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Discrete Multivariable System 
Approximations by Minimal Pade-Type 

Stable Models 
YUVAL BISTRITZ, MEMBER, IEEE, AND URI SHAKED, MEMBER, IEEE 

Abstract -The approximation of discrete-time muhivariable high-order 
linear systems is considered. Reduced order models are derived by a 
generalized minimal partial realization algorithm. The derived models 
approximate the system in the .Pade sense and the presented method 
overcomes some serious limitations of former multivariable reduction 
methods. The set of all different models of minimal order that approximate 
a mixed sequence of Marhov and time moment matrices of a given length 
is characterized by the common structural properties of these models. A 
maximal set of free parameters for the above set of all models is de- 
termined. ‘these parameters can assign values independently and can be 
used to satisfy further desired specifications. A procedure is presented to 
solve the problem of possible instability of Pade approximated models of a 
stable system. Stable models maybe chosen among the models of the same 
minimal order that differently emphasize the approximation of the steady 
state and the transient responses. When applicable, the free parameters can 
also be adjusted to yield stable models. Finally, a complementary sys- 
tematic method is presented by which unstable models can be replaced by a 
stable model of the same order and with the same singular values that 
approximate, in the Pade sense, the magnitude of the high-order system. 

INTRODUCTION 

T HE FAST development and’ usage of small digital 
computers and processors in the design and imple- 

mentation of control systems increases the importance of 
reduced order modeling methods for discrete systems. Pre- 
ferable reduction methods should have a good approximat- 
ing quality and a relatively low cost of computational time 
and memory requirements. Analytical methods suggested 
for single input-single output (SISO) systems [l]-[5] have 
the above advantage over numerical minimization proce- 
dures, e.g., [6], [7]. Some early approaches suggested deriva- 
tion of discrete reduced order models by continuous tech- 
niques via the bilinear or other homographic transforma- 
tions [3], [4], [8], [9]. These methods may yield poor ap- 
proximations, [4], [8], where the unsatisfactory quality of 
approximation stems from the deformation caused by these 
transformations. Approximations of a good quality were 
obtained by approximating the scalar z-transfer function in 
the Pade sense by solving the Pade set of equations [4] or 
by the continued fraction method [2]. The stability prob- 
lem, by which stable systems may yield unstable Pade 
approximated models was resolved for SISO systems by 
deriving transfer functions in which stable denominators 
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are first determined and the final models approximate the 
system only partially in the Pade sense [l], [lo]. 

The extension of these SISO techniques to multivariable 
systems is not trivial. The difficulties encountered are 
similar to those found also in the extensions of the continu- 
ous system reduction methods [5], [ll]. Simple matrix 
versions of the scalar Pade equations or continued fraction 
expansions may frequently be unsolvable because of some 
singular conditions [5]. Even in the case where they have a 
solution, this solution may result in models of too high 
order that may even exceed, unnoticeably, the order of the 
given system [9], [ll]. 

The present paper generalizes the idea of discrete system 
Pade approximation at two points [2], [4] to multivariable 
systems. The problem is defined as that of finding a model 
of minimal order that will match a given sequence of 
Markov and time moment matrices. In contrast to former 
approaches that derive models of predetermined order and 
may not have a solution (even in the SISO case), the so 
defined problem always has a solution. The problem is 
solved by a generalized minimal partial realization method 
which overcomes naturally the above-mentioned problem 
of the actual order of the reduced models. A formal as well 
as structural similarity between the discrete matching prob- 
lem and the analogous continuous model reduction prob- 
lem is established, followed by many of the results and the 
algorithms of [ll]. These are given with slight modifi- 
cations without further proof. They include conditions for 
the existence of a unique solution to the formulated prob- 
lem or else, the characterization of the set of all possible 
solutions in terms of a maximal set of independent param- 
eters. 

