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considered. A unified treatment is presented by which various models of minimal

order are found which match given sequences of time moments and Markov
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matrices. The uniqueness of these models is investigated and in cases where there
exist more than one minimal model for a given sequence the set of all the distinct
models is characterized by a minimal set of independent parameters which can be

assigned arbitrary values. The possible instability of Padé reduced models for stable
systems is considered and a method is suggested which yields stable models that
approximate the high order system, or at least its magnitude, in the Padé sense.

1 Introduction

The methods of approximating linear invariant large scale
systems by lower order models in the Padé sense find models
that match the first terms of expansion of the system transfer
function matrix about zero and/or infinity, c¢f. [1] and
references therein. Several techniques have been developed for
single-input single-output (SISQ) systems [1]-[5] and attempts
to extend these techniques to the multi-input multi-output
(MIMO) case using matrix Padé equations, matrix continued
fractions, moment matching and partial realizations have
been made [1], {6]-[11]. None of these extensions provide a
general method for MIMO systems that obtains models of
minimal order to match a given sequence of matrix terms of
predetermined length of the transfer function matrix ex-
pansions. Application of Padé equation, continued fraction
and related equivalent techniques that were used in the SISO
case, for MIMO systems encounters several problems. An
important shortcoming is that they may lead to models whose
order is higher than intended, and sometimes even higher than
the order of the approximated systems. This difficulty can be
traced in the numerical examples used in, say, [9], [14]-[16].
[24]. Another difficulty which is well recognized and that may
occur even in the SISO case is that Pad€ approximation of
stable system may yield unstable models [12]-[16]. The
present paper suggests a new approach for the Padé ap-
proximation problem that overcomes many previous dif-
ficulties and limitations. A short conference version of this
paper was presented earlier in [34].

II The Minimal Padé Approximation (MPA) Problem

We consider a high order linear time invariant
multivariable system of m inputs and / outputs which is
described by a transfer function matrix H(s). Let the series
expansion of H{s) about zero (assuming analytically there)
and infinity be
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H(s)=— Y}, Ts™' and H{s)= ), Ms~ (2.1a,b)

i=1 i=1
respectively. The matrices M,, T;,i=1, 2, . . . are the Markov
and the (modified) time moment matrices of the system,
respectively.

Given a sequence of r=p+¢ time moment and Markov
matrices of the high order system o(p,q) = [T Tyoty - . .
TM,, M,, ..., M,}], the definition of the (p,g) mixed
mineral Padé approximation (MPA) reduction problem is the
following.

Find a model whose representation (A,B,C), AeR"*",

BeR™M  CeR™ | satisfies for a minimal value of n.
CA™'B=T, i=1,....p (2.2a)
CA-1B=M, i=1,...,4q (2.2b)

Denoting the class of all representations equivalent to
(A,B,C) under the regular state-space coordinate trans-
formation by E, {A,B,C), a solution to a (p,q) mixed MPA
reduction problgm is called unique if all the minimal
representations that satisfy (2.24,b) belong to the same
E, (A,B,0).

In the special case of p=0, the above defined problem
coincides with the minimal partial realization problem [19],
[20] which has recently been investigated using an invariant
description approach [17]. We shall apply the approach in
[17] to solve the above model reduction problem also for

o

p>0.

We redenote the mixed sequence o(p,q) by
{G,,Gs, . .. ,G,}& and construct the following incomplete
Hankel matrix

(G, ... GGy .. ]
Kipgy= | .
G, (2.3)
: ]
r+1
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where asterisked entries G},,, G?., represent some un-
specified extension matrices which, following the ‘‘asterisked
convention’ [17], may participate in K{(p,q) and its sub-
matrices without changing the minimal rank of these
matrices. Denoting by n the rank of the above matrix,
oK {(p,q), we have the following.

Lemma 1 A solution to the (p,g) mixed MPA reduction
problem is a model of order #. Such a solution always exists
but it is not necessarily unique. _

The proof follows from the well-known minimal partial
realization theory [19], [20], noting that a triple (A,B,0)
matches (G, . . . G, }4iff the triple (4,47 B,C) matches a
finite Markov sequence M,=G;, i=1, ., r of some dif-
ferent system.

