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Transactions Briefs 

Z-Domain Continued Fraction Expansions for Stable 
Discrete Systems Polynomials 

YUVAL BISTRITZ 

Absfruct -A z-plane continued fraction expansion (CFE) that is related 
to the first Cauer s-plane CFE via B&on’s LDI transformation is consid- 
ered. Necessary and sufficient conditions are imposed on the CFE for a 
polynomial to be stable (have all its zeros inside the z-plane unit circle). 
The implementation of this CFE in a tabular form establishes the Routh-like 
stability table in [I] first derived in a conference paper 121. The application 
of this stability table is now extended to also count zeros outside the unit 
circle, making it compatible in this respect with the related second table, 
form in [3]. However, the closer analogy of the present formulation to the 
s-plane Cauer CFE’s and Routh table suggest additional merits of this 
formulation to the design of digital networks (e.g., switched-capacitor 
filters). A brief account of three related alternative CFE’s is included. 

I. INTRODUCTION 

The Routh method for testing the characteristic polynomial of 
a continuous-time system for stability may be looked upon as an 
application of Euclid’s algorithm to the even and odd parts of the 
polynomial. This process is also recognized as the expansion of 
the rational function formed by the odd over even parts (the 
“tangent function”) into (Cauer) simple continued fractions. The 
resulting continued fraction expansion (CFE), interpreted prop- 
erly, yields also a number of important procedures of two-ele- 
ment-kind ladder networks [4]. 

The purpose of this paper is to develop a theory for discrete 
systems and digital networks that provides the basis for a z-do- 
main CFE, a discrete stability table and two-element-kind ladder 
structures such that each in separate possess a meaningful anal- 
ogy to its s-plane correspondent, and such that the inter-relation 
between the three objects retain the notion that exists among the 
corresponding components in the s-plane. This development has, 
beside its theoretical interest, some practical merits. It yields a 
Routh-like computationally less expensive, stability table [l]. 
Another rewarding outcome stems from the possibility to simu- 
late the LC ladder structure and obtain corresponding low 
sensitivity digital ladders [5]. We regard Cauer CFE as the link 
between the Routh table and the LC ladder forms. Therefore, we 
presently concentrate on devising appropriate z-domain CFE’s 
that are closely related to the Cauer CFE’s. 

The content of the paper is as follows; A brief review, in 
Section II, of some s-plane and z-plane stability conditions as 
required for later reference is followed by the introduction in 
Section III of CFE for the discrete tangent function of poly- 
nomial that proceeds in forward and backward difference terms, 
(z-l) and (l-z -‘). It is obtained by applying the LDI trans- 
formation [6] to the first Cauer CFE. The transformation yields 
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at once necessary, but not sufficient conditions for stability. A 
subsequent study in Section IV of the CFE yields complementary 
conditions to imply also stability. The necessary and sufficient 
conditions for stability, as imposed on the CFE, when arranged 
in a tabular array yield the stability table [l] (not reptiated here). 
The stability conditions here are close, but different from, the 
table in [3]. In Section V we show how the number of zeros of a 
polynomial outside the unit circle is also obtainable by the 
current formulation. It is pointed out that the stability table of [l] 
is compatible with the table in [3] for the zero location problem 
but that it has a slightly less desirable appearance. It is indicated, 
however, that this is made up for by its more direct relevance to 
the design of digital networks that follow s-plane prototypes [5] 
(e.g., switched-capacitor filters [6], [14]). The last section contains 
a brief presentation of three more z-domain CFE’s. One which 
corresponds to the table in [3] and two CFE’s of the second 
Cauer form types. 

