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Abstruct: We extend a new stability test proposed recently for discrete system polynomials [l] to polynomials with complex 
coefficients. The method is based on a three-term recursion of a conjugate symmetric sequence of polynomials. The complex version 
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1. Introduction 

The problem under consideration.is counting the number of zeros of a polynomial D,,(z) with complex 
coefficients 

D,(z)=c&+d,z+ **- +d,z”=d,fi(z-zi), D,,(l)#Oisreal, (1) 
i-l 

inside, on, and outside the unit circle (IUC, UC, and OUC zeros) 

C= {zIz=ej+, I~,E[O,~IT]}. (2) 

The reason for the assumptions made on D,,(l) in 91) will become clear later. It is noted that these 
assumptions are not restrictive in practice (cf. also [l], Remark 4.1): zeros at z = 1 are easily detected and 
removed; making D,,(l) real may require a resealing of the polynomial, e.g. its multiplication by Is,(l), 
where overbar means complex conjugate. 

This problem has been originally solved by Schur (necessary and sufficient conditions for IUC zeros) [2] 
and Cohn (extension to UC and OUC zeros) [3]. It has been treated extensively also by Marden [4] and 
Jury [5] (the Jury-Marden stability table) as well as many others [6]. A different solution to this problem 
has been introduced by the author in [7,8,1]. It is based on a three-term recursion of symmetric polynomials 
rather than the Schur-Cohn two-term recursion of asymmetric (no specific form) polynomials. The new 
formulation was found to be more efficient in solving the zero location for real polynomials by 
approximately a factor of 2. The purpose of this paper is to establish the complex version of this 
formulation. 

After a short preliminary study of properties of (conjugate) symmetric and antisymmetric polynomials, 
we follow the outline of the paper [l] and show how the formulas, theorems, proofs, etc. there extend in a 
natural manner to polynomials with complex coefficients. A remarkable outcome is that, in spite of the 
complex numbers arithmetics, the crucial step of counting the IUC and OUC zeros still involves the same 
and simple real arithmetic of the real case. So, the relative actual saving in number of real arithmetics 
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(compared to the Schur-Cohn test) is somewhat even better in this general case. Also, we show that the 
complex algorithm can, optionally, be carried out using only real polynomials and arithmetic. We often 
compare the results presented here with [l]; when appropriate we refer to [l] for more details and 
discussion or even state results without proof when these can be found in [l] in a (formally) identical form. 

2. Preliminaries 

We denote by D,“(z) the reciprocal polynomial of D,,(z), 

ly(z)=&+&-,z+ -*a +c70Zn=znE,,(z-1). 

A polynomial P,(z) with complex coefficients will be called (conjugate) symmetric if 

434 = et(z) 

and (conjugate) antisymmetric if 

P,“(z) = -P,(z). 

(3) 

(44 

(4b) 

It is easy to see from the fact that the zeros of D,:(z) are t;‘, i = 1, . . . , n, that: 

Lemma 1. A polynomial is either symmetric or antisymmetric if and only if it has on@ UC zeros z, or 
reciprocal pair (RP) zeros (zr, 2; ‘) (with the same multiplicity). 

Subsequently, we shall always imply in any count of zeros their multiplicity. Another obvious feature of 
symmetric or antisymmetric polynomials is stated next: 

Lemma 2. Let a polynomial P,,(z) of complex coefficients be written as the sum 

P,(z) = s,(z) +jA,b), (5) 

where S,(z) and A,,(z) are two real polynomials. Then, P,,(z) is conjugate symmetric (antisymmetric) if and 
only if S,,(z) is real symmetric (antisymmetric) and A,(z) is real antisymmetric (symmetric, respectively). A 
real antisymmetric polynomial, say A,(z), can further be factored into 

An(z) = b- lPn-I(4 

where S,,(z) is symmetric. 

(6) 

We define for an arbitrary polynomial P,(z) the following i),(z) (a polynomial in z’i2 and z-‘j2) as its 
‘balanced polynomial’: 

FJZ) =z-“‘2P”(Z). (7) 
An important feature of symmetric and antisymmetric polynomials is revealed by their corresponding 
balanced polynomials. 