Let the first # independent rows and columns in X (p,q) be
denoted by the set of indices I, =1}, ...,i,}, and J, = {},,
<+« Ju), respectively. Following the “‘asterisked con-
vention” of G},;, I,(J,) represents the first » rows which,
regarding only its numerically specified column (row)
positions, do not depend on preceding Tows (columns).
Therefore, I, and J,, are determined only by (G, . .., G,}
where we further prove the following.

Lemma2 Thesets I, and J, are independent of p, O0sp<r.
Proof: Let (4 H,BH,CH) be a minimal state space
representation of the given high order system, AgeRV*N,
By eRN*™  CreR'™" . The proof follows from the foliowmg
possible decomposntlon of K(p,q), where C Al By fori>g
are the terms with asterisks.

K@) =[Cy4,Ax'Cl . . . VAZ" By, AuBy, . . 1 2.4

The sets I, and J, are arithmetic invariants of E, (4,8,0).
They are bijectively related to the observability and the
controllability indices I, = {v,...,n,} and J,=
fwgs . .. ypn 3 of the models by the following; », () is the
number of elements in common to the set {i,, iy +1, i, +2/,

- 1 (theset iy, jy+m, j,+2m, ... )) and the set I, (the
set J,). Defining

and B=max r;

a=max !
J i @.5)
Jj=1...m i=1...17

The next theorem follows from [19], [20] and the last two
lemmas. .

Theorem I The solution of the (p,q) mixed MPA model
reduction problem is unique iff p+g=«+3 Hence, the
condition for uniqueness of the models is independent of the
emphasis that is put on the approximation at zero and in-
finity.

Theorem 2 The set of entries of the matrices (p,q)
Qp,q [gukl(k—l 2... |Vj+.uj);
i=1,...,l,j=l,... (2.6)

with g, = (G, ) 4, is a sufficient set of parameters, in addition
to the sets I, and J,, for the complete determination of all the
possible solutions of the {(p,q) mixed MPA model reduction
problem.

Theorem 2 follows directly from [17], [21] and the two
lemmas, where a more precise statement of the theorem could
have been that ® =(7,,,/,,,5,,,} is a (nested) basis of in-
variants for the set of all solutions to the (p,g) mixed MPA
problem. Such a statement also implies that the sufficiency
above can generically be replaced by minimality [17].

If r<<o+ B then by Theorem 1 the problem has more than
one solution. In this case the set G, , contains the following

W}
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subset of numerically unspecified parameters which is formed
byentriesof {G,,, ... G,.3)

(?={gu'k|(k=r+l, . ,V,-+,uj);
i=1...4Lj=1...mp+p>r) 2.7

For this set we have by [17] and the two lemmas, the following

Theorem 3 The set @ is the maximal set of degrees of
freedom for the (p,q) mixed MPA models. For any arbitrarily
assigned values of the elements of & there corresponds a
uniqgue model and all the solutions correspond to some
numerical specification of .

A simple procedure for the derivation of a solution (4,B,0)
for the (p,q) mixed MPA that uses I,,, J, and the set of entries
Gp.7 18 given as follows [17] [18].

An aigorithm. Given K(p,q), I, and J,,,

() Construct the following matrices

¢ The /xn matrix formed from K (r,q) by the intersection

_ oftherows (1, ... ,/} with the columns J,

B The nxm matrix formed from K (p,q) by the intersection

_of therows I, with the columns {1, . . . ,m}

A The nxn matrix formed from K (p,q) by the intersection
of the rows 71, with the columns {j, +m,
btm, ., jotm), where J =4, ..., /,]

(i) Perform on [B, Ei] a row elimination procedure that
brings the columns J, to form the nx n identity marrix and
results in, say, [ B,A].

(é#)) Thesolution (4,B,C) is given by

A=A, B=B, C=CA4» (2.8)

The above algorithm reduces for the special case of p=0 and
sufficiently large r to the derivation of minimal (complete)
realizations from Markov sequences. For this case the
matrices A, B, C form the submatrices of the Hankel matrix
used by Silverman [18] for the derivation of minimal
realizations.

