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NESTED BASES OF INVARIANTS FOR MINIMAL REALIZATIONS OF
FINITE MATRIX SEQUENCES*

YUVAL BISTRITZt

Abstract, The problem of finding minimal reaiizations of linear constant systems from finite order
input-output Markov matrix sequences is considered. The paper identifies from the sequences sets of
independent structural and numerical quantities which are invariants of equivalent state space representa-
tions and completely characterize any minimal realization of the sequence. These sets, termed bases of
invariants, acquire a “nesting” property by which a subsequent basis of a higher order finite sequence is
obtained from the previous basis by addition of some new invariants. Two canonical state space representa-
tions of special forms that reflect the input and output structural properties of the underlying systems are
presented and readily derived from these bases by a simple algorithm which is provided. Necessary and
sufficient conditions for the existence of a unique minimal partial realization to a given finite Markov
sequence are given in terms of the invariants of its nested basis. The set of all minimal partigl realizations
S5, that, in the case of existence of more than one solution, corresponds to many distinct systems, is
thoroughly investigated. A minimal set of undetermined quantities that parametrize S, is obtained. These
parameters are used to characterize §,, either in the form of bases of invariants or in the form of the
canonical representations, and it is also shown that an arbitrary assignment of values to these parameters
leads to a minimal realization of the given finite sequence. Additional properties of these parameters that
may be desirable in certain identification problems are also discussed.
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1. Introduction. The problem of minimal realization of a finite sequence of
Markov matrices of a muitivariable linear constant system has been considered by
various authors [1]-[8]. The early results of Kalman and Tether [1]-[3] showed that
a minimal realization, or equivalently, a minimal extension sequence for a finite
Markov sequence, always exists but may not be unique. Necessary and sufficient
conditions on the incomplete Hankel matrix for the existence of a unique extension
sequence as well as the derivation of a corresponding realization have also been
described in these papers. The approach of Dickinson, Kailath and Morf in [4] is
different in that they derive a matrix fraction representation by direct operation on
the matrices of the sequence. References [5]-[8] also consider the incomplete Hankel
matrix. Roman and Bullock [7] represent an invariant approach to the problem which
is further developed by Candy, Warren and Bullock in [8] by deriving the partial
realization from a set of Popov invariants [9].

The present paper provides a comprehensive treatment of the minimal partial
realization (m.p.r.) problem of a finite sequence of r Markov matrices, using an
invariant description. It puts a special emphasis on the common situation where a
unigue solution to the problem does not exist. It obtains a characterization of the set
S5, of all partial realizations of minimal dimension n, for the sequence of r Markov
matrices.

We show the existence of bases of invariants [10] for the description of equivalent
classes of m.p.r.’s which have the property that a basis for a Markov sequence of a
subsequent order is obtained from the basis of the former order by the addition of a
few new invariants without altering the previous set of invariants. A basis acquiring
this property is termed a nested basis, The nested bases are constructed from a set
of entries of specified locations in the Markov sequence that were recently suggested
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by Bosgra and Van der Weiden [11] and from a modified set of integer invariants
that describe the structure of the underlying system. An important feature of the
present approach is that the invariants that compose these bases are not dependent
on the choice of some specific canonical representation. This differs from the system
descriptions by canonical invariants suggested by Popov and refined and studied by
Rissanen [10] and Denham [12]. Instead of the nonuniform descriptions of the set of
all m.p.r.’s obtained by methods which adopt canonical invariants [7], [8], we obtain
an intrinsic set of parameters %, which completely characterizes S,.. By applying
additional properties of the nested bases of invariants, it is also shown that 2, is a
minimal set of independent parameters for a complete characterization of §;, and
that the mapping from the set of equivalent realizations in 8§, to %, is one-to-one
and onto.

Descriptions for m.p.r.’s other than the nested bases are also presented. In fact,
any equivalent canonical representation can be derived from a nested basis. Two
canonical state space representations of a special form that reflects the input and
output invariant structure of the underlying system are presented and a simple
algorithm for their derivation from a nested basis is provided. The two canonical
forms tie together, in the special case of an infinite order Markov sequence, the
realizations of Rissanen [10] and Silverman [14]. They also supply a simplified
algorithm for the derivation of the invariants of Rissanen and provide a system
invariant description for the realizations of Silverman.

It is desirable in general, to have a system description by a ‘minimal set of
parameters [9], [11], [5] and [7]. This is advantageous, for example, in solving the
problem of system identification from statistical data which is possibly the most
important practical implication of the present study. The stochastic interpretation of
a deterministic partial realization is discussed by Akaike [15]. The problem of selection
of free parameters for the description of all possible minimal realizations of a finite
Markov sequence, which Ledwich and Fortman [6] recognized as a difficult one, is
solved by the above-mentioned set &, The set &, is not only a minimal set of
independent parameters but is composed of entries of specified locations of the
input-output data, which become available in further measurements.

The paper is written in continuous-time formulation but all the results apply also
to discrete-time systems with some obvious redefinition of concepts. Section 2 contains
the necessary definitions for the representation of the results, including the definition
of a nested basis of system invariants. Section 3 represents bases of system invariants
and suggests the above two canonical representations. Section 4 deals with the partial
realization problem. The background of §§ 2 and 3 is used to derive nested bases of
invariants for the descriptions of m.p.r.’s. The existence of a unique m.p.r. can be
tested by its invariants. In the case where there exists more than one solution, the set
of all m.p.r.’s is described by nested bases of invariants. These bases are expressed
in terms of the minimal set of independent parameters %,. The m.p.r.’s can also be
presented in the canonical forms described in § 3. These results are illustrated by a
demonstrative example taken from [2]. This example appears also in [5),[7),[8] and
allows a convenient comparison with former results.

2. System invariants of equivalent realizations. Let 3, (A, B, C) denote the set
of all matrix triples A4, B, C, AeR™™", BeR™™, C e R"™" with (A, B) controllable
and (A, C) observable. The elements (A, B, C)e X, are state space representations
of a linear system and each defines a transfer function matrix

(2.1) G(s)=CsI-A)'B.
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The transfer function matrix can be expressed in a Laurent series about infinity
(2.2) G(s)=Gis '+Gaos 2+,

where G, € R'™™ are called the Markov matrices of the system represented by (A, B, C}
and are related to the representation by

(2.3) G;=CA"'B, i=1,2, .

