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The bilinear transformation is applied to Routh conditions 

for Hurwitz polynomials to obtain a variety of equivalent direct 

z-plane continued fraction (CF) expansions and stability condi- 

tions for discrete system polynomials. Efficient computational 

algorithms are provided. They can be used to test the stability 

of a discrete system and to determine the number of zeros of 

unstable system polynomials outside the unit circle. The many 

new CF forms may be also applicable to the design of bilinear 

transformed sampled data ladder filters. 
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satisfy Re S, < 0, where 

Y,(s)=GI(s-4. 
i=l 

Explicit formulas to express h, in terms of d, for 
this approach are known [12]. It is more attractive 
however to take the counter approach; instead of 
transforming D,,(z) into H,,(S), to convert the 
Routh stability conditions into z-plane stability 
theorems. This approach has been firstly taken in 
[l] to derive a direct Routh-Pade model reduction 
method. The purpose of this paper is to develop a 
full extent of direct discrete stability conditions 
that can be obtained from respective Hurwitz con- 
ditions and to provide computational algorithms 
for them. The resulting algorithms can be used, 
along with other available methods [6]-[lo], to test 
stability of discrete systems as well as to find the 
number of zeros of D,,(z) outside the unit circle. 

1. Introduction 

2. Discrete bilinear Routh theorems 
A possible approach to test the stability of a 

discrete system with a characteristic polynomial Define for D,,(z) the two polynomials 

D,,(z)=do+d,z+ ... +d,,z” (1) 
M,,(z)=f[D,,(z)+D,:(z)], (4) 

is to transform this polynomial to the z-plane 
using the bilinear transformation A.(z)=f[o,,(z)-D,:(z)]~ (5) 

l+S Z-l 
z=j-J SE- (2) 

where D,:(z) is the reciprocated polynomial 
z+l’ 

to obtain say D,:(z)= id ,,-, z’=z”D,,(z-I). (6) 
i=o 

H,,(s) = h, + h,s + . *. + h,,dJ (3) It is noted that the polynomial M,,(z) is a mirror 

and then to apply the well known Routh criterion (or a symmetric) polynomial with the property 

to test H,,(s). Evidently D,,(z) is stable, namely 
has all its zeros inside the unit circle, i.e. (t,] < 1, M,,(z)= k m,z’=MM,*(z) 
i=l ,...,n, where r-o 

D,(z)=4ii(z-6). 
or (7) 

i- 1 m, = mn-,. i=o ,..., n, 

if and only if H,,(s) is Hurwitz, i.e. all its zeros whereas the polynomial A,(z) is an anti-mirror (or 
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an anti-symmetric) polynomial with 

A,,(z)= 5 a,z’= -AZ(z) 
i-o 

Or (8) 

a,= -a ,,--I- i=o ,..., n, 

The mirror and anti-mirror properties of the 
above polynomials present features that will be 
useful for the derivation of the direct Routh theo- 
rems and their computational algorithms. 

Let H,,(s) be the polynomial (3) whose zeros 
are the bilinear mapping of the zeros of D,,(z). 
Define for H,,(s) the tangent function 

Y,(s) -f&(-s> 
Pn(s) = H,,(s) + H,,( -s) . (9) 

The Routh stability table is well known to be a 
row by row inscription of the coefficients of the 
polynomials involved in the continued fraction 
(CF) expansion about s = 0 of p,,(s), 

1 1 1 
p,,(s)=- - - 

Y”/S + Y,,-l/S + . . . + Y/J. 
(10) 

A necessary and sufficient condition for H,,(s) to 
be Hurwitz is that y, > 0 for all i = 1,. . . ,n. It is 
known that p,,(s) and the discrete tangent function 

P,, ( z ) = 
D,,(z)-D,*(z) 
D,,(z) +4+(z) 

(11) 

are mapped one into the other by (2), see [l], [2]. 
Therefore, since the bilinear transformation maps 
the unit circle IzI = 1, its interior and its exterior, 
one to one and onto the s = jw axis, the left half 
and the right half s-planes, respectively, we readily 
obtain: 

Theorem 1. A real polynomial D,,(z) is stable (has 
all its zeros inside the unit circle IzI = 1) if and only 
if the following CF exists for p,( z ): 

P,(Z) = 

yn(&) + Y&J 

andy,>OforaNi=l,...,n. 