The triple of matrices (4, B, €) involves exactly all the
entries of G, ;. In the case where r <o+ § the triple (4, B, ©)
contains combinations of the unspecified parameters of and it
therefore represents, in terms of a minimal set of independent
parameter, the set of all distinct models that solve the (p,q)
mixed MPA problem. The above algerithm represents a
derivation of the solution in the first of the two canonical
forms (the contrbllable form) of [17]. An equivalent dual
form (an observable form) can be obtained by column
elimination of [€*A’]'. A simpie example clarifies the
method.

Example 2.1 The matrices T,, M, and Mz of a high order
system of # = 2 inputs and /= 3 outputs are given by

ONO, ® ©® @ 7
N6, @ O m=|® @
@ @ @ 14 15 14

(2.9)

T, =

A minimal reduced order model is required to match these
matrices.

The incomplete K(1,2} Hankel matrix of (2.3) for G,
Gy=M;,Gy=M,,is

=Tlv
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rm 123 57 7

1 2 136 7

2 137 14515 14

3577 (2.10)
K(l,2)= | 2 lElE] 7

7 14515 145

6 7!

|15 145 i

The rank of K{(1,2) and the first independent rows and
columns can be determined by applying elementary row
operations on X(1,2) without changing row positions. The
pivotal entries of such elimination procedure were denoted in
(2.10) by squares. Note that, for example, the incomplete row
4 is eliminated in such a row operation because its specified
part, columns 1-4, can be expressed as linear combination of
corresponding column positions of rows 1 and 2. We have
that pK(1,2)=3 and that the first independent rows and
columns are I; = {1,2,5) and J, = { 1,2,3}, respectively. Thus,
»=1{1,2,0} and u={2,1}. The solution is not unique because
B=maxp; =2, a=maxp;=2 and r=3<a+pB=4, The set of
entries ¢, of (2.6) that is involved in determining the
solution consists of the encircled entries of (2.9) and one free
parameter ® ={g; 4} which may assign arbitrary values. It
follows also from Lemma 2 that MPA for any (p,qg) matrices,
p+q=3, of the same system are nonunique models of order
n=3 and that the set of all the solutions in each case can be
constructed by entries of the same positions in G, G,, G; and
g214. Applying step () of the algorithm we obtain the
following

1 1 3 11 3 5 7
C=1|1 2 2| B= |1 2| A=|2 1 &
21 7 2 1 6 7 g4

Applying row elimination on {8,4] we find, letting g=g-4,
that

1 0 : 0 —19 4g-52
BAI= |0 1 : 0 3 l4-¢
0 0 : 1 7 15—¢
and thus the triple of matrices (4,B,C)
1 0 0 —19 4g-52 3 5 7
B=(0 1lA=|0 3 1l4-g | Cc=CA=i2 1 &
o of, 1 7 15-g |, 7 14 15

represents the set of all minimal models that match T, M,
and M,.

Il Stability

It is well known that the Padé approximation to stable
systems may yield unstable models both in the SISO and the
MIMO cases. Several methods have been suggested for SISO
systems [12], [13], [23], [24]. Extension to multivariable (m,
/>1) systems, suggested in {14]-[16], may again encounter a
dimensional problem similar to the one mentioned in the
introduction and that will be explained in Section V.

The theory of Section II may be used to provide stable
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models in two ways. In the first, if the {p,¢)th problem has
more than one solution, values for the free purameters in @
may be searched that yield stable medels, The second methocl
is to try different weights on the approximations at s =0 nnd
$= oo and to choose those models (if any) that are stable,

A completely different approach that always provides
stable low order models to a given stable system is given
below. It stems from the importance of the squared
magnitudes of transfer function matrices in system theory.
The squared magnitude of the transfer function H{s) plays a
major role, for instance, in the linear filtering and the optimal
control problems. It is shown in [27]-[29] that the optimal
filter in the stationary filtering problem is determined by
H(s)H'(—5) rather than by H(s). Similarly, it is shown in
there, that the optimal control for the linear steady state
regulator problem does not depend on H(s) explicitly but
only on the term H' ( —s)H (s). The importance of the square
magnitude of transfer function matrices lies however far
beyond its use in optimal control and filterings. It is shown in
[31] [32] that the control properties of multivariable systems
are largely dictated by their singular values. These values that
play a “‘generalized Bode plots role’” in system designs depend
only on the squared magnitude of the transfer function
matrices.