Let E, denote the equivalence of state space coordinate transformations, defined on
elements of X;, (A, B, C), (A, B, C)e %, by

(2.4) (A,B,C)E,(A,B,C)>CA''B=CA"'B, i=1,2,-
The relation E,, partitions X, into equivalence classes
(2.5) E.(4,B,C)={(A,B,C)|(A,B,C)eX,, (A, B, C)E.(A, B, O)}.

The set of all such equivalence classes is called the quotient set and is denoted by
2./ E,. Given an infinite sequence of Markov matrices G, i = 1, 2, - + -, arepresentation
{A, B, C)e X, is called a minimal realization if (2.3) is satisfied. Given a finite sequence

of only r Markov matrices {G1, Gz, - - -, G.} the representation (A, B, C) is called an
rth order partial realization if
(2.6) CA"'B=G, i=12---,

and it is called a minimal partial realization {m.p.r.) of r if n is thc minimal dimension
of a system which satisfies (2.6).

An rth order m.p.r. is said to be unique if there exists only one infinite extension
sequence G,,;, i = 1,2, - - such that a m.p.r. is also a (complete) minimal realization
of the infinite sequence {G1, G3, ' -+, G,, Gr11, Gria, + - +}. If it is not unique, other
triples of matrices exist that also minimally realize the rth order sequence but determine
different extension sequences.

Let §,, be the set of all representations of m.p.r.’s of {G, G2, - -, G,}

2.7) Sh={(A,B,C)CA'B=G,i=1,-+-,nE.,A,B,C)cL,}.

The m.p.r. of {G1, G3, -+ -, G} is called unique if §;, consists of a single equivalence
class. If it is not unique, the equivalence relation E, partitions §;, into distinct classes
that represent different systems whose first » Markov matrices are {Gy, G3, - - -, G,}.
The set of all these classes is denoted by §,/E, and is a subset of X,/E,. The set of
all m.p.r.’s §}, is discussed in § 4, the main section of this paper. The characterization
and derivation of §7, uses system invariant descriptions and canonical representations.
The required concepts are defined below and elaborated in § 3. Many of the following
definitions can be found elsewhere [16], [10]-{12].

DEFINITION 2.1. An irvariant of the equivalence relation E,, is a function f: 3, »
R for which (4, B, C)E,(A, B, C) implies f(A, B, C)=f(A, B, C).

DEFINITION 2.2, An invariant f:3.>R is a complete invariant of E, if
flA,B.C)=f(A, B, C) implies (A, B, C)E,.(A, B, ).

A set of invariants f, - - -, fi is called complete if Definition 2.2 is satisfied for
F=(f1, ot :fN):zn_)RN-

DEFINITION 2.3. The set of invariants f;:Z, >R i=1,---,N is said to be
independent if the complement of the range of F=(f;, -, fx) in its codomain is a
finite union of sets V|

(2.8) Vi=lx|xeR" Py(x)=0,f=1,-+, L; finite L},
where P; are polynomials.
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Definition 2.3 implies that F is surjective on its codomain except possibly on a
subset of “‘measure zero” and that no f; can be expressed as a function of any f;, j # .
This definition is a refinement due to [10] of the definition in {9] for independence
of invariants, A complete set of invariants for the equivalence relation E, of (2.4)
may be divided into two sets F = (F,,; F,,) where F,, is a set of integers called arithmetic
invariants that correspond to the structure of E, (A, B, C) and F, is a complementary
set of numerical values called algebraic invariants for the description of E,. (A, B, C)
[111, [10]. We adopt the term basis of invariants [10] for the following intuitive notion
of a complete set of independent invariants.

DEeFINITION 2.4, A set of invariants F is called a basis of invariants for the
equivalenceclass E,. (A, B, C)if F = (F,; F.)iscomplete, the set of arithmeticinvariants
F=({oy,+ - ,0n,) is surjective and the complementary set of algebraic invariants
F,=(ay, ', an,) is independent.

A subset T, <X, is called a canonical form if for each (A, B, C}e X, there exists
one and only one (A, B, C.)e X, for which (A, B, C)E.(A., B, C.). A canonical
representation induces a (trivial) complete set of invariants for E, (A, B, C) simply by
F.{A, B, C)= (A, B,, C.) with the arithmetic and algebraic invariants being the loca-
tion and content, respectively, of the entries of the matrices A, B,, C.. It is well
understood that such a set is not in general a basis because the entries in the canonical
representation satisfy certain constraints (e.g., minimal dimensionality) by which they
are dependent. However subsets of independent invariants can be extracted from
(A,, B., C.) and a complete set of independent invariants determined [7], [8], [10].
We call a basis of invariants whose algebraic invariants are a subset of entries of a
canonical representation a canonical basis. Two canonical bases are presented in § 3
of this paper where a different type of basis is introduced. The new basis of invariants
does not depend on any specific canonical form and it is shown later to acquire the
additional “nesting” property which is defined below. Nested bases of invariants play
a major role in our forthcoming investigation of the set of all minimal partial realiz-
ations. Let G;e R”™™i=1,2, - - be a sequence of matrices and let S}, be the set of
all rth order partial realizations of minimal dimension n, (2.7). Let F" = (F;; F,) be
a basis of invariants for E, (A, B, C) where (A, B, C)e S},

DEFINITION 2.5. The basis F =(F.;F.) of E, (A, B, C) is said to be a nested
basis of invariants if for j<<r there exist subsets Fi cF" and F. cF., such that
F'=(F; F.) is a basis of invariants for some equivalence class in Sf,,. (nj=n,), the
set of all m.p.r.’s of the jth order sequence of the same Markov matrices (f=r—1,
r—2,-z=m,0.

Nested bases of invariants can be considered as a natural elaboration on concepts
of the previous system invariants for the descriptions of partial realizations. Subsets
of nested bases of invariants form bases of invariants for lower order m.p.r.’s in a
manner reminiscent of that by which subspaces of projections of linear spaces are
spanned by subsets of their bases. Thus, the nested bases add, to the previous notion
of independence and completeness of the'bases of invariants, an additional notion of
familiarity with bases in linear algebra. These bases provide a useful tool for the
investigation of the partial realization problem and also have important consequences
for efficient sequential realization algorithms of partial realizations of successive orders.