II. Z-PLANE VERSUS S-PLANE STABILITY 

A stability test for discrete systems deals with the location of 
the zeros of a real polynomial 

Dn(z)=do+dlz+ ... l td,,z”, d, > 0 (1) 

with respect to the unit’circle C ( IzI = 1). A polynomial is called 
stable if it has all its zeros inside the unit circle (IUC). More 
generally, the polynomial may also have zeros on the unit circle 
(UC) or outside the unit circle (OUC). A stability test involves 
necessary and sufficient conditions for a polynomial to be stable. 
The zero location problem generalizes the problem by question- 
ing the number of IUC, UC, and OUC zeros of a polynomial. 
The corresponding problems for continuous-time systems deals 
with the distribution of the zeros of a real polynomial, say H,(s) 
between the left half and the right half of the complex s-plane. 
The polynomial H,(s) is called Hurwitz if all its zeros lie in the 
open left half plane. Necessary and sufficient condition for a 
polynomial to be Hurwitz or more generally its zero distribution 
can be obtained by the Routh table (cf. [9]). Equivalent condi- 
tions that are required for later reference are summarized by: 

Lemma I: the real polynomial H,,(s) is Hurwitz if and only if 
the following equivalent conditions hold: 

(i) The s-plane tangent function p,(s), defined for H,(s) by 

P,,(S) = 
f&(s)-KC-s) 
Hn(s)+H,,(-s) 

can be written in the form 

Ksj+ (s2+o:,) 
p,(s) = mi=l K>O, O<w;<w;< ... <w,f 

,Q' 
2 + 0:,-l >' 

(3) 
where n=m+l+l; I=m-1 orl=m. 
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(ii) The expansion of p,,(s) in the following first Cauer CFE 
(about s = cc) exists 

1 1 
Pan, or P~+~(s) = - - ... +; (4) 

Y,,S + Y,,-1s + 

and the coefficients y, are positive for all i = 1; . ., n. 
The sequence of polynomial in the above Cauer CFE form the 

rows in the Routh table [8] and regarding p,,(s) as the driving 
function, the above are conditions for its realization by an LC 
ladder [4]. 

A discrete tangent function p,,(z) can be defined by Fig. 1. The LDI transformation (lossless digital integrator). 

k(z)- F(z) 
pn(z)= Dn(z)-tDn*(z) (5) 

where D,* is the reciprocal polynomial z"Dn(z-'). A stable 
polynomial is featured by a pn (z) with interlacing poles and zeros 
on C (comparable with condition (i) in Lemma 1). 

Lemma 2: A polynomial D,,(z) with d, > Idol is stable if and 
only if p,,(z) can be written for n = 2 m + 1 and n = 2 m, respec- 
tively, in the form 

K(z-1)~(z~-2zcos9,,+1) 

PZnt+l(Z) = 
i=l 

(z+1)~(z’-2zcosQ,,~,+1)’ 
i=l 

m-1 

K>O (6a) 

K(z-l)(z+l) n (z2-2zcos~2,+l) 

P2m(Z) = 
i=l 

fJz2- 

, 

2zcos9,,~,+1) 

where 

K>O (6b) 

This lemma was first shown in [9]. In its form above it was 
obtained in [lo] by applying the bilinear transformation s = 
(z -l)/(z+l) to (3) in Lemma 1. 

Application of the bilinear transformation to condition (ii) of 
Lemma 1 yields a bilinear CFE for p,(z) [ll], [12]. The family of 
all bilinear CFE, as derived in [12], admits some quite effective 
schemes to test stability and determine zeros distribution. How- 
ever, CFE’s that proceed in terms of (z - l)/(z + 1) or (z + 1) 
/(z - 1) do not make an appropriate analogy to the meaning of s 
and 3-i in analog circuits and continuous systems [13], [7]. 

