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The Routh approximation method which has been suggested for the reduction of stable discrete time linear systems to guarantee 

stable models, uses the bilinear transformation. A stability theorem in the z-plane is presented which is shown to be an equivalent of 
the Routh criterion. An efficent method that avoids the bilinear transformation is presented by which the Routh disrele models are 

derived directly in the r-plane. 
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1. Introduction and problem statement 

The approximation of stable systems by reduced order PadC type models may yield unstable models 
both in the case of continuous and of discrete-time systems. Solutions for this stability problem in the 
continuous case can be obtained by the Routh [1], [2], the Hurwitz [3], [4] and the Pad&Hurwitz [5], [6] 
methods. These methods guarantee stable models for stable systems that approximate the slow eigenvalues 
[ l]-[4] or both some slow and some fast eigenvalues [5], [6] of the high order system eigenvalues. The Routh 
and the Hurwitz methods which have been shown to be equivalent and to form a special case of the 
Pad&Hurwitz methods [5], [6] were applied in [4] and [7], using the bilinear transformation, to solve also 
the stability problem that is encountered in discrete system approximations. The purpose of this correspon- 
dence is to show how these same models can be derived, more efficiently, entirely in the z-plane. 

The problem that is treated in [4] and [7] and that is resolved in this correspondence is the following. 
Given a high order discrete-time stable system of order v that is described by the z-transfer function 

G(z) =s= 
n,+n,z+ . ..+n.zp 

d,+d,z+ . ..+dyz”’ CL< v, 
Y 

a model of lower order B < Y is sought that has a transfer function 
1 

qz) =N(‘)= ii,+fi,z+ . ..izFZG 
D,(z) &+ci,z+ . ..+d.z” 

( pet. 

The polynomial D,(z) is stable, that is, all its zeros reside inside the unit circle Jz( = 1. The reduced degree 
polynomial D&z) is the stable polynomial that is determined such that its bilinear transformation is the 
B-th Routh approximant of the bilinear transformation of D,(z). Let A;(s) and A,(s) denote the 
polynomials whose zeros are the bilinear transformation 

1+s z-l 

z=I_sy s=- z+1 

of the zeros of D&z) and D,(z), respectively. The determination of D,(z) in [4] and [7] involves the 
following sequence of operations: 

D”( z)b~ A”(s) RourBA;(~) bzDC(z) (4) 
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We are mainly concerned here with the replacement of the indirect procedure of (4) by a direct derivation 
of Dkz) from DC(z). We discuss, therefore, in (l)-(2) the single-input single-output case only. By treating 
scalar systems we intensionally avoid the discussion of some problems in certain multivariable extensions 
suggested for such type of model reduction methods [8]. The numerator I?(z) of (2) is chosen such that 
G(z) matches the first p time moments of G(z). The determination of such scalar numerators for 
predetermined denominators is well established and will not be repeated [2], [9]. 

2. A direct discrete Routh method 

Assume a real polynomial D,,(z), 
Y Y 

D”(Z)= Z diZ’=dvin, (Z-Z,), 
i=o 

and define for D,(z) the two polynomials 

V,(z)=tbv(z)--v(z)], (/O(z)=t[D,(z)+&)] 
where fiV( z) is the reciprocated polynomial 

Q(z)= i d,-,z’=d, ii (1 -zz,). 
i=O i= I 

Let the polynomial 

(5) 

(6a, b) 

(7) 

(8) 

be the polynomial whose zeros si are the bilinear transformation (3b) of the zeros z, of D,(z). We define 

(9) 

and we have that 

2(s-SJ 

z-zi= (1 -s)(l -si) ’ 

2(--s-s,) 

I -zzz= (1 --s)(l -si) 

and therefore that 

p,(z) =-= 
V,(') {nY=,(z-zi)/(l-zz,))-lI {n:=I(S-S,)/(--S--;)}-l=p(S) 

U,(z) {K,(z-z,)/(l -zz,)} + 1 {ry&-s,>/(-s-s,)} + 1 " . 
(10) 

The Routh stability table for the polynomial A,(s) is well known to be equivalent to the following 
continued fraction expansion of p,(s) about s = 0: 

1 1 1 
p,(s)=- - - 

Y, /s + Y/S + . . . + Y/S ’ 

where a necessary and sufficient condition for A”(s) with positive coefficients, 6, > 0, t/i, to be Hurwitz (i.e. 
Res, < 0, Vi) is that the above expansion is valid with y, > 0, vi (e.g. [lo]). Applying the bilinear 
transformation (3) on (1 l), using (lo), we immediately obtain the following discrete stability theorem. 

Theorem. A real polynomial D,(z) has all its zeros inside the unit circle z = 1 if and only if in the following 
continuedfraction expansion of the ratio between VO( z) and Uo( z) of (6a, b), 

(12) 
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y,>Cl for all i= l,...,~. 