3. Bases of invariants and canonical forms for minimal realizations. Consider
the infinite sequence of Markov matrices G,/ = 1,2, - - - ,and define the infinite Hankel
block matrix H whose {7, ) block is G;,;_;. Denote by H;; the finite submatrix of the
first / block rows and j block columns of H. It is well known that if the infinite Markov



808 YUVAL BISTRITZ

sequence has a minimal realization (A, B, C)< X, than this realization is completely
determined by a submatrix H;; not larger than H,,, where #» is the rank of H [1],
[14]. The matrix H, , satisfies

Gl GZ Tt Gn C
G A -

(3.1 Hun={ - = C (B AB -« A"'Bl=HcHp,
Gn e G2n—1 CA"71

where H and Hy are the observability and controllability matrices for (A, B, C)e 2,
The row and column dependencies of H,,, are equivalent to row dependencies of He
and the column dependencies of Hp, respectively,

Letf, ={iy,-+-,i.tandJ, ={j1, - + -, j.}denote the indices of the first independent
rows and columns of H or H, ,. A selection of rows I,, and columns J, is called a nice
selection [12] if they satisfy

(3.2) l<irel,»i.—lel, m<jel,>fr—mel,.

The choice of the first n independent rows and columns is recognized as a nice selection
by the decomposition of H,,, in (3.1) into Hc and Hp. The sets of integers I, and J,
thus defined on H are invariants of the equivalence relation E,. They are closely
related to the observability and controllability indices

(3.3) v={ry,--,v} and w={w1, ", @m}

of the underlying system. The observability index »; € v is the highest integer & for
which the row ¢{A* ! (¢! is the ith row of C) still appears in the selection of rows I,
in He. Slmllarly, the controllability index w; €. is the highest integer k for which
column A*~ b {b; is the jth column of B) is in the selection of columns J,, in Hg. It
is therefore obvious from the decomposition of H,, in (3.1) that » and u are related
to I, and J, by

ILev, vi==%I/i icl

34
( ) Jn(_)pu Mj:#fn/jsjem5

where #8§ denotes the number of elements in the set §,n={1,2,---,n}and I../{ and
J./i denote the subsets of the arithmetic series {i,i+4i+2l -} and {j,j+m,
i +2m, - - -} that are included in the sets I, and J,, respectively. The relation between
the sets I, and J, and the sets » and w is bijective and an alternative way to derive
them is to use the crate diagram [11], [17], [18]. Assume for example that Js=
{1,2,3,4,5,7} and m =2 then J4/1={1,3,5,7}»u,=4 and Js/2={2,4} > u,=2
and therefore u = {4, 2}. The integers 8 and a defined on v and « by

(3.5) B =max v, o = Mmax W,
fel jem

are the first integers for which the realizability condition, n =pHg, =pHgi1,e =
pHpg o+1, is satisfied [14]. The submatrices of H in the following definition are uniquely
determined by I, and J, and can be recognized as the submatrices defined also by
Silverman for his realization algorithm [14].

DErFINITION 3.1. The following submatrices of the Hankel matrix H are defined
for the sets I, and J,.:

Q: The nonsingular # Xn matrix formed from Hg, by the intersection of the
columns J,, and the rows 1.
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A: The n Xn matrix whose entries in Hpg .1 are positioned m columns to the
right of the positions of corresponding entries of Q.

B: The n xm matrix formed from Hg . by the intersection of the columns m
with the rows I,.

¢ The ! xn matrix formed from Hp,, by the intersection of the rows I with the
columns J,..

Remark 3.1. A is equivalently formed by the n X n matrix whose entries in Hgoi
are positioned [ rows below the position of corresponding entries of Q.

Remark 3.2. The columns J, of [B, A] and the rows I, of [g], each separately,
form Q.

Remark 3.3. The matrix triple (AQ ™", B, £Q™") is a realization of the infinite
sequence G, i=1,2,-- - [14].

The first two remarks result from the special structure of the Hankel matrix, The
triple of matrices (A‘, é, C‘) involves the following collection of n (m +{) entries of the
infinite Markov sequence [11]

(36) gz{gﬁk,k=132""ayi+ﬁj’iEl’jem}a

where g = (Gy)y. It follows from [11] and the bijective relation between [,,, J, and
v and p that I,,, J, and ¥ define a complete set of independent invariants in the sense
of Definitions 2.3 and 2.4,

THEOREM 3.1. B =(I,,J,; %) is a basis of invariants for F,(A,B,C), the
equivalence class of minimal realizations of the infinite Markov sequence G;, i=
1,2, -, with I, I, the sets of arithmetic invariants and %4 the associated set of algebraic
invariants.

The basis & deserves the name of Markov basis to indicate that its set of algebraic
invariants are entries of the Markov matrices. This is in contrast to the canonical
invariants and bases of [9], [10], in which the algebraic invariants form entries of the
canonical representations, It must be noted that other bases whose algebraic invariants
are Markov entries may be defined in association with nice selections other than the
choice I, J,, of first independent rows and columns {11]. The advantage of the above
basis % over these other bases for the partial realization problem will be clarified in
the next section.

Example 3.1. We shall illustrate the Markov basis for the following Markov
sequence

@ ®H® ®H® @H'/ @},__,

(3.7) G, G, Gy, Gyy v oo = I:(D @ @ @ 7 @ 11 4

The Hankel matrix is then

e e e
LI N S
el W e
SOt BTN
SRR JIEN QU
L - S IR

The rank of H is n =3 and the first independent rows and columns are I3 ={1, 2, 3}
and J;={1, 2, 4}. A systematic elimination procedure to determine these values wiil
be described later. Thus the observability and controllability indices are » ={2, 1} and
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u ={1, 2} and the Hankel submatrices of Definition 3.1 are

112 1 25 11 {1 2
o=114,A=149,1§=11,é=[114].
1 2 5 3 5 6 12

The set of algebraic invariants ¥ of (3.6) consists of the encircled entries in (3.7). In
the rest of this section we shall present two canonical forms and bases of invariants
of a special structure and derive them from the triple of matrices (A, B, &) associated
with 2.