Consider the case where the high order system is asymp-
totically stable and where no stable solution to the {p,q) mixed
MPA reduction problem, for a specific p, ¢ >0, can be found.
Let (4,B,C) be an unstable solution to the problem, it is
required to obtain new stable models (4., B., C.) and (4,,
By, Cp) of similar order such that their transfer function
matrices Ge (s} =C, (sT—A,) "B, and Gy =Cy(si—A,) B,
yield @ {p,q) mixed Padé approximation of H' ( —s) H(s) and
H{s)H'{ —s), respectively.

The two theorems below show how to find models that
satisfy, respectively

GL(—35)G,.(5) =G (—5)YG(5), G.(0)=G(0) (3.1a,b)
Go(S)GH(—5) =G (s) G' (—5), Gy(0)=G(0) (3.2a,b)
where G (s) = C(sI—A) ~!B. Clearly such models form (p,q)
mixed Padé approximations to H'(—s)H(s) and H(s)H'
( —s), respectively.
Denoting the spectral decomposition of the matrix A by

J 0 v, V,
A=[U,,U;] 0 J v s (UL, Us] v =7
2 2 : (3.3a,b)
where J, and J, arethe ({ x £)and (n—§) X (n—£) Jordan
blocks that correspond to the eigenvalues (A,, . . ., A;) and

(Asy1s - - . ,A,) in the right and the left half planes, respec-
tively, we have the following
Theorem 4 The matrix Ac=A-P.C'C (3.4
is a stability matrix with eigenvalues (-s,,...,
— A Agsg - - - A,) where
P.=UQ;'Uf (3.5q4)

(2. is the solution of

Q.J, +Jt Q. =Uf C'CU,, Q,.>0 3.50)

and ( )* denotes Hermitian transpose. The triples (4., B, C)
and (4., B, CA~'A4,) satisfy (3.1¢) and both (3.12) and
(3.14), respectively,

Theorem5 Thematrix Ay=A—BB'P, 3.6)
is a stability matrix with eigenvalues (=X, ...,
—ApAgins - - - ,h,) where
Py=ViQs'v, (37a)
and
JQo+QuJ, =V BBV, (0, >0 (3.75)
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The triples (4,,8,C) and (4,,4,4 ~'B,C) satisfy (3.24) and
both (3.2a) and (3.28), respectively.

The proof of theorem 5 is dual to the proof of theorem 4.
The latter is given in the Appendix.

IV A Numerical llustration

A system is given whose transfer function matrix is

2(s+5) s+4
(s+1)(s+ 10} (s+2)(s+5)
H(s)=
s+10 s+6
(s+1)(5+20) (s+2)s+3)

This system can be easily verified to be of order N =6. Its
eigenvalues are — 20, -0, =5, -3, -2, —1. The simple
way to obtain the first time moment or Markov matrices of
H{s) is to expand each of its four entries about s = Oors=o0,
(2.1a,b), respectively, The first time moment matrices are

-1 ~0.4 0.9 0.18
Tl = T2 =

-0.5 —1 0.475 0.667

-0.89 —0.086 0.839 0.042
T[ o J

-0.474 -0.389 0.474 0.213

This Ff{s) was used before to illustrate the multivariable
Padé method of [9]. The two models that were derived in [9]
to match {T,,7,,T;,7T,} and {M,,M,,T,,T,} are both of
order n=8. To see what is the minimal order of models that
match 4 matrices of the sequence o(p,q), for any p+g=4, it
is sufficient to investigate the incomplete Hankel matrix for
0(4,0). The rank of K(4,0) is pK(4,0)=4. Its first independent
rows and columns are [,=J,={1,2,3,4}. Therefore, the
MPA approach can match any sequence of four matrices
a(p,4-p), 0<p=<4, by models of order #=4. The structural
indices [, =J,=1{1,2,3,4} are common for all O=p=d4andit
vields »=p=1{2,2) and o+ 8=4. Since a+B=p+g=4 the
MP A model is unique for any p,