The Routh necessary and sufficient conditions 
for H,,(s) can alternatively be presented as condi- 
tions on CF expansions of p,,(s) about s = co. The 
expansion of p,,(s) about s = cc is given by 

Pr,.+,(S)=S~,,,+,s+L 
1 

6,s 
(13a) 

2,,# s + . . . + 

and 
1 

P?.,,,(S) =L ___ 
1 

82,,P + SZnt-1s + . . . + 6,s 
(13b) 

for n = 2m + 1 and n = 2m, respectively. The nec- 
essary and sufficient conditions for H,,(s) to be 
Hurwitz are S, > 0 for all i = 1,. . . ,n. The expan- 
sion (13) and the 6, > 0 conditions can be deduced 
from (10) and y, > 0, and vice versa, by noting that 
H,,(s) is Hurwitz if and only if H,:(s)= s”H,,(l/s) 
is Hurwitz. The CF expansions (13) of p,,(s) about 
s = co yield the next theorem in a similar way as 
Theorem 1 follows from the expansion (10) of 
p,,(s) about s = 0. 

Theorem 2. A real polynomial D,, ( z ) is stuble if und 

only if the following CF exists for p,,( z ): 

PZnr+l(Z)=k!nr+‘ + + l 
( 1 z-l 

6 - 
( 1 2”’ z+l 

1 
z-l ’ 

( 1 

(144 
+.**+s - 

l z+l 

PZ”,(Z) = 

(14b) 

for n = 2m + 1 und n = 2m, respectively, and 8, > 0 

for all i= l....,n. 

The above two theorems were firstly obtained 
in [5] based on theory developed in [4] from only 
z-plane considerations. The bilinear transforma- 
tion provides both simple proofs as well as demon- 
strations of their relations via the bilinear transfor- 
mation to the Routh s-plane conditions. The fol- 
lowing two corrolaries form the basis for a set of 
generalized s-plane stability conditions that in- 
volve CF expansions in terms of both (z - l)/( z 
+ 1) and (z + l)/( z - 1). 
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Corollary 1. D,, (z ) is u fable if and only if p,,( i ) can 
be written as 

P,, ( z ) = 
1 

Y,, ( 1 2 +p,,-,(;I 
(1% 

where y,, > 0 and p,, _ , ( z ) is the discrete fangenr 
function of a stable polynomial. 

Corrolary 2. D,,( i ) is sfable if and only if p,,( z ) can 
be written as 

or 

(lea) 

P7,,t ( 2 ) = 
I 

6 
z-l 

2 ,,I ( 1 z+l + P,! - 1 ( z ) 
(16b) 

for n = 2m + 1 or n = 2m, respec’tive!y, where S,, > 0 
and p,, _ ,(i) is the discrete tangent function of a 
stable polynomial. 

The proofs for Corollaries 1 and 2 follow re- 
spectively from Theorems 1 and 2. The ‘only if 
parts are obvious from the nested structure of the 
expansions (12) and (14). The ‘if’ parts are verified 
by their repeated application on p,,- ,(i), p,, _ 2( z), 
. . . till the entire expansions (12) and (14) are 
revealed. 