III. A NEW CFE FOR STABLE POLYNOMIALS 

Consider the following Bruton’s LDI (lossless digital integra- 
tor) H, 171: 

,=~(z’/2-z-v2)~ (7) 
It represents a conformal transformation that, letting z = reJa, 
can be shown to map co centric circles of radii r of the z-plane 
into ellipses with focuses at f j .and axes of lengths 

3 $/2 + r--1/2) and $( $/* - r--1/2), 

Radial lines are mapped into confocal hyperboles orthogonal to 
the ellipses. A graphical illustration is shown in Fig. 1. The unit 
circle C = { z]z = e J’ 52E(-a,n)} is mapp , ed by (7) into the 
intervalof theimaginaryaxis J= {s]s= jm, WS(-l,l)} via the 

function 
w = sin( Q/2). (8) 

This function is one to one and increasing and maps D E (- n, n) 
onto w E (- 1,l). Unfortunately, except to this sub-mapping of 
C to J, the LDI transformation is not one to one nowhere else. 
The interior and the exterior of C are each mapped into both the 
left half and right half of the s-plane. Referring for illustration to 
Fig. 1; the point zi is mapped into both s, and S, ( = - s,); the 
point 5, into S, and s,; z0 ( = z,-l) into s, and s,; and Z0 into s, 
and Sr. Thus the LDI transformation, unlike the bilinear one, is 
not a stability preserving mapping. This discouraging fact has 
often been the reason for preferring synthesis procedures based 
on the bilinear transformation [6], [14]. We shall subsequently 
apply the LDI transformation to the Cauer CFE (4). In view of 
its above properties, we shall rest in our manipulations only on 
the mapping between the J interval and C, not expecting a too 
obvious necessary and sufficient conditions simply by setting (7) 
into (4). Indeed, while a set of necessary conditions for stability 
(from which the comparable conditions in [7] can be deduced) 
will be obtained with relative ease, the derivation of complemen- 
tary sufficient conditions will turn out to be quite cumbersome. 

Assume a stable D,(z) and examine the mapping of a typical 
product in (3) and (6) by (8) z-‘(z*-2zcos0,+1)~4[s2+ 
sin2 ( Q2, /2)]. Therefore, we have 

,fJz2 - 2zcosQ,i +1) 
,!?-,( 

s2 + co;,> 
Zm-l 

m - m (9) 

(z+l)i~~(z2-2zcos~2,-I+1) ;gs*+4-1) 
withI=m-lorI=m,whereby(6c)and(8) 

o<w;< ..* <&i<l, wk = sin( f&/2). (10) 

Consequently, we have for n = 2m + 1 (we skip an obvious 
parallel derivation for n = 2m), from (6a), 

K$(s2+w;,) 
z-1’2( z +t)p,,,+,( z) tf mi=l (11) 

I-I (s’ +4-J 
i - 1 

By the equivalence of the two conditions in Lemma 1, the 
right-hand side of (11) is the tangent function of a Hurwitz 
polynomial and, therefore, admits the CFE (4). Thus setting (7) 
into (4), we have from (11) for n = 2m + 1 

z-1’2(z +1> Plm-tl(Z) 

1 
= y2m+ly(z1’* - z-1’2) 

1 1 
+ . . 

Y2m+( zlP - z-1P) + + yll( z1/2 - z-1/2) 



1164 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,VOL. CAS-32, NO. ll,NOVEMBER1985 

Multiplying the two sides of the last expression by z-l/*, repeat- 
ing the last steps also for n = 2m and defining 6, := $y, > 0, 
i = 1,. . . , n, the next theorem has been proven. 

Theorem I: If the polynomial D,(z) is stable then its tangent 
function has the following CFE’s for n = 2m + 1 and 2m, respec- 
tively, 

(z +1>rP2;tf+l(z) 

1 1 1 
= 

6 zm+t(Z-l) + S*,(l-z-1) + ... + 6,(z-1) 

(124 

(~‘+w’P,,w 

1 1 1 
= 

S,,(z-1) +~2m-l(l-Z-1) +“‘+s,(l-z-i) 

(12b) 
and the coefficients 6, are all positive, 8, > 0, i = 1, . . . n. 

Remark 1: The positivity of all S, is not sufficient for stabil- 
ity. A counter example is provided by the numerical example in 
[l] (we shall soon relate the CFE of the last theorem to the 
stability table in [l]). This difference from the situation in apply- 
ing the bilinear transformation to p(s) stems from the fact that 
the LDI transformation does not preserve stability. 