THEOREM 3.2. Given the Markov basis B = (I, J,,; 9) for the equivalence class
E.(A, B, C) of minimal realization of G, i = 1,2, - - -, two possible canonical realiz-
ations and two corresponding canonical bases of invariants for E,(A, B, C) are the
following:

la) The realization (A, B, C1)e E.(A, B, C) where

(3.8) A =Q7'A, B,=Q'B, ¢,=€

1b) The columns T, are the first independent columns of the controllable pair
[B1, A1l and they form the n X n identity matrix. The entries in the remaining m columns
of [B1, A1}, denoted by S1, form part of the corresponding canonical basis B, defined
below.

1c) The canonical basis of invariants for (Ay, By, Cy) is By = (J,.; 4,) where

(39) %1386 {CI}USl

Se {C1} denotes the set of entries in Cy and 8§ is defined in statement (1b).
2a) The realization (A,, B,, C2)e E, (A, B, C) where

(3.10) A:=AQ"", B,=8B, C,=C0"".

2b) The rows I, are the first independent rows of the observable pair [52] and they
form the n X n identity matrix. The set of entries in the remaining rows of [$2], denoted
by S., form part of the corresponding canornical basis B ; defined below,

2c) The canonical basis of invariants for (A;, B,, C) is B, =1, 9.) where

(3.11) %, =Se {B;}US..

Se {B;} denotes the set of entries of Ba, and 8, is defined in statement (2b).

Proof. See Appendix 1,

The two canonical forms and their corresponding canonical bases of invariants
may be derived without explicit calculations involving the matrix Q. To achieve this
purpose we define the following restricted elimination procedure.

DErFINITION 3.2, A row (column) reserving elimination operation represented by
the matrix T} of size pxp (T3 of size q Xq), is defined as a restricted Gaussian
elimination procedure that acts only on the rows (columns) of some matrix M of rank
n and size p X g p, g =n. The action of T} (T3) is to change the first » independent
rows (columns) of TiM (MT3) to unity column (row) vectors without interchanging
row {column) positions.

Note that T} brings the first n columns of TiM to #n unity vectors that may form
a nonordered arbitrary selection of » columns of the pxp identity matrix. The
procedure that changes the first n independent columns of M to n ordered unity
vectors will be called a complete row elimination and is denoted by T;. T7 combines
the action of T followed by a proper row interchange procedure. Similarly for the
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dual case we shall denote by T, the complete column elimination procedure that
changes the first n independent rows of M to the ordered sequence of unity row
vectors of the g X ¢ identity matrix.

Note that Q@ ' in (3.8) and (3.10) stands for the operations of T, and T,
respectively, so that the canonical forms can be derived from (A, ﬁ, &) by a complete
elimination procedure without finding Q' explicitly. Definition 3.2 suggests the
following even more simple algorithm.

ALGORITHM 3.1
1. To obtain (A, B, Cy)
@) Ci=¢;
(i) T1[B, A]=[B., A,] where B;e R"*™, A€ R"™" are intermediate matrices
resulting from the implicit action of the row reserving operation T} of Definition 3.2;
(iii) [B, A,]= P'[ﬁ J,Al] where P is a permutation of the n X #n identity matrix
formed by columns J,, of [B,, A,]. Columns J, are identified at stage (ii) as the pivotal
columns of the action of T,
2. To obtain (Az, Bz, Cz)
(i) B,=8

§r-[3)

where T3 is the column reserving elimination of Definition 3.2 and égER'x", A}e
R"™ are the intermediate results of its action; ‘

L [)-[%]e

where the permutation P is the matrix formed by rows I, of [%2] which are the pivotal
rows revealed at stage (ii).

Any canonical representation can be derived from its Markov basis of invariants,
The two canonical forms of Theorem 3.2 have been chosen as suitable forms for
system invariant descriptions in having a structure that reflects the output or the input
structural properties of the system and as forms that are easily derived from the basis.
The derivation of the canonical bases of invariants %, and %, shows the connection
between the Markov sets of invariants and previous descriptions of canonical
invariants. The significance of canonical forms that reflect some of the invariant
properties has been recognized in [10] and more recently in [11]. In fact the second
canonical form and canonical basis of Theorem 3.2, derived here from the Markov
basis, are identical to the results of Rissanen which are derived in [10] directly from
the Hankel matrix. The first canonical form also coincides with a realization obtained
by the Silverman procedure [14]. Silverman has not considered the invariant structure
of the pair [B1, A] or any related invariant aspect of his realization. The main reason
for stating Theorem 3.2 and subsequent algorithms is to provide for the next section
alternative equivalent descriptions for the solution of the minimal partial realization
problem other than the nested bases. However, these results are also significant for
the previous invariant descriptions and derivation of complete minimal realizations.
They show that the realization obtained by Rissanen [10] is a dual form of the earlier
realization derived by Silverman [14]. These results also supply a simplified elimination
procedure for the derivation of the invariants of Rissanen and provide a system
invariant description framework for the realization of Silverman,
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Example 3.2. We illustrate Theorem 3.2 and the subsequent algorithm by con-
tinuation of Example 3.1. To derive from A, B, C, the first canonical form we follow
Algorithm 3.1 to obtain:

. A 11 2]
® Cl_c_[l 1 41
{(ii) Perform reserving row elimination on [ 3 A‘]
M 1,1 2 58 1112 5 {1110 1
[B,Al1=|1 11 4 9|=]|0 0 0 [2] 4|»|0 0 0 1 2
1 1;356] 012 3 1 0 [1] 2 0 -5
1 0,-1 0 6
=10 0: 0 1 2|=[B,A4,]
0 1! 2 0 -5

where the squared entries indicate the pivotal element at each step.