Theorem 3. A polynomial, P,(z) with complex coefficients is symmetric if and only if 

Im _in(z)=O forallzEC; (84 

and is antisymmetric if and only if 

Re?“(z)=O forallzEC. @b) 

Prqof. See the appendix. 
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3. The regular formulation 

The polynomial D,,(z) of (1) can be written as the sum of a symmetric and an antisymmetric 
polynomial: 

o,,(z>=t[o,,(z>+o,~(z>l +f[w>-~,wl. (9) 
We would like to define, as in [l], 

T,(z) = W) +Ew and Lb>= [D,,(z>-D,~(z>]/(z-l). 00) 

The second definition imposes on the antisymmetric part of D,,(z) to have a zero at z = 1. In view of 
Lemma 2, this requires its imaginary-part real polynomial to vanish at z = 1. Then, since the imaginary-part 
polynomial of the symmetric part of D,,(z) in (9) (a real antisymmetric polynomial) is always zero at z = 1, 
the polynomial T,- i(z) is well defined if and only if Im D,,(l) = 0. We already assumed in (1) and shall 
assume throughout that D,,(z) is real and nonzero at z = 1. 

We now define a sequence of polynomials { T,( z)}ipO by (10) and the recursion 

T,(z)=(8,+8,t)T,-,(z)-zT,-,(z), k=n, n-l ,..., 2, 014 

with 

Sk = T,(O)/T,-,(O). (lib) 

This recursion is refered to as regular if the following normal conditions hold: 

T,-,(O)#O, i=l,. . . ,n. (12) 

We shall restrict ourselves temporarily to normal conditions. Singular cases, when (12) does not hold, and 
their treatment will be discussed in Section 5. 

Remark 1. It may be observed that the only difference between the three-term recursion in (11) and in [l] is 
that all the real symmetric polynomials in [l] are replaced by (complex) conjugate symmetric polynomials. 
Thus the term (6, + 6,k) there is replaced by the first degree polynomial (6, + 8,~) that remains symmetric 
also for complex 8,‘s. 

It is not difficult to show now: 

Lemma 4. The polynomials { Tk(z)}imO defined for a polynomial D,,(z) of complex coefficients with real 
nonzero ualtie at z = 1 @ (lo)-(12) are all symmetric, have exactly their indicated degree (the only acceptable! 
exception is for T,(z) to have a simple zero at z = 0 qnd thus be of degree n - l), and 

uk = T,(l) 

are real and nonzero for all k = 1, . . . , n. 

03) 

Proof. Symmetry of two polynomials in the three-term recursion (11) implies symmetry of the third. 
Starting with the two symmetric polynomials (lo), the recursion (11) implies that all subsequent polynomi- 
als are also symmetric and (assuming normal conditions) of exactly their claimed degree. Finally, a 
symmetric polynomial is always real valued at z = 1 (Lemma 2). 

We define the following second sequence { D,(z)}“,,~ by D,(z) = 4 T,(z) = fu,, and 

Dk(z) = $T,(z) + $(z- l)T,-,(Z). (14 

It is obvious from here and (13) that 

D,(l) = tT,(l) (15) 
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are real and nonzero and from (10) that the n-th degree polynomial here becomes the polynomial under 
investigation (1). 

Remark 2. In Section 5 we shall show that zeros of D,,(z) on the unit circle occur also as zeros of 
subsequent Dk(z), k = n, n - 1, . . . , s > 1, and they imply a singularity T,-, = 0. Therefore, regular 
conditions guarantee that no polynomial in the sequence { Dk( z)}:,~ has UC zeros. This establishes the 
first statement in the following theorem. 

Theorem 5. Provided that the recursion (11) is regular not one of the polynomials in the sequence { Dk( z)}:,~ 
has UC zeros. Denote by (a,, yk) the number of (IUC, OUC) zeros of Dk(z), k < n (0~~ + yk = k), then the 
number of zeros of Dk+l(z) with respect to C are: 

(a> (ak + 1, ~~1 if w 4+1(1) = en 4(l), 
@I (ak,yk + 1) if sgn Dk+l(l) = -w Q(l). 

The next theorem, our main result, can be easily deduced from Theorem 5 and (15). 

Theorem 6. Given D,(z), a polynomial with complex coefficients and nonzero real D,,(l) value, and provided 
the sequence {Tk(z)}~-O defined for it is regular, the number of IUC and OVC zeros of D,,(z) are 
respectively n - u,, and v,,, where 

v”=var{u”, a,-,, . . *, co > 06) 

with ok defined in (13) and Var denoting the number of sign changes in the indicated sequence of real 
numbers. 