The MPA model that matches od4,0)={7,,T,,7,,T,) is
found to be
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—
L=

0 0 -1043 -1.415

0 0 4926 —6.039 01
Al = B| =

i1 0 -11.43 -1.417 0 0

0 1 2711 —5.018 6 0

2.026 1.064 —12.64 *4.380}

8.193 1.029 -4.365 -—.4209

The eigenvalues of A4, are —10.381, -3.078, -1.994,
— 1.000. Mixed MPA models to vield better approximation of
the transient response can equally be derived [33]. The model
for o(3,1) = (T3, T, T,, M|} is found to be stable. It has
eigenvalues at —20.905, —3.261, — 1.962, -0.995. The
model that matches o(2,2) = { T, T,M,M,) is another
stable model with eigenvalues given by —18.680, —12.076,
-3.641, —0.919.

The model that matches o(1,3) = (T, M, M,, M,} is as
follows

0 0 3.256 —.0742 1 0
0 o 24,42 —6.558 01
AZ: Bz=
1 0 —-14.02 —.0123 0 0
10 1 29.07 —5.493 0 ¢
(2 1 —-12 -3
C2=
11 -1

The eigenvalues of 4, are —13.96, —4.056, —1.703 and
A=.2026. Applying the method of theorem 4, a stable model
(A, B, C,) that approximates H'(—-5)H(s) is obtained
through the following steps. Eigenvector & that satisfies
Axi=du is u'=(-.4947, 2261, —.0338, —.1329). The
solution of the scalar (¢=1) equation (3.6) for J, =X\, and
U, =uis g=.00635. Therefore by 3.9,

3854  —17.61  2.635 10.36

~17.61 8.050 —1.204 —4.713
Pe= 2.635  —1204  .1801 7079

1036 -4.733  .7079 2.782
and by (3.4)

4131 9161 —-10.04  —12.02

~1.888 . —.4187 3049 -1.100
Ae= 1.282 0626  —14.93  — 9188

1.110 1.246 2550  —8.702

A model that satisfies both (3.1a) and (3.18) is (4., By, C.)
where

2995 —7.064 -136.7 387.5
C.=CA;'A,=CA; A4, =

2.216 6.766  78.20 —278.3

Figure 1 compares the unit step responses of all the input-
output combinations for the model (A4,, By, €)) and the
system H{s).

¥V Other Padé Approximations

Tether and Kalman were the first to note that minimal
partial realization may be useful also for reduced order
modelling [19], [20]. However, the literature on Padé methods
for model reduction has not realized for many subsequent
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years the advantage of minimal partial realizations over the
extensively treated Padé equations, continued fractions and
some related equivalent techniques.

The SISO complete Padé approximation (PA) problem asks
for a model of order n that matches 2n time moments and
Markov parameters. The problem can be solved by a variety
of equivalent techniques, that were unified in {5] into a single
set of equations that is applicable for any p and g, where
2+ ¢=2n, The comparison of the formulation in [5] with the
implication of section Ii for SISO systems yields the following
relations between the two methods: The SISO complete (p,q)
PA problem (of {5] or equivalents) has a solution if and only
if the (p,g) MPA problem, p+g=2n, is characterized by
I,=J,={1,2, ... ,n). For this case the unique model of the
MPA solutions and the conventional complete (p,q) PA
model coincide for any given p and g, p+ g =2n. In any other
case the complete PA techniques encounter singularities (the
continued fraction expansion, for example, requires a division
by a zero) and a solution is said not to exist. Therefore, the
singularities in the conventional Padé techniques indicate the
existence of models of order less than » that match the
sequence o(p,q). In these complementary cases the MPA
approach yields the (unique or the set of different) models of
minimal order (<n) that match the sequence o(p,q).
p+g=2n.