(iii) Rearranging the rows of [Bl, 1] to obtain the identity matrix at columns
J3={1, 2, 4} or equivalently extracting P from these columns and performing the row
changes by premultiplication by P results in

100 1 0,-1 0 6
P=[0 0 1|->P[B,A]=|0 1| 2 0 -5|=[By,A],
010 6 0, 0 1 2

note that columns J; ={1, 2, 4} of [B;, A;]form the identity matrix. The first canonical
form is therefore

-1 0 6 10
11 27
A= 2 0 -5, B,=|0 1}, C1=1 1 4].
01 2 0 0

The basis is %, = (J3; %) where %, is formed by the set of entries of C; and of columns
land 3 of A,.
Using the second part of Algorithm 3.1, the dual canonical form {A,, B;, C») is

0 01 11 10 0
Az=|-1 -1 3, Ba=|1 1], C2=[0 1 0].
-2 -3 2 1 2

The corresponding canonical basis is B, = (I3; 9.) where %, is formed by the entries
of B, and of rows- 2 and 3 of A.

4. Nested bases of invariants and minimal partial realizations. Given a finite

sequence of r Markov matrices {G,, - - -, G,}. We construct the Hankel matrix
G, G, -+ G GY,
G,

(4.1) H =|:
G,

Gr+1
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where {G7.1, G}ia, - - -} Tepresents some unknown complementary sequence. This
matrix is closely related to the incomplete Hankel matrix used by Tether [2] with the
slight difference that we explicitly write entries (G7); = gk for k >r instead of the
common asterisks put, in [2] and [7], [8], in all the locations of the unknown data.
This modification proves to be powerful if the following “asterisk convention” is
adopted: (i) Asterisked entries g and their combinations are carried along in any
submatrix of H' and any operation on such submatrices. (ii) Asterisked entries of
matrices are assumed not to influence the internal dependencies between the rows
and columns that are determined by the numerically specified entries. Consequently
the indices of the first independent rows and columns and the rank of the matrix are
not changed by any specific choice of values for the asterisked entries. The rank of a
matrix that contains asterisked entries is by this convention the minimal rank that is
admissible by its numerically specified parts.

Following the above convention, let n, be the rank of H' and denote the indices
of the first », independent rows and columns of H™ by I, and J;,, respectively. Thus,
I (J; ) are the first #, rows (columns) in H" which, considering for each row (column)
only columns (rows) that correspond to its numerically specified positions, do not
depend linearly on preceding rows (columns).

Let 8, denete the smallest integer for which every row of the block row 3, +1 of
H’ (i.e., [Ggr+1, Gpraa, + + + 1) depends on the previous rows and similarly let «, denote
the smallest integer for which every column of the block column «, +1 depends on
the preceding columns. We have the following important result on the existence of
m.p.r.’s [2], [3].

THEOREM 4.1. Given the finite sequence {G,,' ', G} (1) There exists an
extension sequence {Gri1, Graz,* -+ } for which n, is the dimension of the minimal
realization of the infinite sequence Gy, i =1,2 . .. This realization is not, in general
unique. (2) Every extension fixed up to ro= a, + 8, is uniquely determined thereafter.

The invariants description approach developed and discussed in this section will
provide an alternative verification of this well known theorem. The theorem indicates
that values for the gf; exist for which the structure of the Hankel matrix as well as
the row and column dependencies are retained. Later we shall be able to specify the
required g values and construct the minimal extension sequences. LetG,i=1,2, -
be the infinite Markov sequence associated with some equivalence class in X, and let
RB=(I,J.; 9 be its Markov basis described in Theorem 3.1. The next theorem
establishes & as a nested basis of invariants (Definition 2.5).

THEOREM 4.2, Let {G1, Gy, - -+, G.} be an rth order subsequence of the infinite
sequence G;, i=1,2, - whose Markov basis is B=(I,,71,;%). Let also n,=pH'
where H' is the incomplete Hankel matrix associated with the finite subsequence.
There exist subsets of I, <I.,, T, <J, and a subset 4, of n,(m +1) elements of 4, <%
such that B,=I,,J.;%,) forms a Markov basis for a m.p.r. of {G1, -+ ,G,} of
dimension n,.

Proof. Let I, and J_ be the indices of the first independent rows and columns
of H" of (4.1). Let A,e R™™", B, R™*™ and C, e R”™ be the submatrices of H of
{3.1) derived in association with I,, and J, in accordance with Definition 3.1. Note
that the matrices fi,, ﬁ,, C’, are derived from H of (3.1), not from H' of {4.1), and
thus all their entries are specified and completely determined by I, , J. and the infinite
sequence G, i =1, 2, - -, Clearly n, =n and as the process of successive replacement
of asterisked entries in H' by numerically specified entries G,.,, i =1, 2, - - - may add
new independent rows and columns but cannot cancel former independencies, we
have I, <1, and J, </, It therefore follows that the following algebraic set of
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invariants defined for I;,_and J

(42) ‘.§,={g,-,-klk=1,---,17,-+;2,-,iel,jem},
where
4.3) mo=%In i, gy =HIL

is a subset of ¥. Construct from (A,, B,, &) a representation (A4, B, C)e3, (using
Algorithm 3.1 say) clearly B, = (I, J, ; .} is a Markov basis for E, (A, B, C). The
Markov entries G: = C;AY" VB satisfy G; = G for (atleast)i = 1, - - - , r therefore %, isa
Markov basis foram.p.r. of {G1, - - -, G,} where we have alsoshown that [}, I, J, <
J,and %<9 0O

It follows from Theorem 4.2 and Definition 2.5 that all the bases %, are nested
bases. The set of invariants ¥, is either completely composed of entries that are
selected from {G., - - -, G.}, in which case %, represents a basis for the unique m.p.r.
of the rth order sequence, or it contains also entries from {G,.1, Gr+2, - -} In the
latter case 9, represents a basis of an equivalence class in S, the one which is induced
by the higher order basis . In this case it is understood that other infinite Markov
sequences of minimal dimensions n*, n* =, that have {G, - - -, G,} for their first r
matrices may induce other sub-bases for equivalence classes in S, .

The last observation leads to the following condition for the uniqueness of a m.p.r.

PrROPOSITION 4.3. The sequence {Gq, -+, G,} yields a unique m.p.r. if and only
if it acquires a Markov basis B, = (I}, J 1.1 9,) for which the set §,, defined in (4.2), is
completely formed by entries of the sequence |G, -+, G,}.