Remark 2: A CFE closely related to (12) and necessary condi- 
tions for stability constitutes the principal theorem in [7]. The 
relation between the rational function, say R,(z), expanded there 
into CFE of the form (12) with coefficients r, and p,(z) here is 

R 2m+1(z) =:(z-l>+i(Z+1)P*“,+l(z) 

RZm(z) =+(z-l)+$(z+l)pi;(z). 

The coefficients ri and ai are related, therefore, by r,, = i( 8, + l), 
r n-l=26,,-1, r,-2=$Sn-2,...,etc. Thus 6;>0, i=l;..,n im- 
ply ri > 0, i = 1,. . . , n but not vice versa. The former remark and 
the forthcoming results also provide explanation why the argu- 
ment in [7] may not be reversed and ri > 0, i =l; . ., n are 
necessary but not also sufficient for stability. 

IV. SUFFICIENTCONDITIONSFOR STABILITY 

We next proceed to derive additional conditions together with 
which the existence of (12) and S, > 0 also imply stability. A real 
polynomial can always be written as the sum of a symmetric and 
an antisymmetric polynomial 

D,(z) =5[o,(z>+D,*(z>l+~[D”(z)-Dn*<Z>l 
=$s,(z)++A,(z) (13) 

where S,(z) and A,(z) are called symmetric and antisymmetric 
polynomials, if S,*(z) = S,(z) and AZ(z) = -A,(z), respec- 
tively. A polynomial of odd degree can always be written in the 
form 

D 2m+1(~) =:A2m+1 (z)+:(z+l)s,*tz). (144 

Similarly, a polynomial of even degree can always be written in 
the form 

D,,(z) =:s,,(z>+i(z+l)A,,-,(z). (14b) 

Consider next a sequence of n +l polynomials { Dk(z)}~+ 
defined for a given set of n positive numbers S,; . ., S, by the 
following assignment; Dk( z) is the polynomial of degree k 
whose tangent function pk(z) has a CFE of the form (12) with 
(6,;..,a,}. In other words, D2i+l(~) is defined via (14a) in 

association with. p2, +, (z) and Dzi(z) via (14b) in association 
with p2i (z), respectively, by 

(z -c1)P,,+,(Z) = 
A2i+l(z) 

Sz,(z) 

(z +l)-lp2;(z) = AZ,-,(Z) 

S2i(Z) 

(154 

The nested structure of these partial CFE’s implies the relations 

(~+1>~2;+1(~)=~2~+l(Z-l)+ZP2i(Z)/(Z+l) (164 

(z+1)p,‘(z)=6,,(2-1)+zp,‘,(z)/(z+1). 

(16b) 

Using (15), we find that S2i(z) is common for D2,(z) and 
D2;+1(r, and AZIel(z) is common for D2,p1(z) and D2,(z). 
Therefore, the sequence { D, (z)}z=e is completely defined by 
another sequence of exactly n + 1 polynomials, which are sym- 
metric (for even degrees) or antisymmetric (for odd degrees). The 
polynomials in this sequence, that we shall denote by { Tk (z)}; =0, 
are defined for { D,(z)} by 

and 

The 

T,(z) =Dd~)+(--l)~Dk*(z), k=l;..,n (17) 

( Tk (z)} reciprocally defines { D, (z)} by 

D,(z) =$Tk(z)++(z +l)T,-,(z), k=l;..,n. 

(18) 
new sequence {Tk(z)};l-=O can be generated, by (14)-(16), ,^ ^.. . 

from {b‘,,. . ., tin ) by me recursion 

T,+,(z) =s,+,(z-l)T,(z)+zT,-l(z), k=O;..,n. 

(19) 

Starting with T-,(z) = 0 and T,(z) =l. Note that, for given 
{ 81,. . ., S,}, (19) together with (18) show an alternative construc- 
tive definition for the sequence ( Dk (z)}. 