The two corollaries allow the generalization of 
the former two continued fraction expansions of 
p,,(z) into mixed forms that contain both (Z - 
l)/( z + 1) and (z + l)/( z - 1) terms. The gener- 
alized expansions are constructed by switching at 
will from one corollary to the other while applying 
them for n - 1, n - 2, . . . on the ‘remainders’ in 
(15) or (16). It is then obvious that each combina- 
tion of a CF expansion for p,,(z), with (z - l)/( z 
+ 1) and (z + l)/(z - 1) appearing in any prop- 
erly constructed order (that is in consistency with 
the above two corollaries), corresponds to a stable 
polynomial if and only if its resulting 6, and y, 
coefficients are all positive. Let us take the n = 4 
degree case to illustrate the situation and to gain 
some insight. Given D4( z) its tangent function can 
be expanded in any of the mixed forms outlined 
below, where we conveniently use the notations 

y = (z + l)/(z - 1) and x=(2-l)/(z+l), 

as follows: 

&Q(z)=1 1 1 
Y4.Y + Y3Y + YzY+ 6,x’ 

(17.2) p4(z)= 1 J- 1 
Y4.Y + 6,x + Yr?’ + YIY’ 

p4(z)=L 1 1 1 
Y4.Y 

+ Y3Y + 
0 

+ 
4x 

’ 
(17.3) 

P4(i)= ’ 
1 

Y4Y+Q + YzY+&x’ 
(17.4) 

p4(+& 1 I ‘, 
+ Q + YZY + Y1.V 

(17.5) 
4 

P‘J;)=& + -& 
1 

4 + YzY+&X 

P4(i)= 
1 1 1 -- 

y4-v + 6,x + spy + 8,x ’ (17.7) 

The other combinations that may have been 
expected, are redundant because any two passages 
of the type 

Prx(Z) = 
1 

Y?hY+ &-, “+Prl-r(Z) 

and 

PZk(=)= 1 
1 

s?hx+tjl?h-,Y+dzx-2(z) 

satisfy yrl, =Brl-,. a,,-, =dzk and prl-2(:)= 
&-z(z). The identity between (18) and (19) can 
be verified from the algorithm (25) presented in 
the next section to carry out the expansion (20). A 
crucial point in the construction of such mixed CF 
is a careful consideration of the distinct forms that 
Corollary 2 takes for the even and the odd degree 
tangent functions. 

The above mixed CF expansions can be re- 
garded as the bilinear transformation mapping of 
the mixed Hurwitz CF forms on which the gener- 
alization of the Routh-PadC model reduction 
method in [3] has been based. The reason why 
these mixed forms were not suggested in [l] to 
equally derive high frequency ‘biased’ discrete ver- 
sions of the method in [3] is because the bilinear 
term (z - l)/(z + 1) is an adequate approxima- 
tion of z = eSr only for low frequencies (s ---f 0). 
Most of the new mixed forms may similarly not 
present useful forms for a stability test because of 
their casual appearance (although they may all 
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find other possible applications, for example in the 
design of sampled data networks [15]-[17]). One 
exceptional mixed form should however be pointed 
out. This form is presented by the mixed CF 
expansion that orderly alternates between (z + 
l)/( z - 1) and (z - l)/(z + 1) terms. For the 
above n = 4 illustration this special form is pre- 
sented by (17.4). This ordered mixed form is stated 
as our third theorem. 

Theorem 3. A real polynomial D,,(z) is stable i/and 
only if p,( z) has a CF expansion that for n = 2m is 
given by 

Pz,,(Z) = L’(~) +:,..-,( +) 

+ . . . + 8*(x2) :yl(?LJ (20a) 
with &, yzi-, > 0 for all i= l,..., m, and for 
n = 2m + 1 is given either by 

P2”,+l(4 = lz + 1 

Y2m+l z-l 
t-1 

(20b.l) 

or by 

Ph+,(z) = (52n,+l s 
( 1 

+ a24 3 +:,,-I( 3 

+ -.. + 62(&Y(g 
(20b.2) 

with y, > 0 or a,, > 0 and S2,, yz,-, > 0 for all i = 
1 m. ,..*, 

It is pointed out that in view of the identity 
between (18) and (19) in any of the above two 
term quotients, the term (z + l)/( z - 1) may 
equally be written (and derived) before the (z - 
l)/(z + 1) term. The last theorem deserves its 
particularization among the many other possible 
mixed forms because, as the next section will 
show, it can be implemented by a computational 
algorithm that compares favourably with the algo- 
rithms that can be obtained for the first two 
theorems. 