Define for 5; and &; of (4.3)

(4.4 B-=max ¥, a,=maxg;, re=a,+8,.
iel jEmM

It follows from (4.1) that the condition expressed in Proposition 4.3 is satisfied if and
only if ro=a,+ B, =r. It is easy to verify that a, and 8, of (4.4) are identical to the
integers in Theorem 4.1. This proposition therefore assures the uniqueness conditions
stated in Theorem 4.1.

We now proceed to investigate the case where {G;, ' - -, G.} has more than one
m.p.r. Assume that r <r; and thus that the set §, of all m.p.r.’s of {Gy, -+, G}
consists of distinct equivalence classes to each of which there corresponds a different
extension sequence. Denote a general form of an infinite Markov sequence whose
first » Markov matrices are {G,, ++, G,} by

(4.5) {Gl, Gz, Tty Gn G:k+1, G.ﬁz, T '},

where G¥.1, G¥., are some unknown matrices. The sequence (4.5) may have realiz-
atlons of any minimal dimension r* = n,.

Applying the derivation of the rth order Markov basis as in the proof of Theorem
4.2, to the sequence (4.5) and following the discussion that preceded this theorem
the Markov bases BF = (I, , 1. ; @*) are obtained where ¢ may be divided into two
disjoint sets 4* = &, U@,. The first set

(4.6) G ={gulk=1,--+,min(Z+d,r),icljem}

with 7; and ; as defined in (4.3) represents the specified invariants that form a selection
of entries of {(F1, - - -, (G,} while the second set

(4.7) P.o={gulk=r+1, -, 5;+a;>ricl,jem}
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represents a complementary set of unspecified invariants that form a selection of
entries of the extension segment {G.,, - - -, G} of positions specified by I, and J},.
It follows from the nested property of Markov bases (Theorem 4.2), that the above
set of bases ¥ represents the set of rth order sub-bases of any general sequence
(4.5). Therefore, any admissible extension sequence of dimension n, is represented
by @7 for some suitable choice of values for ?,. The set @, is a complete set of
parameters {g} for S, labelled by the locations of the required unspecified entries
in the extension sequence. Two m.p.r.’s of {G4, - + +, G,} that assign values to &, and
are different even in one labelled parameter value represent different equivalence
classes in §;,. The question now arises whether by arbitrarily assigning numerical
values to the set of parameters %, the resultant set of invariants {I,,,J; ; GUP,)is
a basis of some m.p.r. of {Gy, - - -, G,}, or in other words, whether the relation between
S../E, and P, is also surjective (onto). Since the set of parameters %, is taken from
locations in H" whose specification cannot affect the rank condition n, = pH’, we get
the following result:

ProOPOSITION 4.4. There exists a one-to-one and onto (a bijective) relationship
between 8., /E,, the sef of equivalent classes in S, and the set of parameters P,.

It has been noted, in the paragraph following Theorem 3.1, that other bases
which correspond to nice selections of arithmetic invariants other than the choice of
the first set of independent rows and columns may be found. Choice of such bases
for the partial realization would lead to an algebraic set of invariants which would
contain both specified and unspecified invariants. It can be shown that though the
unspecified invariants form alternative candidates for the parametrization of the set
§., and satisfy the one-to-one relationship of the last proposition, they do not satisfy
the onto relationship. The set 2, is the largest set of unspecified Markov entries to
which we may assign values independently and the smallest set of parameters for S,
that covers all m.p.r.’s of order r. We restate and prove this claim as Proposition 4.5.

ProPOSITION 4.5. The set P, is (i) an independent set, and equivalently, (ii) a
minimal set of parameters for the parametrization of the set of all minimal partial
realizations of {G1, -+, G/}

Proof. See Appendix 2.

It is considered important in some fields of system theory, such as certain problems
of adaptive modelling identification to have a description of the set of all m,p.r.’s with
the least possible set of parameters. It follows from the last proposition that only &,
results in such a description. This useful complete invariant description of the set §,,,
of all minimal partial realization is summarized by the following:

THEOREM 4.6. The set of all minimal partial realizations Sy, of a finite rth order
sequence is completely determined by the set of nested Markov bases BF =
(I, T G UP) where G, and P, are defined in (4.6) and (4.7) respectively. P, is a
minimal set of independent parameters for S, and the relation between the set of
equivalence classes in 8., and the set of parameters P, 8, /E,, — P, is one-to-one and
onlo. *

Remark 4.1. The number of parameters in &, is determined by the arithmetic
invariants (implicitly via (4.7)).

Remark 4.2. The equivalence classes in S, have the following list of system
invariants in common: The arithmetic invariants I7,,J; (and as a consequence the
controllability and observability indices), the subset of the algebraic invariants @, of
{(4.6) and #%, the minimal number of the above-mentioned parameters, These
equivalence classes in §, differ only in the numerical values acquired by the set %,
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Remark 4.3. In the special case where the m.p.r. of {G1, G2, - - -, G/} is unique
the theorem implies the following: S, reduces to a single equivalence class for which
B, =Ur,Jn: &,) is the corresponding Markov basis and the minimal set of parameters,
P,, is empty.

The description of the minimal partial realizations need not be confined to nested
Markov bases of invariants. It has been mentioned in the preceding section that any
canonical representation can be derived from an ordinary Markov basis. In a similar
manner any canomcal representation can be derived from &} for equivalent descrip-
tions of S,. Let (A,, B,, C) be the trlple of matrices of Definition 3.1, derived from
H' in association with BF =(I},, J .. ; . € |J®,). The first and the second canomcal forms
of Theorem 3.2, (A1, B1, C1}, (Ao, Ba, C2)€ S, can be derived from (A, B, c ) by
using a method analogous to the method of § 3,

(4.8) [B:, Ai]l=Ti[B;A,] and C,=C
and

C é
(4.9) B,=B, and [ Aj [ Ar]Tz,

where T, and T, represent, respectively, the row and the column elimination oper-
ations, of Algorithm 3.1. Bases of canonical invariants BT = (I, ; 47) and @3 =
(Jn; 95) can also be derived for these canonical representations in accordance with
Theorem 3.2. The difference between the m.p.r, canonical descriptions in the present
case and the minimal (complete) realization description by system invariants of § 3
becomes significant in the case of r < ry. In this case, which corresponds to the existence
of more than one solution to the m.p.r. problem, the canonical representations as
well as their corresponding canonical bases of invariants contain undetermined entries
which are expressed by combinations of the minimal set of parameters 2,.