If D,(z) is a stable polynomial, the truncation of the expansion (12) after t terms determines a 
polynomial D;(z) which is also stable. The polynomial A&s) of (8) is, in this case, a Hurwitz polynomial 
and the truncation of (11) after P terms determines a Hurwitz polynomial which is the bilinear correspon- 
dent of Q(z). On the other hand we have that the expansion (11) is a possible technique for the derivation 
of the Routh approximation for stable model reduction of continous systems [6]. (The original representa- 
tion in [l] uses the truncation of a continued fraction expansion about s = cc of the p,(s) function which is 
defined for the reciprocated polynomial d,(s) instead of A”(s).) It follows therefore that the polynomial 
L+(z) which is determined by the truncation of (12) is identical (up to a scaling factor) to the polynomials 
derived in [4] and [7] for the stable discrete model reduction problem. The expansion (12) indicates a 
method for the derivation of D,(z) directly in the z-plane. The algorithm for this is as follows: 

Algorithm. As L+(s) depends only on (y,, . . . , y;) it can be derived by the following recursion that can be 
shown from (12) by induction or by using standard continued fraction techniques [ 111: 

D,(z) ‘Y,(Z + 1) D,-,(z) + (z - 1) D,-Z(Z)? 

startingwith D,(z)=z-1, D-,(z)=l. (13) 

The formulation (13) already represents an advantage over the techniques in [4] and [7] that calculate the 
polynomial A&s) from (y,,..., y,-) and then transforms it to the z-plane. It is noted that (13) yields in the 
process of the derivation of D&z) also all the lower degree Routh stable approximants, D,(z). i < f, which 
in the indirect formulation of [4] and [7] requires a separate transformation for each of the polynomials 

A;(s). 

We show next that a recursive easy derivation of y,, i = 1,2, also follows from (12). For this purpose we 
use the following nesting structure that the expansion (12) satisfies: 

where each y(z)/CJ(z) represents a function of a form similar to VO( z)/&(z) that gives rise to a 
continued fraction of the type (12) which has length (v - i) and the coefficients (y,+ ,, y,+*, . . . , y,). 
Therefore similar to I$( I), all V;(z) satisfy v( 1) = 0, and we may rewrite the above equation as 

VI--IWb - 1) = Mz) 
L(z) (z+ 1)yJJ;(z)+(z- 1) Y(z)’ 

(19 

This equation requires separate equality of the numerators and the denominators. We have from the 
numerator that 

q(t) = y.-,(z)/(z - 1) (16) 

and from the denominator, first by setting z = 1, that 

(17) 

and then by eliminating V;(z) that 

V;(z) = [L(z) - Yi(Z + WW]/(z - 1). (18) 

Equations (16)-( 18) together with (13) represent a sequential.algorithm to derive the Routh-bilinear stable 
polynomials D,(z), i = 1,2, . . . directly in the z-plane. It produces Ddz) at the step i = P and reproduces 
D,(z) at the final step i = v. Following are two comments that concern the implementation of the algorithm 
presented by (16)-(18) and (13). 
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(i) Equations (16) and (18) require the division of polynomials that have zeros at z = 1 by (z - 1). This is 
performed as follows: 

A(z) = i a;z’ 
n-1 

=a A(z)/(z- I)= 2 b,z’, b,= --a,, bi=b,_,-a,. (19) 
i=o i=o 

(ii) The polynomials q.(z) and y(z) have special mirror (ai = a,,-,) and anti-mirror (a, = -an-,) 
structures respectively, that can be used to carry out the calculation of only the first half of their 
coefficients. 

Example. Let the high order system be given the transfer function [7] 

G(z) = 
l.682z7+ l.116z6-0.21 z5+0.152zi-0.516z3-0.262z2+0.044z-0.006 

z8 z’- z6 z5 
’ 

8 - 5.046 3.348 + 0.63 - 0.456 z4 + 1.548 z3 + 0.786 z2 - 0.132 z + 0.018 (20) 

We have therefore 

V,(z) = -3.991 + 2.457 z + 2.067 z2 + 0.459 z3 - 0.459 z5 - 2.067 z6 - 2.457 z’+ 3.991 z*, 

U,(z) = 4.009 - 2.589 z - 1.281 z2 + 1.089 z3 - 0.456 z4 + 1.089 zs - 1.281 z6 - 2.589 z’ + 4.009 z8. 

To derive a second order model we perform the algorithm for i = 1,2: 

U,(z) = 3.991 + 1.534 z - 0.533 z2 - 0.992 z3 - 0.992 z4 - 0.533 z5 + 1.534 z6 + 3.991 2’9 

y, =~U,(l)/U,(l)=0.125, D,(z)=O.l25(z+l)+(z-l)=l.l25z-0.875, 

f’,(z)= -3.510-0.2305zt l.176z2-0.104 z3 + 0.104 z4 - 1.176 z5 + 0.2305 z6 + 3.510 z’, 

U,(z) = 3.510 + 3.741 z-t- 2.565 z2 + 2.669 z3 + 2.565 z4 + 3.741 zs + 3.510 z6, 

y2=~U,(l)/U2(l)=0.1793681, 

D2(z)=0.1793681(z+ 1)(1.125 z -0.875) +(z- l)(z+ 1) = l.201789z2- 1.955158~ +0.84053, 

where D2(z) has the same zeros as the denominator obtained in reference [7] using the indirect approach. 
Completing a numerator such that G(z) fits the first two time moments of G(z) we get the following 
second order stable model: 

G(z) = 
-0.298503 + 0.373124 z 

0.701497 - 1.626873 z + z2 ’ 
(21) 

Conclusions 

The direct Routh discrete method yields models equivalent with those derived in [4] and [7] using the 
bilinear approximation. The method inherits therefore the favourable feature of stability preservation 
without calculation of any eigenvalues. Some further features of the direct approach which represent 
computational advantages over the indirect approach are as follows: 

(1) The reduced order models are derived completely in the z-plane. The application of the bilinear 
transformation, that is required twice in the indirect approach, is eliminated. 

(2) The derivation of a E-th order model yields also the stable denominators for all lower models E - i, 
i= 1,2 . . . . 

(3) The algorithm converges in Y steps to the original system. An improved approximation of order 
(5 + 1) can be derived from the previous P-th order results in a single further step. 
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