The next lemma is a key result for complementing the positiv- 
ity of {S,} into also sufficient conditions for stability of D,,(z) 

Lemma 3: Assume {S,; . . , S,, } are n positive numbers and 
let { Dk(z)}~=,, be the sequence of polynomials constructed 
through (19), (18). 

(i) If D2i-l(z) is stable and 4,+,(-l) < 0 then D2,+,(z) is 
stable, i=1,2;..; 2i+l<n. 

(ii) D2, _ 2 (z) is stable and D2, ( - 1) > 0 then D2; (z) is stable, 
i=1,2,...; 2iCn. 

Proof: The proof uses the necessary and sufficient condi- 
tions in Lemma 2, condition (i) of Lemma 1, and the way the 
LDI transformation maps J onto C. Let w,(k) denote the wi 
values for a pk (s) expressed as in (3). Assume 6,). . . ,a, > 0 and 
consider the function pk (s) defined for y, = 28, > 0, i = 1,. , k 
by (4). This pk (s) corresponds to a Hurwitz polynomial and, 
therefore, has a structure (3) with 

O<of(k)<o;(k)< ... <u;(k). (20) 

Define for w,(k) the real numbers 

x,(k)=2w;(k)-1 (21) 
then, repeating the steps preceding Theorem 1, the LDI transfor- 
mation determines a pk (z) given by the form (6) with xi(k) = 
cos Q2, and we have by- the monotonicity of the mapping (8), 

-l-=x,(k)< ‘.. <xk-,(k). (22) 

To prove that Dk(z) is stable, by the sufficiency part of Lemma 
2, the remaining crucial point is to show for (22) also that 
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xk- i (k) < 1. This part of the proof follows from the given 
stability of D,-,(z) and (- l)kD, (- 1) > 0, by incorporating 
similar to the above manipulations also of the sequences 
{xi(k-2)} and {x,(/c-l)}, that correspond to pkm2(z) and 
pk _ i (z), respectively, (see [2] for more details). 

The necessary and sufficient conditions for stability to comple- 
ment Theorem 1 is now stated. 

Theorem 2: The’ polynomial D,(z) is stable if and only if the 
CFE (12) exists and has positive coefficients 6,,* . . , 8, > 0 and 
the sequence associated with it { Dk(z)}izO, or equivalently 
(Tk(z)}~=O, satisfies: 

(i) for n=2m+l 

4i+l(-l)<0 or L+l(-l)<O, i=l;,.,m 

(234 

(ii) for n=2m 

D,,(-l)>O or T,,(-l)>O, i=l;..,m. (23b) 

Proof: The conditions on { Dk(z)}& follow immediately 
by repetitive application of Lemma 3. The equivalent conditions 
on { Tk(z)}z=,, follow from (18). 

The sequence { T, (~);!a can be obtained for D,,(z) without 
actual reference to the sequence { Dk(z)}izO or to the CFE (12). 
Given Dn(z), 

(i) T,,(z) and T,_,(z) are formed by 

T,-,(z) = [D,(z)-(-l)“D,*(z)]/(z+l). (24) 

(ii) The rest of the sequence Tnm2(z), Tnm3(z), ... are con- 
structed by successive use of the following recursion, that can be 
deduced from (19), for i = n, n -1;. .,l 

T(O) &=---- 
7;-,(O) 

~-2(z)=z-‘[7;(z)-6,(z-1)7;~,(z)]. (25) 