Some other points of significance about the set %, that make it further useful in
certain problems of system identification are as follows. The set 2, is formed by
assembling parameters in a form that can directly use further data that may be available
under excessive measurements. Furthermore, as the parameters {g/.} in the set &,
are labelled by their position in the extending data set, %, contains information that
indicates precisely which output-input pairs of relations (i, f) require further explor-
ation and in what way can the model be completely specified.

Example 4.1. We shall illustrate the invariant description concepts presented
above for m.p.r.’s by deriving nested bases of invariants and canonical realizations
for sequences of order r =2, 3, 4 for the numerical example of Tether [2].

1 174 3110 77122 15
(4.10) Gl’Gz’Gf"G“"[o.o]’[o 0”1 1” 3 3]'

Fourth order m.p.r.’s for this example were also derived in [5]-[8]. Nested bases of
invariants are suggestive of recursive algorithms of realizations of sequences of success-
ive higher orders. Since an efficient algorithm of this kind requires details which were
not discussed in the present context, we shall derive invariant descriptions of m.p.r.’s
separately for each order. For the sake of brevity we shall derive realizations only in
the second canonical forms.
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(a) Fourth order sequence. Construct for r =4, H*, the fourth order incomplete
Hankel matrix of (4.1)

(@D 14 3110 71 22 15]]
0 0 0 0 ! 1! 3 3
4 i__f()""7w:r_25“—1§_ i"g_u_s"g_lz_;
“.11) . -_0_ _____ 0 ——:|————1——:|"§"——§— ) 8215 K225
10 7 | 22 15 8115 Bizs  gus  Zi2
_1_ _____ 1—__5 _:_5___# :8'215 g225 £216 £226
22 15 lgus g5 gi1e 826 gu 8127
3 3 _\8us Sas Bais  faze G217 gzz'J

The squared entries in (4.11) represent the pivotal elements determined by the
numerically specified entries. (In a numerical example we may drop the asterisks used
to mark unspecified entries. These can be found, for example, by the row reserving
elimination operation (Definition 3.2). We observe that a m.p.r. of order r =4 is of
dimension pH * = 5. The first independent rows are I'§ = {1,2,3,4, 6} thus7; = #{1, 3} =
2, 7= #{2, 4, 6} =13 by which »*={2, 3}. Similarly, the first independent columns are
Js={1,2,3,4,5} hénce u* ={3, 2} and a fourth order m.p.r. is determined by entries
of the first ro =3+ 3 = 6 Markov matrices. The set of Markov bases therefore consists
of I ‘;, J ';’ as the arithmetic invariants and @4U9’4 as the algebraic invariants, where
G, and P, are determined by (4.6) and (4.7), respectively, to be G, =
{(811k> 120 821k» 8224 )» k € 4} and Py ={g115, 8215, 8225, §216}. These invariants are sum-
marized in the upper part of Table 4.1 where the algebraic invariants appear as
encircled entries in the Markov matrices. Associated with the set of bases #F =
{I, 7% G, P4} are the triple of matrices (A, B, €) of Definition 3.1,

4 3 10 7 22 11
0 0 1 1 3 0 0
A= 110 7 22 15 gusl, B= {4 3],
1 1 3 3 8215 0 ¢
3 3 gaus gas 8z 11

“=lo 000 1

from which the segond canonical form (A,, B, ;) can be obtained by Algorithm 3.1
resulting in B, =B and

.[114310]

1 D 0 0 0 7
0100 0
c, 0 o 1 0 0
[Az] 0O 0 0 1 o |,
-2 a 3 0 )]
0 0 0 0 1
Lbd d 0 ¢ —-b+3]
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where a=gu15—46, b=gus—gas, = g225—9, d=gre— 38215"‘6 (g215—T)%
(g1258215+3). The corresponding canonical invariant basis is BE —(I 3. 9% where
%7 is formed by the entries of B, and of rows 3, 5 of A,.

{b) Third order sequence: {G1, G2, G3}. The three upper-block diagonals of (4.8)
reveal that H?, the incomplete Hankel matrix required for r =3, is characterized by
73 =4 and that the first four 1ndependent rows and columns of H? are, respectively,
I3={1,2,3,4}>+*={2,2} and J4—{1 2,3,5)»pu° ={3,1} from which ro=35. The
set of Markov bases are @% —{I 3. T3 G,U 3} where %, and P, are formed by the
encircled entries in the middle part of Table 4.1. The associated triple of matrices
(A, B, ) for these invariants are,

4 3 10 £114 1 1
- 0 0 1 g214 ~ [0 0 P [1 1 4 10]
A: . = , C=
10 7 Zt14  f115 B 4 3 0 0 0 1
1 1 go1a ga21s 0 0

The second canonical form (A, B,, C,) is readily obtained from these matrices by
Algorithm 3.1, B, =B and

1 0 0 07
0100

[C2 0 0 1 0
Az] 0 0 0 1)
-2 ¢ 3 a

L1 d 0 &

where a=gns—22, b=gus—4, ¢=gns— 38114~ gna{g114—20}+20, =
g215 g214{g214—4)—10. The corresponding canonical invariant bases are RBE =
(I 3. %) where 9% is composed of the entries of B, and of rows 3, 4 of As.