The matrix continued fraction approach of [6]-[8] and the
Matrix Padé equation method of [9] were suggested to extend
corresponding SISO techniques to multivariable systems.
They are essentially restricted to systems of an equal number
of inputs and outputs (rm=/, in spite of the effort in (8] to
remove this limitation). Like the SISO versions, and even
more often so, they may fail whenever a singular matrix has
to be inverted. These methods can produce only models of
orders n’, with n’ a multiple of m={. A more severe dif-
ficulty is the aforementioned dimensional difficulty. A model
intended to be of order n* will be in general of a higher order
r=n"m{=n"l). The reason for this phenomenon is that the
degree of a transfer function matrix G (s) that is composed of
a minimal common denominator of degree »’ and an mx/
polynomial matrix may range between 2’ =6G(s)=<n’s
min{m,{). Since G(s) is the unconstrained result of an ap-
proximation, §G(s) =r'min(m,f) in the generical case. (A
similar dimensional difficulty arises, for similar reasons, in
the matrical versions for the aggregation-Padé and the Routh-
Pade methods in [14] and [15], [16]). Therefore, even for m=/
systems and when the matrix continued fraction and Padé
equations have a solution, this may not achieve significant
reduction in order and sometimes may produce models of
order that, unnoticeably, exceed the order N of the original
systemn, These observations were made before in [33] and
motivated there the need for a proper multivariable Pade
method that incorporates minimality of order and removes
the other limitations. It is noted that when m,/<< <N the
matricial Padé methods may produce reasonable low order
models. However, the MPA method will always yield models
of a lower order of the same accuracy or models of a similar
order (if acceptable) that match a longer sequence of matrices.

Partial realization to achieve reduced order Padé models
has been first applied in [10] and [11]. As presented, the
methods are applicable only for cases characterized (using our
terminology) by simple structures of the sets f, and J, and
they do not deal with the problem of finding models of
minimal order for a given sequence of a length r. It is in-
teresting that although a minimal partial realization technigue
always circumvents the dimensional pitfall the solutions in
[10] and [11] were suggested merely as an alternative
technique to derive the former Padé models.

The paper of Hickin and Sinha [25] is, to the authors’ best
knowledge, the first published paper that appreciates and
applies the advantages of partial realization to overcome
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limitations of former Pad¢ mcthods for multivariable
systems. In [25] and in a subsequent puper [26), stable
multivariable Padé models of prescribed order have been
proposed by first chosing a predetermined stability matrix A
and then completely the state space presentation by using
partial realization. In [25] the matrix A is chosen to retain
eigenvalues of A, whereas in [26] approximated Routh
polynomials are fitted into a canonical structure of A, Thus,
the methods in [25] and in [26] may be viewed as dimen-
sionally proper muitivariable extensions for the aggregation-
Padé method of [14] and the Routh-Padé method of [15] and
[16], respectively. The methods in [25] and [26] match about
n/lor n/m matrices for a system with m inputs, / outputs and
a model of order n. By comparison, the MPA approach
proposed presently relates 7, the maximal number of matched
matrices to the subset of controllability and observability
indices, that is common to all the mixed (p,q) p+g=r,
reduced order models, and it can be shown from (2.7) that
r=n{m+1)/medl. This is a significant improvement which,
say for m=/{, yields an improvement factor of accuracy of at
least 2. The stable models in [25] and [26] require the exact
knowledge of a canonical structure of the system matrix Ay
(in [25] the eigenvalues of A, are also needed). This is in
general an acceptable requirement because often the ‘original’
system is merely another known model of dimension that is
too high. However, there are other practical cases when the
first few time moment and Markov matrices, as obtained
from input-output measurements, are the only available data
about a stable high order system. The MPA method can be
applied equally when all that is known about a system is its
stability and some first terms of time moment and Markov
matrices. It always yields the set of all models of lowest order
that fully use the available data.