The mathematical conditions for stability of discrete 
systems is well known to be different from its continuous 
counterpart. The possible instability of the reduced order 
approximations to a stable system receives, therefore, a 
special treatment. One obvious possibility is the choice of 
stable models among the various models of the same order 
that differently emphasize the steady-state and the tran- 
sient responses. Another possibility, when applicable, is the 
adjustment of the above-mentioned free parameters to 
acquire the stability of the models. An additional sys- 
tematic approach is developed to solve the stability prob- 
lem. It presents a modification of the already derived 
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unstable model that yields a stable model of a same order 
and with the same singular values that approximate the 
magnitude of the system in a partial Pade sense and match 
its steady-state value. The solution of the stability problem 
results, therefore, both from the presented wide range of 
Pade approximated reduced order models that can all be 
derived by the unified approach as well as the combina- 
tion, if necessary, of the Pade and the singular value 
approximations [17]-[21]. 

where 

II. MINIMAL REDUCED ORDER MODELS 

A discrete-time high-order linear system is given by an 
I X m z-transform transfer function matrix H(z) or equiva- 
lently by a triple of state-space realization matrices 
(AH, BH,CH), A, E RNXN, BH E RNXm,CH E RiXN where 
N is the order of the system and 

H(z) =C,(zI- A,)-‘B,. 0) 
Reduced order approximating models are required that 

match some first time moments and first Markov matrices 
of the system. Such models were shown in the case of 
continuous-time systems, to yield satisfactory approxima- 
tions of both the steady-state and the transient responses 
of the system [5], [ll]. 

This is the same definition as the one used for continu- 
ous system [ll], where the relative choice of p and q, 
p + q = r, are known to determine the respective weight of 
the approximation of the steady-state and the transient 
responses. 

The mathematical representation of (5a)-(5d) can be 
brought to a formal agreement with the corresponding 
representation of the continuous case by defining the shifted 
transform plane 

r)=z-1 (64 
and correspondingly, 

I;;I = AH -INXN F= A- I,,,,. (6b) 
The transfer function matrix H(n) = C,(nl - FH)-‘B, 

can be expanded about q = 00 and n = 0 by 

H(q) = 5 M,q-’ (74 
i=l 

The Markov matrices for the system are given by and 
q,, = C,A’,B,, i=O,1,2... . (2) 

These matrices have the same form both for continuous 
and discrete systems. In the discrete case, however, they 
have additional interpretation as the sequence { q+ i } forms 
the unit impulse response of the system, 

W)=Y,+, (3) 

where h(k) is the inverse z transform of H(z). 
The time moments for the system are given by the 

discretized version of 

references [2], [3], [22], namely, 

Li+l= 2 k’h(k) = E Yk+lki, i=O,1,2;**. 
k=O k=O 

The exact definition of the required reduced order model 
in terms of the Markov and time moment matrices is the 
following: 

A First Statement of the Problem: Given a high-order 
system (A,, BH, C,) find for a sequence of p time mo- 
ments { Li, i = 1; . . ,p} and of Markov matrices {T, i = 
1; . . ,q},wherep+q=r,amodel(A,B,C),AERnX”,B 
E RnXm, C E Rlxn of a minimal order, that satisfies 

$=r;., i=l;..,q (54 
and 

ii=Li ,“‘,P i=l (5b) 

R+l = CA’B, i=O,1,2;*. (54 

Li+l= 2 f-k+lki, i=O,1,2;... (5d) 
k=O 

H(?J) = - E pj’-1 
i=l 

(7b) 
where 

and 
Mi = C,FA-‘B,, i=1,2;.. (84 

lJ = C,F,-‘B,, @b) 

whereas for (7b) and (8b) to be well defined the assump- 
tion that the system (AH, B,, C,) has no eigenvalues of 
A, at z = 1 is made. It is clear from the linear relations 
(6b) that the model matches q Markov matrices of (5a) if 
in the shifted plane it matches { Mi, i = 1; * -, q}. Similarly, 
it follows from the relations 

T:+l=- d’H0 
i!dz’ r-l’ 

i=O,1,2,+.. (94 

and 

that the matching of q, i = 1; * * ,p leads to the matching of 
p time moments Li [22]. Applying these relations, the 
model reduction problem can be restated as follows. 

A Second Statement of the Problem: Given a high-order 
system (A,, BH, C,) find for the first terms of the transfer 
function matrix H(z) expansions about z = 1 and z = 00, 
{q,i=l;** ,p} and {Mi,i=l;*. , q }, respectively, a tri- 
ple of matrices (F, B, C), F E Rnx”, B E Rnx”, C E RIXn 
with a minimal value of n that satisfies 

CF’-‘B = M iv i=l . . ..q , (104 
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and 
CF-‘B=T i=l;-*,p. (lob) 

Using the second statemen;, the problem actually becomes 
the minimal Pade approximation (m.p.a.) problem that has 
been extensively treated in [ll]. Thus applying the linear 
relation A = F + I between the required reduced order 
models (A, B, C) and the m.p.a. solutions (F, B, C) many 
important results can be directly adopted from [ll]. 