(c) Second order sequence {Gy, Gz} Repetltlon of the above procedure for r =2
yields ny =2 IZ={1, 3}—>v —{2 0} Ji={1,2}>pu? —{1 1}, by which ro=3. The set
of Markov bases are B% = {I 273 %, P,} where %, and P, respectively are formed
by the specified and the unspecified encircled entries in the ro=3 Markov matrices
in the lower part of Table 4.1. From the associated triple of matrices (A, B, &),

,. 4 3 - 11 " 11
a-[io ol =l 3 e=[g o)
g113  f123 4 3 0 0

the following realization in the second form is found

0 1 11 11
Az'[a b]’ Bz“[4 3]’ C"_[o 0]’

where @ =4g113—3€123, & = 2113 — 125 and the corresponding canocnical set of bases
are (I3; 9%) with 9% containing the entries of B; and the second column of A,.
Table 4.1 summarizes the invariants of the realizations of orders r=4, 3, 2 and
exhibits their nested property. Our results can be compared for the r =4 case, with
the previous realizations in [2], [5]-[8]. Tether [2] suggests a minimal extension
segment {G,.1, - -+, G,,} ={Gs, Ge} that contains only two free parameters which in
comparison with our results corresponds to two unnecessary constraints on %4, namely
g11s= 46, ga15 = g22s. The realization in [5] identifies only three free parameters for
S+, and has other weaknesses discussed in [6). The authors in [7] and [8] correctly
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TaprLeE 4.1
Nested bases of invariants for r =2, 3, 4 realization of (4.10).

r=4,  na=5,  I5={1,2,3,4,6}, J5=11,2,3,4,5), ro=56

ouonananciai-(3 SHS SO D DB 5 s

Ps=1{8115: B215, €225, 8216}

r=3, nz=4, [={12,3.4<cr} Ji=01,2,3,5<c7! =5

avanonores- (3 )18 SHD 3162 | &2

© or E224 B225
P3={8114> B214> £115 €215}
r=2,  m=2, Ii={1,3}cI] T2 ={1,2}e i, ro=3
61,60 6% [ ke 9 & &)
B213  Baz3

Pr={g113 8123}

identify four independent parameters. Their descriptions use Popov type system
invariants [9] and the representation is admitted in [ 7] to be nonunique. The reallzatlon
there is into arbitrary Luenberger forms [13] by which the unity vectors in [ A] or
[B, A] appear in arbitrary order and in positions that are not related to the system
output or input structure. The computation in [7] requires solutions of sets of linear
equations and the elimination procedure in [8] requires an auxiliary matrix. By
comparison with these former invariant description approaches to m.p.r. our method
is also advantageous computationally,

5. Conclusions. This paper studies the minimal partial realization (m.p.r.) prob-
lem using system invariant descriptions. The concept of nested bases of invariants is
introduced and these bases are derived from entries in specified positions of the
Markov sequences. These bases form invariant descriptions for m.p.r.’s which, in
contrast to previous approaches, do not depend on any particular choice of a canonical
representation. The existence of a unique solution to the m.p.r. problem can be tested
on these invariants and when more than one solution exists the set of all m.p.r.’s for
the given finite sequence can be expressed as a set of bases that contains a subset of
undetermined invariants. The nesting property of these bases is used to prove that
this set of undetermined invariants forms a minimal set of independent parameters
that covers all possible m.p.r.’s of the s2quence and that for any arbitrarily assigned
values of these parameters there corresponds some admissible solution.

Two canonical state space representations have been suggested and an efficient
algorithm for their derivation from the nested bases is provided. These canonical
forms reflect the structural properties of the underlying system and also compare
favorably in their numerical aspects with previous approaches to m.p.r.'s.

Any other canonical representation can alternatively be derived from these bases,
and the solution to the m.p.r. problem can be expressed by combinations of the
minimal set of parameters obtained. The complete freedom in assigning values to
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these parameters may be used to search for further properties of the constructed
models. (e.g., to ask for stable models). These parameters form entries of specific
positions in the unknown extension sequence of the Markov matrices which may be
of importance in certain identification problems. The formulation may also be advan-
tageous in building adaptive real time identification models from input-output data.
In this latter case an estimated state space model can be continuously updated by
measuring only specific locations in the input-output map prescribed by the basis of
invariants (where the model may be taken to be valid so long as the arithmetic
invariants remain unchanged).

An obvious property of the suggested nested bases of invariants which has not
been put to use in the present context is that these bases are ideal for recursive m.p.r.
algorithms for sequences of Markov matrices of successive orders. This stems from
the projective property of nested bases, i.e., they present sub-bases not only for all
possible minimal extension sequences but also for arbitrary extension sequences of
higher dimensions. Such a sequential algorithm, whose detailed numerical aspects
have yet to be developed, will have the following features. The dimension of a
realization of a sequence of a given length need not be known in advance. Subsequent
order realizations require the calculation of only a few new invariants which add to
the former set of invariants to form the new basis. The final important feature is that
at each stage either the unique m.p.r. or in the nonunique case, the set of all possible
m.p.t.’s are obtained and in the latter case these m.p.r.’s are described in terms of a
minimal set of parameters.

Appendix 1. Proof of Theorem 3.2. We shall prove only the first part of the
theorem, as the second part follows by an obvious dual reasoning. Statements (1a)
and (1b) follow from Remarks 3.2 and 3.3. We have to show that #,=(1,; %) isa
basis of invariants. I, represents the arithmetic invariants associated with the observa-
bility indices (3.4) of the underlying system. The elements of the set ¥, are entries
in a canonical representation, thus they are canonical invariants. The set (I,; 9,) is
complete because it completely determines (A4, By, C1) via statements (1a) and (1b).
The pair (By, A,) is controllable by statement (1b) by which an arbitrary choice of
(I..; 4,) fails to give rise to a representation (A, By, C1)€ X, if and only if it yields
an unobservable pair (4,, C;). This condition is equivalent to p[ A]<n and it can be
expressed by suitable sets V; of (2.8). Consequently the map %;:%,->R nim+h g
surjective except possibly on some hypersurfaces of “measure zero” in its codomain,
thus %, is also an independent set of invariants in the sense of Definition 2.3.

Appendix 2. Proof of Proposition 4.5. Assume that %, is not independent and
let P, = P, 1UP, where P, and P, are subsets of independent and dependent para-
meters, respectwely Once %, has been arbitrarily assigned values the set 2, is uniquely
determined in contrast to the sur]ectlve relationship between S, /E, and %, stated
in Proposition 4.4. Therefore all the parameters in P, can be assigned values indepen-
dently. Now we show the equivalence of (i) and (ii). For (i)~ (i), a minimal set of
parameters has to be independent or else a smaller set can be extracted for the
parametrlzatlon of . For the converse, (i)- (ii), assume there exists another basis
R&* for S, whose set of algebraic invariants € U2, is composed of a smaller set of
unspecnﬁed values #&, < #@, Then %, U P, could be expressed as a function of % U2,
which implies the contradiction that not all the parameters in @, can be assigned
values independently.
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