It is possible to combine the proposed method with the non-
minimal partial realization concept of [25] and [26] to obtain
a generalization that provides some extra flexibility to the
design of Padé models. Let the solution to the MPA problem
of r matrices be models of minimal order n. Assume they are
characterized by structural indices /,, and J, and sets G and @
of (2.7) and (2.8). Consider a case that ®® docs not provide
enough free parameters for some definite design
specifications. It is possible then to add right-most specified
entries g;,€G to the set ® and treat them as unspecified free
and independent parameters of the model, [17]. Obviously,
whenever the remaining number of matched parameters r’
(r" <r) admits a MPA whose order is n’ <n, the resulting
model is not minimal any more. Such models deserve the
name nonminimal Padé approximations to distinguish them
from MPA’s. (They should also be distinguished from the
aforementioned Padé techniques that may encounter the
dimensional difficulty.) Nonminimal PA may be used as one
more possibility to obtain stable models (e.g., when ®=4¢,
and the unique MPA for a specific p and g is not stable).
Applied as a stability guarantor, nonminimal PA generalize
the stability approach in [25], and [26]. Stable models that
match a sequence of matrices of length 7' that is larger than
that attained in there, may in general be expected. Non-
minimal PA may also be used to meet other design
specifications while minimizing the necessary decrease in the
Padé sense of accuracy.

Conclusions

The present paper solves the approximation of linear
multivariable systems in the Padé sense by minimal low order
models. A unified approach is presented that for any given
sequence o{p,q) of p time moment and g Markov matrices
p+g=r, provides the set of all minimal models that match
these sequences. A systematic procedure that resolves the
stability problem is given. It provides a modification by which
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an unstable minimal model is replaced by a stable model of
the same order that approximates the magnitude effect of the
system. The importance of this approach is that in all cases it
provides a stable model that approximates at least the singular
values of the system transfer function matrix. Other
possibilities to achieve stable models follow from the
available choice among models that differently approximate
the low and high frequencies and the freedom of assigning
arbitrary values to the parameters of

As a pure Padé model approximation, the method of this
paper requires the knowledge of the input-output matrices
only and it can therefore be used in identification problems.
The derivation of the models is based on a well specified
generically minimal, set of elements in the matrix sequence
o{p,q) which forms a basis of invariants for the problem.

The common structural properties of the mixed (p,q)
models can be used for significant computational saving in the
derivation of various models of a same minimal order with
different emphasis on the approximation of the low and the
high frequencies. A recursive scheme for models of increasing
order that match sequences of successive length may be
developed using their nesting property [17]. The minimal
order of the derived models guarantees that these models
converge and reproduce the original system from any
sequence of a large enough length r and any 0=<p=<r.
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APPENDIX

Proof of Theorem 4
It follows from (3.5) that

Hoo'+ Q. =@ U Cley, Q) ! (A1)
and hence that
Ji=Q. U P CICU, = - Q.7 Y O, (A.2)
We find from (A.1) that
diag(J,,/;)P+ Pdiag(J,,J;)* = PUC'CU, P, (A.3a)
where
P=dig(Q;1,0) (A.3b)

and thus multiplying both sides of the last equation from the
left and from the right by [U,U,} and [U,, U,]", respec-
tively, we obtain

AP +P.A'=P.CICP, (A.4a)
where
P.=[U,L1PIU, U1 =U, Q.7 ' U} (A.4b)
It follows from (A.4a) that
Vi
[4-P.C'CIIU,,U,] =
Vs
Ji—-Qzlurcicy,  —-Q7'Ur Ccu,
(A.5)

0 I,
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and thus by (A.2) it is found that all the eigenvalues of A, lie
in the left half plane.

Applying the method of [30] it also follows from (A.4q),
adding —sP, +sP; to the left-hand side of the equation and
multiplying the resulting equation by C(sf—4)~! and (—s/—
AY)7'C" from the left and from the right, respectively, and
rearranging the resulting equation, that

4+ C(sI-A) 1 P.CINI+CPA(—sI-A)'C'1=I (A.6)
Considering the stable transfer function matrix
G.(5)=C(sI-A,)"'B

=Cl+ (s[-A) 'P.C'C}"(sI—A)"'B

=[[+C(sI—A) ' P.C"1 " 1G(5) (A7)

In order to satisfy both (3.1a) and (3.10) we observe from
(A.6) that

[[—-CA 'P.CI-CP.A'C" =1
and thus that C'C=C![[— CP,A~C'|/—CA " 'P.C'IC

Equations (3.1a) and (3.14) follows, respectively, from

CAT'A.=[I-CA~'P.CIC (A.8q)

and

CA'A (sI-A) 'B o =CA 'B=G(0) (A.8h)
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