Pade approximations of G(z) at z = 1 or both at z = 1 
and z = co have been suggested before for SISO systems 
(m = I= 1) in [2] and [4]. These references apply continued 
fraction expansions about z = 1 and z = 00 or equivalent 
Pade equations. It follows from (9a) and (9b) that the 
methods of [2] and [4] match the first scalar time moments 
and Markov parameters of the system, in spite of incorrect 
relation between q and the time moments that is given in 
[2], as indicated in [22]. The extension of these scalar 
methods to multivariable systems (m, I > 1) may not al- 
ways have a solution due to inherent limitations such as the 
requirement for m = 1. If this extension has a solution it 
may yield models of order up to me 1. n. The Pade “re- 
duced” order model may thus even exceed unnoticeably 
the order of the high-order system. A similar phenomenon 
has been indicated in [ll] for the continuous analogous 
case. One of the contributions of this paper is that it 
removes the above limitations (such as m = r). Using a 
state-space approach and requiring models of minimal 
orders the above difficulty with the order of the reduced 
model is also removed. 

We start by discussing some structural properties of 
discrete models that will enable us to apply in the discrete 
case results from [ll] and [12] concerning conditions for 
uniqueness and nonuniqueness of the solutions and their 
derivations. 

Let (A, B, C) be a model of order n that solves the 
;y, 4) reduced order model problem. We denote by I, = 

. .+, i, } the indexes of the first independent rows in 
$2, C), the observability matrix of the pair (A, C), and 
by 4, = { j,,. - * ,j, } the indexes of the first n independent 
columns in V(‘(A, B), the reachability matrix of the pair 
(A, B). We have from the linear relation F = A - I that I, 
and J, also yield the respective indices for U( F, C) and 
V(F, B). Thus as it has been shown in [ll] that m.p.a. 
shares the same sets I,, and J, for allp and 4, p + q = r. We 
obtain that I,, and J, are structural indexes that are com- 
mon for all the discrete reduced order models that match a 
sequence of r matrices of the high-order system for any 
p + q = r. The sets 1, and J, are directly related to the more 
frequently referred to observability and reachability inde- 
xes, v= {vl;-- ,vI} .and p = {pi,. . e,~,,,}, of the models. 
The index vk represents the number of terms in the arith- 
metical sequence { i,, i, + 1, i, + 21, . . * } that are included 
in I, for all k=l;~~, 1 (vk = 0 for an empty intersection). 
The index pt is related similarly to J, via the sequence 
{j,, j,+m, j,+2m;**} fork=l;--,m.Therelations 

are also well established. The structural properties of the 
discrete reduced order models of a given system are thus as 
follows: 

Proposition 1: The stated model reduction problem has 
always a solution. All the sequences of length r yield, for 
any p + q = r, models of a common order n and they all 
have the sets of observability and reachability indexes v 
and p (or equivalently, the same sets I,, and J,). 

The triple of matrices that solves the m.p.a. problem of 
(10) for p = 0 is recognized as the conventional minimal 
partial realization that was basically treated by Tether and 
Kalman [13], [14] and recently in [12].’ From the one to 
one relation between the m.p.a. solutions (F, B, C) and the 
required models (A, B, C) and from Proposition 1, the 
uniqueness conditions of the minimal partial realization 
theory [13], [14] can be applied to the present reduced 
order modelling problem as follows. 

Proposition 2: A reduced order model (5a)-(5d) is unique 
(in the sense of the equivalent class of similarity trans- 
formations) iff (Y + /3 < p + q = r where 

ar=maxv, and P= i=l...* max pj. 
j=l...m 

(11) 

Once the existence of solutions is established we describe 
an algorithm that can be used to derive their models. It 
may presently be assumed that the sequence under consid- 
eration corresponds to a unique solution. It is shown 
hereafter how, in the complementary case of nonunique- 
ness, the set of all solutions can also be derived by this 
algorithm. The algorithm is basically the algorithm of [15] 
that was used in [ll] for the continuous case. 

The Algorithm: 
(i): Given the sequence 

{G,,G,r ,G,}= {T,,T,-,,...,T,,M,,M,,...,M,} 

(124 

form the incomplete Hankel matrix 

(12b) 

where the matrix K( p, q) is considered as being completed 
by some unknown matrices G,+i, Gr+2, which are assumed 
to acquire values that do not influence the internal depen- 
dencies between the rows and between the columns as one 
determined by {G,; ..,G,} [12]. 