The algorithm (24), (25) is best carried out in the table form of 
[l]. Theorem 2 provides a proof for the stability conditions there. 
The rows in [l] are the coefficients of { Tk(z)}tcO in descending 
power of z order (first row corresponding to T,(z) till last row 
corresponding to T,(z)). The row sums u, defined for the table in 
[l] are related to {T,(z)}~=, by ui=&,,-;, i=O,...,n where 

ci:=q*(-l)=(-l)‘q(-l). (26) 
Reference [l] contains an efficient special algorithm for the table 
form and discusses computational aspects of the stability test. An 
important point is that the symmetry properties of the polynomi- 
als Tk (z) admit the actual computation of only half of the entries 
of the table and implies a significant saving in computation 
(similar to [3]). The above algorithm and the table hold a re- 
markable similarity to the Routh table (better than in [3]) that 
correspond to the first Cauer CFE (4). The first and second 
rows in a Routh table for a polynomial H,(s) are formed by 
the coefficients of [H,,(s)+(-l)“H,(-s)] and [H,(s)- 
( - l)“H,, ( - s)]/s, respectively, written in descending order of 
x = s2 with self evident analogy to (24). The construction of the 
rest of the rows also reveals a Routh-like pattern [l]. 

V. EXTENSIONTOUNSTABLEPOLYNOMIALS 

The algorithm here and in [l] are closely related and compati- 
ble in computation with the stability table in [3]. We next briefly 
show how the stability table in [l] is equally applicable also to 

count OUC (outside the unit circle) zeros. Thereafter, the need 
for the current alternative formulation will be justified by its 
possession of additional important features for many filter design 
techniques related to analog filters or using switched capacitors 
[5]. First we show that Theorem 2 can be restated as follows. 

Theorem 3: The polynomial D,,(z) is stable if and only if 
6,=(-1)‘7;(-1)havethesamesignforall i=O;..,n,namely, 

var { cn,. . . ) $ } = 0 (27) 

where Var denotes the number of sign variations. 
Proof: We only need to show that any two of the following 

three conditions implies the third: 

(9 8 l,“‘, 8” %= 0 

(4 ( - 1)2’ +1 
T2i+l(-1) ’ O 

(iii) (-l)‘jT,,( -1) > 0. 

(234 

(23b) 

This follows immediately from 

si = ( cim2 + ai)/2&i-, (28) 

a relation that is verified by setting z = - 1 into (19). 
We say that the polynomial D,,(z) obeys normal conditions if 

the recursion (24), (25) can be completed. (It is singular if a 
q(O) = 0 interrupts the construction). Normal conditions are also 
equivalent to saying that the CFE (12) exists or that the stability 
table, as presented in [l], can be constructed. 

Theorem 4: Assume that D,(z) obeys normal conditions and 
let 

var{q;..,$}=v 

then D,(z) has n - v IUC, no UC and v OUC zeros. 

(29) 

A proof for this extension of Theorem 3 will not be given. It 
requires tools beyond the.CFE context of this paper. It can be 
shown, as in [3], by Rouche’s theorem or by a Cauchy index 
theorem applied to the imaginary J interval [16]. 

The singular cases can be classified, interpreted and handled, 
again, in ways similar to [3]. These details, that can be deduced 
from [3], are omitted. They are of limited importance for network 
realization (the simple CFE breaks down in singular cases; singu- 
lar conditions may occur only for unstable polynomials) and the 
table in [3] has a more convenient form for merely the zero 
location problem (all-symmetric rows; not so many minus signs 
to memorize; formation of initial two rows not depending on 
parity of n). 

Our purpose here was to emphasize that the current formu- 
lation with the table [l], in spite of a slightly less desirable 
appearance, is compatible with [3] in computation and broadness 
to deal with the general zero location problem. The differences 
between the two formulations reflects an effort to make the 
current one as similar as possible to the classical continuous-time 
systems stability conditions, Cauer CFE’s, and LC ladders. As a 
result the current formulation is believed to be of more interest 
for the design of digital networks in relation with s-plane proto- 
types [5]. 

VI. SOMERELATED CFE’s 

We conclude the paper by briefly presenting some additional 
CFE’s, other than the principal CFE (12). They may too find 
applications in the design of digital networks. 

It is well known that any CFE can be presented in more than 
one form. The CFE in (12) and the three presented in the next 
theorem are four different CFE’s in the meaningful sense that 
they can not be obtained one from the other by CFE equivalence 
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transformations [14]. Only necessary conditions for stability (as 
in [7] or here in Theorem 1) are stated. 