Remark 3. Theorems 5 and 6 are comparable with Theorems 2.1 and 2.2 in [l]. The distribution of zeros for 
complex polynomials is obtained from a sequence that is defined in the same way and, remarkably, remains 
real even in this general case. (In fact, as described in Section 4, if desirable, the stability test can be 
performed completely in real arithmetics and polynomials.) Theorem 3 admits the next extension of the 
proof in [l] for this generalization. 

Proof of Theorem 5. The proof is baed on the argument principle. Let Tk(z), ?Jz) and Rk(#) be, 
respectively, the k-th symmetric polynomial, its balanced polynomial, and the real-valued function (a 
polynomial in co@ and sin++) that the latter takes on C by Theorem 3. 

To prove part (a) we consider the quotient 

zDd4 
‘(‘)= Dk+l(~) ’ 07) 

By the assumption in (a), f (1) is real and positive. We proceed to show that for no value of z E C may f(z) 
take real values which are negative. We have 

f(z) = 
z[T,(z)+(z-l)T,-,(z)] = z”2[~~(z)+(z1’2-z-1’2)~~-,(z)] . 

T,+,(z) + (z - w/h) &+l(z)+(z1’2-z-“2)~k(z) 

The last expression becomes for z = ej$, 

f (ej+) = 
ej+i2[R,(t$)+j 2 sin Q#R,-,(rl/)] 

&+&4 +j 2 sin tW&) 
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Now, f(ej#o) may take real values either if the two imaginary parts are zero for IJJ, 

sin !~Jo[R~(#~) + 2 cos 4#0%1($~)] = 0, 2 sin &,R,( 4,) = 0, 08) 

or if the two real parts are zero, 

~0s f+O&(JIo) - 2 sin2f#0Rk-,(+o) = 0, %+,(40) = 0. (19) 

Solutions to (18) other than sin&, = 0 (f(z) was already found positive at z = l), require &(#a) = 
~~-,($a) = 0 and imply that Dk(z) has a UC zeros at z = ej$o, against the regularity assumption. Next, 
setting (19) into f(ej+O) gives 

f(ej+o) = + + cos~~oR,-,(~o) = 1 + c0s’al > 0 
R&o) 2 2 sin2$Jo . 

Thus f(z) takes positive real values at solutions to (19). 
So, we have shown that as z traverses the unit circle C, f(z) does not encircle the origin. Applying the 

argument principle, Dk+l(~) has as many IUC zeros as zD,(z), namely (~~+r = ok + 1. 
The proof of part (b) uses, instead of (17), the quotient 

and proceeds similarly. First, by assumption, g(l) is real and negative. Then, for z E C, 

g(ej+) = COS tGR,k(#) + 2 sb21rCIRk-~(G) +j sin S[ -Rk(#) +2 COS +rl/Rk-I(#)] 

Rk+l(#) +j 2 sh-~ !IJ/%(#) 

The two imaginary parts cannot be simultaneously zeros for that would imply a UC zero of Dk(z). The 
two real parts may become zero at values of Jlo for which 

g(ejh) = - $ _ cos2~J/, 
2 sin2Q$bo 

< 0. 

Since g(z) takes on C either complex or real negative values, it cannot encircle the origin as z traverses C. 
Therefore Dk+l(~) has as many IUC zeros as Dk(z), CQ+~ = 0~~ or yk+r = yk + 1. 

4. Computational complexity 

The stability test for complex polynomials can be carried out by only real arithmetics. Let { &(z)}$~~ 
and { Ak(~)}z=O be the sequences of real symmetric and real antisymmetric polynomials resulting from 
the decomposition (5) of each conjugate symmetric Tk(z). The stability test can be equivalently accom- 
plished by simultaneously propagating the following interlacing pair of recursions: 

s,(z) = 63z + l)S/Jz) +sgz - 1)44(Z) -&4(z), (204 

AJZ) = BF(z + l)Akel(Z) -S:.(z - l)S,-,(a) -zA,-z(z), (2Ob) 

where SF and S: are the real and imaginary pats of 6,. 
The test starts with Sk(z) and AA-(z) found for k = n, n - 1 from (lo), then performs (20) for 

k=n, n-l,... ,2. The zeros distribution is given by Theorem 6 with 

a, = S,(l). (21) 