Let n = PK( p, q) denote the rank of K( p, q), The rank 
of the incomplete Hankel matrix of (12b) is defined as the 
minimal rank that complies with the numerically specified 
parts. This rank determines the order of all the minimal 
models that match the sequences {G,, . - *, Gr }. We denote 

‘Tether and Kalman were the first to note that minimal partial realiza- 
tion may be useful also for reduced order modeling. The vast literature on 
Pade model reduction methods (considering mainly the continuous-time 
case? cf. [ll]), has not realized, in 
partial realization over the extensive y treated Pade equation and con- K 

eneral, the advantage of minimal 

tinued fraction techniques. 
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by I, and J,, the indexing of the first n independent rows 
and columns, respectively, of K(p, q). As the matrix 
K(p, q) involves rows and columns which are not com- 
pletely specified, it is noted that I,( J,) represents the 
maximal number of first rows (columns) such that each 
row (column) does not depend on its preceeding rows 
(columns), where the dependency is tested only along col- 
umns (rows) that correspond to entries for which the 
considered row (column) is specified. The derivation of 
I,,, J,, and n from an incomplete Hankel matrix is dis- 
cussed in more detail in [ll], [12]. It is evident that I,, and 
J,, form the.structural indexes mentioned in Proposition 1. 

(ii) Once I,, and J, were determined, construct the fol- 
lowing submatrices: 
K,: The n X n submatrix formed by the intersection of 
rows I, with columns {j, + m, j, + m; . -, j, + m} where 
4 = {j,,-. a9 jn}. 
K,: The n X m submatrix formed by the intersection of 
rows I,with columns {1,2;. 0, m}. 
K,: The 1 X n submatrix formed by the intersection of 
rows {1,2;. a, l} with columns J,,. 

(iii) Apply on [KB, KA], a Gauss row elimination that 
brings the columns of [KB, K,J that correspond to J, to the 
n th identity matrix I,, Xn. 

(iv) Denoting the resulting matrix by [kB, &Al it follows 
that (F, B, C) of (10) is given by (zA, kB, Z@J) or that 
the required model (A, B, C) is given by 

A=&+&,,, B=k,, C=K&. (13) 

In the case where (Y + /3 > r there exist, by Proposition 2, 
many models for each choice of p and q. In this case the 
submatrices KA, K,, Kc contain positions in K( p, q) that 
are numerically undetermined. These positions may be 
viewed as entries of some unknown extension sequence 
{G+I,-. +a+, }. Denoting by gijk the (i, j) entry of the 
unknown matrix G,, this set of numerically unknown 
entries is exactly determined in number and positions by 
the common structural properties of all the sequences of 
length r. This set is shown in [12], using the invariants in 
[23], to be given by 

P= {gijk)k=r+l,*--,vi+~j>r; 
i=l -.. 9 ,I; j=l;-.,m}. (14) 

Carrying these parameters along in the algorithm given 
above, a solution (A, B, C) is obtained that includes also 
certain combinations of the parameters in P. In this way 
(A, B, C) represents the set of all different reduced order 
models that match the given p time moments and q Markov 
matrices with the following efficient characterization. 

Proposition 3 [12] : The set of parameters P represents the 
maximal set of independent parameters for the set of all 
minimal reduced order models that match r time moment 
and Markov matrices of the high-order system. 

The last proposition indicates that P is the maximal set 
of parameters that may each assign values freely and 
always yield a reachable and observable model that matches 
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the given sequence of matrices. These parameters may, 
therefore, be adjusted to meet additional desired specifica- 
tions. Some aspects of the method are illustrated in the 
following example. 