3. Computation 

Any of the three theorems of the previous sec- 
tion can be used to test stability by carrying out 
the successive invert and divide scheme implied by 
its CF expansion till all the y, or 6, coefficients are 
obtained. This section presents refined procedures 
to obtain these coefficients. Each of the three 
algorithms to be presented suggests a possible 
procedure to test the stability of discrete system 
polynomials. 

Let p,(z) denote the remainder tangent func- 
tion at some intermediate step in the CF expan- 
sions of Theorems 1, 2 or 3. Write p,(z) as 

~,(i)=A,(z)/M,(z) (21) 

where, similar to the relations in (4) (5) and (11) 
for i = II, M,(z) and A,(z) are, respectively. mirror 
(7) and anti-mirror (8) polynomials of degree i 
such that p,(z) is the tangent function for 

D,(z)=A,(z)+M,(i). (22) 

We next provide three computational algorithms 
for each of the above three theorems. The deriva- 
tion of the first algorithm is given in [l]. The 
second and third algorithms can be deduced from 
Theorem 2 and 3 following mostly a similar line of 
derivation. The polynomials M,(z) and A,(z) in 
each of the algorithms below are related by (21) to 
the intermediate remainders p,(z) of the CF ex- 
pansion of the respective theorem. 

Algorithm for Theorem 1. Given D,,(z), use (4) and 
(5) to form M,,(z) and A,,(z). Then, to obtain 
Y,?. . . 9y1, repeat the next cycle for k = n, 
n-l 1..., 1: 

Ak(z) 
M,(z) =z’ (23.1) 

268 



Volume 4. Number 5 SYSTEMS & CONTROL LETTERS July 1984 

1 Mk(l) 
yh =T M,-,(l) ’ (23.2) 

A,-,(z) = 
M,(z) -?k(z + l)Mk-,(I) 

z-l 
. (23.3) 

D,,(z) is stable if and only if y, > 0 for all i = 
1 . . . . . n. 

Algorithm for Theorem 2. Given D,,(z), form M,,(z) 
and A,,(z) according to (4) and (5). The algorithm 
has two cycles, (a) for k = 2i + 1 and (b) for 
k = 2i. They are alternatingly performed for k = n, 
n-l , . . . ,l and yield S,,, . . . ,S,. 

(a) Find S2,+,, M,,(z) and A,,(z) from 
M 2,+I(z) and A2,+,(=): 

MI,+,(Z) 
ML(Z)= z+l 5 

6 
1A 2,+1(-l) 

2,+1= -- 
2 4,(-l) ’ 

A2,(z)= A2’+1 (z)-b,+,(z - l)M,,(z) 
z+l 

(24a.l) 

(24a.2) 

(24a.3) 

(b) Find S,,, M?,-,(z) and A,,-,(z) from 
M,,(z) and Az,( z): 

(24b.l) 

6 
2, 

= -1 M2,(-1) 
2 A,,-,(-I) ’ 

Ml,-,(z) = 
M2,(z) -S,,(z - l)A,,-,(z) 

z+l 

(24b.2) 

(24b.3) 

D,,(z) is stable if and only if 6, > 0 for all i = 
1 . . . ..n. 

