Indexing terms: Control theory, Stability, Systems

A sufficient condition for the feedback stability of the cascade
of a nonlinear element and a linear element with positive
impulse response is given.

Consider a nonlinear scalar feedback system defined by the
equations

e = u — y y = LN(e)

where u and y are the input and output of the system, L and N
are, respectively, a linear and a nonlinear operator and e is the
input to the nonlinearity. We shall assume that the action of L
on a signal x(t) passing through it is given by the convolution

= jg(t-s,t)x(s)ds

and N is defined by a function of two variables n(s, t) such that
the action of N at time t on a signal x(t) passing through it is
given by n[x(t), t]. Thus the system equations are

e(t) = u(t) - y(t)

t

y{t) = J 0{t - s, t)n[e{s), s] ds

(1)

(2)

Our aim is to show that under certain conditions, the most
notable of which is the positivity of g and the existence of a
lower bound on n, the system is bounded-input/bounded-
output stable. A strengthening of our assumptions gives L1

stability of the system.

Assumptions on n: Suppose that n(s, t) is defined on R x R +
and satisfies the following conditions:

(i) sn(s, t) > 0, for all s e R and t > 0;
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T = {f.e(t)<0}

St = S n [0, t]

Tt=Tn[0,t)

From eqn. 2 we have

e(t)=u(t)- j j \[g(t-s,t)n{e(s),s}]ds

For s e St, e(s) > 0, so that by assumptions (i) and (iv) we have

e+(t) < u+{t) - \g{t- s, t)n{e(s), s) ds

Thus, by assumption (ii)

e+(t) < u+(t) + MG(t) <R + MC (3)

Similarly, e(s) < 0 on Tt, so that by assumption (i) n{e(s), s} < 0
and by (iv) we have

e~{t) < u~(t) + J g{t - s, t)n{e(s), s}ds (4)

From (iii) there exists a constant c depending on R + MC such
that n(e, t) <c whenever 0 < e < R + MC. Thus, by eqns. 3
and 4

e~(t) < u~(t) + cG(t) <R + cC (5)

The boundedness of e follows from eqns. 3 and 5 and that of y
follows from eqn. 1.

A strengthening of assumption (v) gives an L1 stability result
as follows. Suppose that

(vi) G(t) as defined in assumption (v) is measurable and

ao

J G{t) dt = K<cx>
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