Example: Given a z-transfer function matrix of a 
reachable and observable system 

2.25(z -0.75) 1.5(z -0.8) 

H(z) = I (z -0.95)(z -0.5) (z -o.s)(z -0.75) 
1.04tz -0.65) (z - 0.7) 1 

L (z -0.95)(z -0.3) (z -O.S)(z -0.35) ] 
(15) 

some first terms of expansion of H(q), q = z - 1. About 
q = 0 and 77 = co (7a), (7b) are given by 

T3 = - 8010. 
- 3841.6 -:::::,] 

It is required to find a minimal order model that matches, 
say, T,, T2, and Mi. We first construct the Hankel matrix 
K(2,l) of (12b): 

K(2,1) 

= 

405. 108. 1 -22.5 -12. 1 2.25 1.5 
193.14 266.67 ) -10.4 -20. 1 1.04 1. -------------+------------- 

- 22.5 -12. 1 2.25 1.5 I----- 
--- 

- 10.4 -20. ; 1.04 1. ; --------------r-------------T----------- 
2.25 1.5 I I 
1.04 1. j 

I I I 
(17) 

The rank of K(2,l) is pK(2,l) = 4, thus the models that 
match T,, T,, and Mi or any other three matrices 
{ G,, G,, G, } of (12a), are of minimal order n = 4. In this 
example the first four independent rows and columns of 
K(2,l) are the four first rows and columns, I,, = J, = 
{ 1,2,3,4}. Thus from the structural point of view this 
example is relatively simple. To illustrate the competence 
of the underlying method in cases of more complex struc- 
ture [ll], and [12] should be referred to. From I,, and J, we 
find the observability and reachability indexes v = p = 
{ 2,2} and thus a + /3 = 4 > 3. The solution is, therefore, 
not unique. Checking (14) for the free parameters we find 
P = { g1i4, g124, g2i4, g,,). These four free parameters par- 
ticipate in the submatrices KA, KB, Kc which are given by 
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405. 108. : 

_‘;;I:” _‘f;:“’ ; 

- 10.4 -20. : 

Performing row elimination on [K,, KA] and conve- 
niently replacing independent combinations of the parame- 
ters in P by the four parameters { ri, ark, v~, r4 } we have 

: 0 0. -0.0267 - 0.0082 

:Ol Ir, 774 1 
where rri, n,, 3, rr4 may assign arbitrary values. The set of 
all the solution is (A, B, C) where A = KA + I, B = kB and 
C = Kcki. The four parameters can be carefully chosen to 
satisfy further desired specification. Choosing for example 
values of too large magnitudes for these parameters draw 
the eigenvalues of A outside the unit circle which is not 
acceptable for the given stable system. The choice 7~ = 
- 0.6072, rr2 = - 0.0178, T, = 0.1422, and 71;, = - 0.2660 
yields, for example, a stable model that also matches M2. 
The resulting model for this choice is 

-0.0267 -0.0008 1 0 
0.1021 - 0.0163 
0.3928 .I II - 0.0178 

B= ’ ’ 
0 0 

0.1422 0.7340 0 0 
(1% b) 

-0.675 - 0.225 
- 0.416 I 0.05 . (194 

The transfer function matrix of this model is 

1 K,(z) %2(z) 

G(z)= D(z) N,,(z) N,,(z) 
[ 1 ~ (20) 

where 

N,,(z) = 2.25(z -0.9123)(z~O.8487)(~ -0.6658) 

N,,(z) =1.5(z -0.9521)(z -0.8621)(z -0.4626) 

N,,(z) =l.O4(z -0.9283)[(z -0.7993)‘+0.0215] 

N,,(z) = (z -0.9523)(z -0.638O)(z -0.4865) 

and 

D(z) = (z -0.9523)(z -0.9059)(2 -0.8211)(z -0.4475). 

The responses (i, j) i, j = 1,2 of outputs i for a unit step at 
input j for the model (20) and the given system (15) are 
compared in Fig. 1. 

In the case where it is required to match two matrices 
onlywefindthat12=J2={1,2}-+v=~={1,1}+cr+~ 
= 2. The problem has in this case a unique solution. For 
example, the matching of Tl and T2 yields the unique 

-22.5 - 12. 22.5 1.5 

- 10.4 -20. 1.04 1. 
22.5 1.5 * 

g114 g124 1 (18b) 
1.04 1. g214 g224 

solution 

A = 0.9440 
0.0015 

c = 1.2408 1.0648 
5.7896 2.5683 I (21) 

that represents a stable model with eigenvalues 0.9418 and 
0.9359. 

It may happen that a high order stable system yields 
unstable models where either no free parameters are avail- 
able or the free parameters cannot be adjusted to reveal a 
stable choice. As an illustration for the first of these 
situations the problem of matching the first two Markov 
matrices for the above system yields the following unique 
solution: 

(22) 
The eigenvalues of A are X, = 1.6942 and X2 = 0.7342 which 
indicate an unstable model. It should be noted at this place 
that matching of the transient response only is not recom- 
mended for a good practical approximation. Nevertheless, 
this model properly illustrates the possible instability of 
reduced order models derived for stable system. A method 
that overcomes the instability problem is treated in the 
next section where this last model will be further used for 
demonstration. 