Two variations on the .derivation of the sequence for the sign-variation rule are possible. Setting z = i into 
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(20a) or (lla) shows that, starting with a,,, u ,,-,, the rest of the sequence can be found by 

ok-2 = 26,Ra,-, - ok, k=n,. . . ,2. (22) 

Alternatively, since the sign rule (16) is insensitive to a common scaling factor, uk can be replaced with 
ak = a,/~, calculated successively by 

6, = #‘%,-, - a,-,, k=l,. . . ,n, (23) 

starting with $ = 1 and 8-i := 0. 
The calculation of each coefficient of a polynomial Tk(z) requires 4 (real) multiplications and 8 (real) 

additions but it is sufficient to find only one half of the coefficients, employing the involved symmetry 
properties. The computation complexity is consequently M,, = O(n2) multiplications and A,, = O(2n2) 
additions. (We use here f = O(an’) to mean ( f/n2) + (Y for large n.) 

The Schur-Cohn test for complex polynomials can be performed (at best, after dropping normalization 
factors which are not necessary in the context of a stability test) in 4 multiplications and 4 additions per 
coefficient, but all the coefficients of all the polynomials have to be computed, resulting with a total of 
M,, = O(2n2) and A, = O(2n2). Similarly, the Jury-Marden stability table for complex polynomials, that is 
based on this formulation and appears in general in versions that require O(4n2) multiplications and 
O(3n2) additions [6,9], can also be adjusted to attain the values M, and A,. So, both in its complex and in 
its real forms, by comparison to the classical formulation, the new formulation involves half the number of 
entries, requires approximately half the number of multiplications, but the same number of additions. 

5. Singular cases 

The recursion (11) encounters a singularity when a q-,(z) with c- i (0) = 0 occurs. 

T,(z) = (4, + ~n4Lb) -zT,-2(4* 

T,+,(z) = @s+, + ~,+,4u+zL,(4. 
We already know from Theorem 6 that singular cases indicate that not all the zeros are inside the unit 

circle (but not vice versa). Following [l] we classify the singular cases into two classes; the case when 
T,-,(z)= 0 is called a singularity of the first type, and the case when r,-,(O)= 0 but T,-,(z) is not 
identically zero is called a singularity of the second type. 

Singularities of the first type 

If Ts-i(z)= 0 then (24) shows that T,(z) is a factor of all preceding polynomials q+,(z), . . . , T,(z) 
and consequently it is also a factor of all Dk(z), k = s, s + 1, . . . , n, defined in (14). Therefore D,,(z) has 
(the zeros of T,(z) as) s UC and RP zeros. Conversely, if D,,(z) has a total of s UC or RP zeros then they 
are zeros of T,(z) and T,-,(z) and (24) shows that they are common factor of all subsequent Tk(z) till 
T,-,(z) that must then be identically zero (its degree s - 1 cannot accommodate s zeros). This establishes 
an ‘if and only if relation between the first-type singularity and D,,(z) having UC or RP zeros. It also 
justifies the first statement in Theorem 5. Note that regarding (zr, 2;‘) rather than (z,, z;‘) as a 
reciprocal pair of zeros is the only difference from [l] of the current characterization of the first-type 
singularity. 
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The treatment of first-type singularities: Choose the remaining s symmetric polynomials to be the 
polynomials derived by (10) and (11) for 

where K is any scaling factor that arranges D,-,(l) to be real and of sign opposite to T,(l). 

‘f’heorem 7. Following a first-type singularity by the above procedure, the number of IUC zeros is given by 
a,, = n - v,, where v,, is given by (16). The number of UC zeros is R,, = 2vs - s where 

v,=Var{q,, a, -I,..., q)}. (26) 

The number of reciprocal pairs is s - v,. 

The proof follows from a theorem due to Cohn [3; 2, Theorem (45,2)], and from the previously 
established properties of the regular recursion (cf. [l, Theorem 4.31). 

Singularities of the second type 

A second-type singularity is not specific to any special pattern of zeros position (except that it implies 
OUC zeros). As it turns out the procedure offered in [l] and its proof there are valid without any change of 
requirements also for conjugate reciprocal and conjugate symmetric polynomials. We shall repeat the 
procedure here for the completeness of the current presentation. 