Theorem 5: If the polynomial D,(z) of (1) is stable then its 
tangent function p, has the following CFE’s: 

(9 2ndform (z +f)~~,,,+~ (z) or z(z +l)P1p2,(z) can be ex- 
panded into 

1 1 

S,l/(z-1) +6,-,/(1-z-‘) + ‘.. +( ‘i/Cfpl) ilif~=2*~+1 

+ So, i iI ifn=2m (30) 

and &, i = 1,. . . , n are all positive. 
(ii) 3rd form (z - l)-‘p, (z) can be expanded into 

S,(z-tl 

and S, i 

>- l k,(z+l) - ..’ - &(z+l> i II ifn=2m+l 
-Li+ )I 

1 

1 z-l) if,,=2m (31) 

=I,. . ., n are all positive. 
(iii) 4th form (z-l)p;,:+,(z) or z(z-l)-‘~~,,~(z) can be 

expanded into 
1 1 

6,;/(z+l) - a,‘-,/(1+z-1) - ... -L/(:+1) iI,,=,.,,, 

- s;/$+ z-1) i )I (32) ifn=2m 

and 6, i=l;.., n are all positive. 
Proof The second form can be verified by replacing in the 

proof of Theorem 1 the s-plane CFE (4) by the second Cauer 
CFE form (an expansion of p,(s) about infinity) [4]. The third 
form is easily recognized as the CFE in association with the table 
in [3]. The fourth CFE is a “second Cauer form” for the third 
form. 

Remark 3: The third CFE can also be obtained from the first 
form (12) (and the fourth from the second) by a - r/2 rotation 
of the z-plane coordinates. Really, the stability table in [3] is 
related to a sequence of polynomials defined on the real interval 
[ - 1, l] in much the same way that the presentation here was 
derived from its relation to the s-plane imaginary interval J. This 
is yet another way to perceive the special appropriateness of the 
first CFE and the table in [l] for s-plane-related digital filter 
designs. 
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Analysis and Realization of Cascaded 
Transmission-Line Networks by the Transfer 

Scattering Matrix 

TAKAO KOMURO AND MICHIO AKIYAMA 

Abstract -An approach to cascaded, uniform, lossless transmission-line 
networks by the transfer scattering matrix in the z-domain is presented. 
This approach can be applied to network problems treated in both the time 
and the frequency domains and is well suited for a computer programming. 
It is shown that the reflection function and the transfer function are 
obtained by simple matrix multiplications and conversely, the network is 
synthesized by the use of the transfer scattering matrix determined from 
the realizable function. 

I. INTRODUCTION 

The analysis and realization of networks consisting of cascaded 
sections of uniform lossless transmission lines of equal electrical 
length have received much attention because such networks result 
from equivalent circuit representation in microwave network 
theory, optics, and acoustics. Various methods of the analysis and 
realization of these networks have been proposed in the frequency 
domain [l]-[5] and in the time domain [6]-[ll]. 

The purpose of this paper is the presentation of an approach to 
these cascaded transmission-line networks by the transfer scatter- 
ing matrix (T-matrix) in the z-domain. Since the T-matrix is 
based on the traveling wave theory, the approach can be applied 
to network problems treated in both the time and the frequency 
domains. The approach is suitable for processing systematically 
by a computer because the procedures for the analysis and 
realization can be performed by the matrix calculation. 

The properties of the T-matrix of the transmission-line net- 
work is first given. Subsequently, it is shown that the reflection 
function (the reflected impulse response) and the transfer func- 
tion (the transmitted impulse response) are obtained by simple 
matrix multiplications and conversely, the network is synthesized 
by the use of the T-matrix determined from the given realizable 
function. In the case of the transfer function of a symmetric 
network, two networks of which the reflection functions have 
opposite sign are synthesized with ease. 
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