III. A STABILIZATIONMETHOD 

One of the inherent shortcomings of model reduction by 
the method of Pade approximation is that it cannot 
guarantee a stable model to a stable system. Two partial 
remedies to this difficulty have been included in the 
preceeding section. In the cases where the resulting model 
of minimal order is not unique one may find an ap- 
propriate choice of the free parameters in P for which the 
resulting model is stable. In the case of uniqueness there 
exists a unique model for each of the r differently mixed 
sequences of p > 0 time moment and q Markov matrices 
p + q = r from which a satisfactory stable model may be 
chosen. This section represents a new and complementary 
approach that is always applicable. By this approach the 
unstable model is modified such that the square magnitude 
of the modified stable model is the same as the corre- 
sponding square magnitude, G*(z-‘)G(z) or G(z)G’(z-l), 
of the unstable model. The equalities between the square 
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satisfy 

(1.1) 

(2.2) 

(1.2) 

(2.1) 

Fig. 1. Unit step responses for system (15) and model (20). (i,j) 
represents the response of outputj to a unit step at input i, i, j = 1,2. 

magnitudes imply that the modified stable model possesses 
the same singular values as the unstable model and as such 
it possesses most of the control features of the latter [17], 
[18]. The idea of using singular value as a tool for model 
reduction has received recently a growing attention 
[19]-[21], where models that match the dominant singular 
values of the Hankel matrix were found. The approach 
adopted in this section is to mix, when necessary, Pade 
approximation of the system with singular value approxi- 
mation of its squared magnitude, similarly to the continu- 
ous case [ll]. A model is first found that matches the 
required time moments and Markov matrices. This model, 
approximates the system transfer function matrix at z = 1 
and z = 00 and thus its singular values are good approxi- 
mations of the system singular values that dictate its 
steady-state response. If, for a stable system, an ap- 
propriate stable model cannot be chosen from the set of all 
models represented in Section II, we suggest a modification 
of an already derived model which satisfies the require- 
ments of the stated problem but happens to be unstable. 
The modification replaces the unstable model by stable 
model of the same order that has the same magnitude and 
consequently the same singular values. This stabilized 
model also matches the steady state value of the high-order 
stable system response for a step input. 

Let (A, B, C) be an unstable model, with the transfer 
function matrix G(z) = C(z1- A)-‘B, derived as a (p, q) 
minimal order model for a stable system. We show next the 
existence and the derivation of stable models (A,, B,,C,) 
and (A,, B,, C,,) of the same minimal order whose transfer 
function matrices 

G,(z) = C,(zI- A,)-‘B, (23) 
G,(z) =C,(zI- A,)-‘B,, (24) 

Gf(z-‘)G,(z) =G’(z-‘)G(z) 

G,(l) = G(l) 

(254 

(25b) 
and 

G,(z)G;(z-‘) =G(z)G’(z-‘) (264 

Go(l) = G(l) (2W 
respectively. Obviously, as G(z) is a Pade approximation 
of H(z) the modified models have squared magnitudes that 
match the first p terms of expansion about z = 1 of the 
corresponding squared magnitudes H’( z-‘) H( z) and 
H(z)H’(z-‘). In addition, the model matches the steady- 
state value H(1) of the high-order system response to a step 
input. 

Assume that the eigenvalues of A that reside outside and 
inside the unit circle are, respectively, (hi - - . AS) and 
&+1,- * -9 A,). We denote the spectral decomposition of A 
by 

A=UJV (274 
where 

u= KJl,v,l (27b) 
v= ; [ 1 2 

(274 

and 
uv=z (274 

J1 0 
J= 0 J2 [ 1 (274 

and where J1 and J, are the [ Xl and (n -[)X(n - {) 
Jordan blocks that correspond to the “unstable” and the 
“stable” eigenvalues of A, respectively. 

Defining 

P, = U,Q,‘U;r @a) 
where ( )? denotes Hermitian transpose and Q, > 0 is the 
solution of 

Q c - J,te,J, = - U;tC’CU, (28b) 
we have the following theorem. 