Algorithm for Theorem 3. Given D,,(z), obtain 
M,,(z) and A,,(z) according to (4) and (5). If 
n=2m+10btainy,,or6,,andMz,,,(z)andA,,,,(z) 
by performing one cycle of (23) or of (24) in 
correspondence to a free choice to follow either 
the CF form of (20b.l) or (20b.2). respectively. 
The rest of the y, and 8, coefficients are next 
obtained by repeating the following cycle for i = m, 
m- l,...,l: 

(25.2) 

(25.3) 

A 2,-2(z) = { Ml,-,(z) - [Y~,-,(z + 1) 

+&,(z - l,] M2,p2(z)}/(z2 - 1). 

(25.4) 

D,,(z) is stable if and only if y,, > 0 or S,, > 0 and 
s 2,. y2,-, > 0 for all i = 1, _. . ,m. 

Remark 1. A mirror polynomial M,(z) has a zero 
at z = - 1 for k odd, an anti-mirror polynomial 
A,(z) has a zero at z = - 1 for k even and a zero 
at z = 1 for all k. It is easy to show from these 
observations that in the above three algorithms all 
the polynomials which are divided by (z - l), (z + 
1) or both, have these terms as a factor. 

Remark 2. The multiplication or division of a 
polynomial P(z) by (z + 1) or (z - 1). having 
these terms, involves only additive elementary op- 
erations (additions or substractions), see [l], [2]. 

Remark 3. The first algorithm (Theorem 1) and the 
second algorithm (Theorem 2) involve an equal 
number of elementary multiplicative (multiplica- 
tion and division) and additive operations, possi- 
bly implying a preference of algorithm 1 for not 
distinguishing between even and odd parities. The 
third algorithm involves half the number of itera- 
tions of its cycle (25) in comparison to the number 
of iterations in (23) or (24). An iteration of the 
cycle (25) is equivalent to an iteration of the 
second algorithm followed by one iteration of the 
first algorithm. However, in the third algorithm for 
a given 

p(z) = c PJ’ 
r=O 

the following scheme that can be used in (25.1) 
and (25.4). 

II - 2 

P( z)/( z2 - 1) = c g,z’, 
1-o 

go= -PO? g, = -PI? g,=g,-z-Pl? 

reduces the would be equal number of elementary 
additive operations to about one half (the number 
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of multiplications is left unchanged). Therefore the 
third algorithm is computationaly the most eco- 
nomical among the three stability tests. 

Remark 4. The mirror and anti-mirror properties 
of M,(Z) and A,(z), by which their coefficients 
satisfy m, =mk-, and a,= -a,-,, admit more 
computational saving by calculating only the first 
half of the polynomial coefficients. 

Remark 5. The positivity of S, and y, being a 
necessary condition for stability in any of the 
above algorithms implies that M,(l), A,(l), 
M,( -1) A,( -1) do not vanish in any of the 
expressions (23.2) (24a.2) (24b.2) (25.2) and (25.3) 
for stable polynomials. More specifically it can be 
shown that the occurence of a vanishing or indefi- 
nite y, or 6, implies (and is implied by) the fact that 
D,,(z) either has (one or more) zeros on the unit 
circle or has (one or more) reciprocal pairs of zeros 
(z, and z;’ are both zeros of D,,(z)). 

4. Zeros outside the unit circle 

Any of the introduced mixed bilinear z-plane 
expansions yields n coefficients 6, or y,, i = 
1 , . . . .n, the positivity of which is a necessary and 
sufficient condition for D,,(z) to be stable. This is 
not however the most general information that can 
be drawn from these coefficients. It can be shown 
that if all the coefficients are well defined then the 
number of positive and negative coefficients is 
equal to the number of zeros of D,,(z) inside and 
outside the unit circle, respectively. These exten- 
sions can all be proven from analogous known 
s-plane Routh stability conditions and the one to 
one s to z mapping properties of the bilinear 
transformation. We shall in the following restrict 
ourselves to the assumption that all the n coeffi- 
cients are well defined, that is, assume that the 
mixed CF form does not terminate prematurely 
because of an indefinite 7, or i3i. This assumption, 
referred to as regular conditions, is equivalent, as 
already mentioned in Remark 5, to the assumption 
that D,,(Z) has no zeros on the unit circle or 
reciprocal pairs of zeros. It is possible (again by 
appropriately adopting corresponding s-plane pro- 
cedures) to extend the method to encompass also 
the complementary singular conditions and in this 
way to present a method of full capacity to always 
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determine the number of zeros of any D,,(z) in- 
side, on and outside the unit circle. However, for 
brevity we shall not discuss the singular conditions 
any further. We conclude this section by stating as 
a theorem the extension of Theorem 1 for zeros 
outside the unit circle. Extensions to the two other 
theorems (or for the rest of possible mixed forms) 
could equally be stated. 