The treatment of second-type singularities: Resume the recursion after replacing T,(z) and T,-,(z) by 

T,(z)+(z-l)T,-l(z)[z~-z-~] (274 

and 

r,-,(z)[K+~~+z-~], K>2, (2-J 

respectively, where q is the number of zeros of T,(z) at z = 0 and K is an arbitrary (> 2) real constant. 

Theorem 8 (cf. [l, Theorem 4.41). Following second-type singularities by the above procedure, the.number of 
IUC zeros is given by n - v,,, where v is given by (16). If a first-type singularity is not apparent anywhere in 
the sequence of n + 1 polynomials, the number of OUC zeros is v (or “Theorem 6 holds”). If a first-type 
singularity does occur then, regardless of second-type singularity procedures, the number of UC, OUC and RP 
zeros is still given by Theorem 7. 

Remark 4. Each of the two types of singularities may occur more than once. The first type will recur if (and 
only if) D,,(z) has UC or RP zeros in multiplicity higher than one (the derivation in (26) lowers UC and 
RP multiplicities by one). Singularities of the second type may occur and recur haphazardly. A remarkable 
feature of the replacement (27) is that it leaves UC and RP zeros unchanged. Since the flow of such zeros 
through the recursion is unaffected, if D,,(z) has such zeros, their factor in D,,(z) is correctly identified and 
they are correctly counted even in the presence of second-type singularities. 

Appendix 

Proof of Theorem 3. Write P,(z) as 

P,,(z)= kpizi, pi=ai+jbi. 
i-0 

(A.11 
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If P,,(z) is symmetric, P,,-~ =pi, and the balanced polynomial becomes for z = ej$, 

P,,(ej+) = ( a0 - jb,) eja+/2 + ( a0 + jb,) e-jn+12 
+ (a, - jb,) ej(~~-2)#/2 + (a, + jb,) e-j(Jt-2)$/2 + . . . 

=2a,cos~nrC,=2b,sin~n~+2a1 cosi(n-2)#+26, sini(n-2)#+ a+* 

which is real. 
If P,,(z) is antisymmetric, P,,-~ = -iji, and for z E C the balanced polynomial becomes 

j”((ej$) = (-a, + jb,) ej”$j2 + (a0 + jb,) e-j”$/2 

+(-a, +jb,) e j(rJ-2)+/2 + (al + jb,) e-j(n-2)+/2 + . . . 

=j{2b,cos~n~+2a0sin~n~+2b, cos$(n-2)#+2a, sin$(n-2)#+ .a*}, 

a purely imaginary expression. 
To prove the converse, the balanced polynomial of a polynomial P,,(z) that is given by (A.l) takes OI 

the form 

kW= {(P~+P,,) cosfn~+(p,+p,,~,)cos~(n-2)~+ a-*} 

+j{(-po+p,,) sin$nJ,+(-p,.+p,,-,) sinf(n-2)#+ .*e}. 

If P,(z) satisfies (8a) then 

ijn(ej+) -S,,(ej+) = 2 Im ij,(ej+) = 0 

with 

F”(ej+)= {(j,+j&) cos&lrl/+(pl+p,,~,)cos~(n-2)~+ -} 

+j{(-&+F,)sin$n#+(-ji,+j,,-,)sinf(n-2)#+.**}. 

Therefore 

0 = ij,(ej+) -Jn(ej+) 

= {[po+pn-j&-is,] cosfnJI+[p,+p,-,-p,-p,-,] cosf(n-2)++ *a*} 

+j{[-po+pn-iSo+j3,]sinfnll/+[-pl+p,,-1-~1+P,,-,] sinf(n-2)#+ .*a}. 

The last equality holds for any # E [0, 2n] if and only if pi =ijnmi, i = 1, . . . , n, or iff P,(z) is symmetric. 
Assume next that (8b) holds for P,(z). Then 

j,, (ej+) - J,, (ej$) = 2 Re p,,, (ej#) = 0 

implies 

O={[p,+p,+p,ip,]cosjnll,+[p,+p,,~,+~,+p,,~,]cosf(n-2)rC,+ -*} 

+j{[-~o+~n+%-FJ sinfn~+[-~~+p,_,+ti,-J~_,] sin$(n-2)#+ ...} 

which holds for all # iff pi = -jnei, i = 1, . . . , n, that is, iff P,,(z) is antisymmetric. 
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