Theorem 4: The eigenvalues of the matrix 

A,= A(I+ PcC’C)-l 

are 
(294 

1 A,‘;. *,x~l, A,,,;. . ,A”} 
and the triple of matrices (A,, B,, Cc) satisfies (25a), (25b), 
where B, = B and 

c,=C[I+(A-I)-‘(AC-A)]. (29b) 
For the derivation of (A,, B,,, C,,) that satisfies (26) we 

define 
PO = V:Q,v, (304 
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where Q, > 0 solves The substitution of this expression for Z in 
Q, - J,Q,Jl = - &BB’VJ W) +(z)=B’(z-‘I-A’)-‘C’ZC(zZ-A)-‘B (39) 

and the dual of theorem 4 becomes the following: 
Theorem 5: The eigenvalues of the matrix 

yields 

A, = (z+ BB’PJlA (314 
c#a(z) = B’(z-‘I- A’)-‘[z+ C’K’(z-lz- A’)-‘] -l 

are {A;‘; * +ql,hy+r,;~.*-, A, } and the triple of matrices *C’(z+CPC’)-lC[z+(zz-A)-‘KC]-l 

(A,, B,, C, } satisfies (26a), (26b), where C, = C and .(zz- A)-‘B 
B,= [z+(A,-A)(A-.I)-‘]B. @lb) =B’(z-‘I-A’+C’K’)-‘C’(z+CPC’)-’ 

We shall prove theorem 4 and the proof of Theorem 5 
will then follow by duality. 

*c(zz- A + KC)-‘B. 

Proof: We show first that Thus comparing (40) and (39) we find that 

P = U,Q;‘U; (32) 
G’(z-‘)G(z) =@(z-‘)6(z) 

solves the Ricatti equation for 

P = APA’ - APC’[ z + CPC] -‘CPA’. (33) 
where 

qz)=qzz-AJ’B (424 

For this we multiply (28b) from the left by 7 = Q;’ and 
from the right by J-‘F and denote C, = CU,. We obtain 
that 

(z+FcJc~)J;~F=FJJ 

and, therefore, that 

F = J~(z+ Fc,~C~)-‘FJ: 

= J,FJ,t- J1[Z-(Z+~@,)-‘]~J: 

or 

p = JIPJ;t - J&+(Z+ C,BC~)-‘C,5jJ,t. 

Denoting 

C=(z+cPc’)-1’2c (42b.) 
A,=A-KC (424 

and where it follows from the properties of the Ricatti 
Equation (33) that all the eigenvalues of A, he inside the 
unit circle and that they are given by {A;‘, . . 0, A;‘, 
A(+,/. -3 A,,}. An alternative expression for A, is found by 

A,=A-APC’(Z+CPC’)-lC 

= A[Z- PC’(Z+ PC’C)-l] 

(34) Or 
A,= A(Z+ PC’C)-‘. (29a) 

(35a) 
The triple (A,, B, C) satisfies (25a). To obtain a triple 

(A,, B,, C,) that also satisfies (25b) we use the fact that C 

(35b) 
appears in (40) only in the product C’C. 

Choosing, therefore, 

c,=wc (434 

p= F 0 
[ I 0 0 

P = UpU+ = U,Q,‘U[. 

We can replace (34) by 

(W 

(41) 

p = JpJ+ - JpU+C’(Z+ CUhJ+C’)-‘CUpJ+ (36) 

and obtain (33) by multiplying (36) by U and Ut from the 
left and from the right, respectively. 

Denoting 

K = APC’(Z+ CPC’)-’ (37) 
where P is the solution of (33) it has been shown in [16] 
that this solution also sa@sfies 

[z+c(~z-A)-l~](~+~~~t) 

.[I+ K’(z-‘Z- A’)-?‘] =Z (38) 

taking the inverses at both sides of (38) we obtain 

z= [z+K~(~-~z-~A~)-‘(z+cpC~)-~ 

.[Z+C(zZ- A)-‘K] -I. 

where 

w= [z+c(z-A)-1~](~+~~~~)1/2. (43b) 

We have that C,(Z - A + KC)-1 = C(Z - A)-‘. From (38) 
we also have CfC, = ?C. The triplet (A,, B,, C,) satisfies, 
therefore, both (25a) and (25b) where B, = Z? and 

cc= [z+d(~+-‘K]C. (44) 