Theorem 4. If the bilinear CF expansion (12) com- 
plies with regular conditions (if the jirst algorithm 
(23) does not terminate prematurely) then D,,(z) 
does not have zeros on the unit circle (or reciprocal 
pairs of zeros) and the number o{ its zeros inside 
and outside the unit circ!e is given by the number of 
positive and negative terms, respectively, in the 
sequency y,, . . . , yl. 

Conclusions 

The paper has presented the class of all possible 
z-plane CF expansions and stability conditions 
that are obtainable from corresponding s-plane 
stability conditions by the bilinear transformation. 
Three stability theorems (that are related via the 
bilinear transformation to the first, second and 
third Cauer forms [ll]), were particularized. These 
theorems were followed by three algorithms to 
carry out the implied stability tests efficiently. The 
algorithm for Theorem 1 has the simplest set up, 
whereas the algorithm for Theorem 3 requires the 
least computational effort. The method can be 
extended to obtain also the number of zeros of a 
polynomial on and outside the unit circle. It was 
shown that the provided algorithm yields in gen- 
eral also the number of zeros outside the unit 
circle. 

Other stability tests that can be applied on the 
discrete system polynomial are the well known 
table of Jury [6] based on the early solutions to 
this problem by Schur and Cohn and Marden [7], 
and the new methodology that has recently been 
introduced by the author in [8]-[lo]. The number 
of elementary multiplicative and additive opera- 
tions required for the third algorithm of this paper 
is in general lower than the corresponding num- 
bers for the stability table of Jury [6] but is higher 
than the corresponding numbers in the new stabil- 
ity table of [lo] or [8] and [9]. Alternative stability 
theorems, not mentioned in this paper, that em- 
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ploy a matrix theorem framework rather than di- 
rect operations on the system polynomials are also 
known (e.g. the Schur-Cohn matrices, the discrete 
the Lyapunov equation, signature theorems and 
certain canonical forms). The approach of this 
paper (in particular the unmixed expansions) may 
be regarded as related conceptually to certain 
matricial methods that investigate the unit circle 
stability of the A matrix via the Hurwitz stability 
properties of the matrix (A + l)( A - l)-’ (cf. [12]) 
but avoid the actual bilinear transformation of A, 
see [13], [14]. 

The s-plane expansions of (10) and (13) as well 
as mixed expansions of p(s) about s = 0 and 
s = cc play an important role in the synthesis of 
lossless (and consequently, also lossy) ladder net- 
works [ll]. The variety of mixed bilinear z-plane 
expansions presented in this paper may be simi- 
larly useful in the design of stable digital networks. 
For such synthesis purposes a reversed approach, 
one that recursively constructs stable polynomials 
D, ( z ) of successively higher degrees may be needed. 
A recursion formula related to (12) for the synthe- 
sis of a stable Dk(z) for given k positive coeffi- 
cientsy,,..., yk can be found in [l]. Similar expres- 
sions can be obtained also for the Theorem 2 or 
for the other mixed expansions. The z-plane CF 
expansions in this paper may, for example, sim- 
plify the design of switched capacitor filters which 
are based on s-plane filter responses and the bilin- 
ear s to z transformation [15]-[17]. 
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