Equation (29b) readily follows from (44). 
Example (continued) 
We now replace the unstable model (22) by a stable one 

that satisfies (25a) and (25b) and Theorem 4. (The resulting 
model is not expected to match H(1) because the unstable 
model was derived for p = 0). The eigenvector corre- 
sponding to.& = 1.6942, Au, = h,u, is 

u1 = (0.4951, -0.8746)’ 



BISTRITZ AND SHAKED: MULTIVARIABLE SYSTEM APPROXIMATIONS 

solving the scalar equation (28b), with (Cu,)‘Cu, = 0.1686 

q - A:q = - 0.1686 

we get q-l = 11.0951, thus PC the solution of (33) is by (32), 

P, = u,q-‘u, = 2.7192 - 4.8037 
- 4.8037 8.4859 1 

and 

by which A, = A(Z + P,CT-’ is 

A,= 3.5829 1.6940 
- 5.0324 - 2.2585 I (4% 

whose eigenvalues can also be found by solving the char- 
acteristic equation 

A* - 1.3244h + 0.4333 = 0 
to be the expected values A, = 0.5902 = h;’ and 1, = 
0.7342 = A,. 

The triple of matrices that satisfies, (25a), (25b) is 
(A,, B,, Cc) where A, is given by (45a). The matrices B, = B 
and C, derived by (29b), are given by 

B=l” 
c [ 1 0 1 W) 

cc = 0.7207 0.2752 
- 1.7402 1 -1.2274 ’ (454 

This numerical example illustrates one of the attractive 
features of the stabilization method of this section. Al- 
though the modification is implicitely related to the solu- 
tion of the discrete (singular) Ricatti Equation (33) in 
practice only a Lyapunov equations (28b) has to be solved. 
Moreover, the size of the solution matrices Q > 0 of the 
Lyapunov equation is only 5 X [, where 2 < n is the number 
of unstable eigenvalues to be replaced by their stable 
mirrors. 

IV. CONCLUSIONS 

The model reduction problem of discrete time linear 
multivariable systems has been treated using the concept of 
generalized minimal partial realizations of mixed matrix 
sequences. The method presents a multivariable generaliza- 
tion of the approximation in the Pade sense of the steady- 
state and the transient responses suggested firstly for SISO 
systems by other techniques that are not adequate for 
multivariable systems. Former approaches asked for mod- 
els of predetermined order and may not have solution even 
in the SISO case. The present method on the other hand 
finds models of minimal order that match a given sequence 
of p time moments and 4 Markov matrices and it is shown 
that this reduction problem always has a solution. Further- 
more, the derived minimal order models converge and 
reproduce the original system from any sequence of large 
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enough length for anyp and q. The exact condition for the 
existence of a unique model or for the existence of many 
different models are given in terms of the common struc- 
tural input and output properties of the models. In the 
latter case the set of all possible solutions is described by a 
maximal set of independent parameters that can be ad- 
justed freely and used advantegously to satisfy additional 
desirable specifications. 

The well-known stability problem encountered in any 
Pade-type model reduction problem is also treated. A 
range of possibilities to achieve stable models follow from 
the available choice among models that differently ap- 
proximate the steady state and the transient responses of 
the system and from the freedom in assigning values to the 
obtained free parameters. A systematic complementary 
procedure is developed by which an already derived unsta- 
ble model can always be replaced by a stable model of the 
same order. The stabilized model has the same square 
magnitude and it approximates, therefore, the singular 
values and the magnitude effect of the system. 

The common structural properties of all possible minimal 
models that match a sequence of any p time moments and 
q Markov matrices of a given length r can be advanta- 
geously used for a significant computational saving in their 
derivations. 
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Bounds on the Tolerance Sensitivity of 
Resistive Networks 

LUDO WEYTEN, MEMBER, IEEE 

Abstruct -For the general class of resistive networks, lower bounds are defined as 
derived on the summed absolute and squared element sensitivities of any 
dimensionless network function. As an application example, these results 
are used to obtain a lower bound on the linearity performance of S(=$g. 0) 
digital-to-analog converters. I 

I. INTRODUCTION It is well known that the sum of sensitivities to all network 

W E CONSIDER a network function F. The sensitiv- elements is a function of F only, and is independent of the 
ity of this network function to resistor variations is network configuration [l], [2]. The sum of absolute (or 

squared) sensitivities, on the contrary, does depend on the 
circuit and thus can be used to comnare different networks 
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