442

when written into a memory will result in a maximum of M
logical transitions, hence providing an M fold reduction in power
dissipation.

The orthogonal technique also provides a speed advantage
compared to using conventional memories for multiplexing or
demultiplexing. A possible approach in using conventional mem-
ories is to write into the memory as described in Fig. 2 and read
from the memory via the normal outputs. In order to read the
information contained in one column, the memory would have to
be read M times for each column and only one out of N bits
would be used from each read operation. Reading the entire
memory would require N X M read operations vs only N read
operations for the orthogonal RAM. For 8 bits of voice and 8
bits of data M =16, giving the orthogonal RAM a 16:1 speed
advantage.

It can be concluded from the above discussion that architec-
tural designs employing memory structures have a significant
advantage in density, power dissipation, and speed-density prod-
uct.

CHiP DESIGN AND SIMULATION

The chip was designed hierarchically, with heavy emphasis on
computer simulation. The chip design employs over 25 cell types,
each customized electrically and topologically to optimize perfor-
mance and area utilization. Each cell was simulated at a circuit
level using the SPICE circuit simulation program. The architec-
tural design was simulated on the Daisy Logician Workstation
from a schematic entry. The layout was performed on the Calma
Graphic System. In order to validate the design, the circuitry was
extracted from the chip layout and compared to the netlist used
in Daisy Logic simulator.

CONCLUSION

A new type of memory array has been described which can
provide time—division multiplexing and demultiplexing with a
regular and compact structure. The memory performs storage as
well as serial-to-parallel or parallel-to-serial conversion. This is
achieved by reading the RAM in an orthogonal direction to the
write operation. By combining this RAM with a high-speed
transmission media (i.e., optical fiber), many channels can be
communicated over a single line. Due to its regular structure, this
technique lends itself to efficient VLSI implementation and to
redundancy techniques used with the regular structures of mem-
ory arrays.
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Stability Criterion for Continuous-Time System
Polynomials with Uncertain Complex Coefficients

YUVAL BISTRITZ

Abstract —Let a polynomial P, (s)= p,+ p;s+ --- + p,s" have coef-
ficients p; = a, + jb, that may vary, or only known to be, in intervals

a; < a; < a;,b; <b; <b,. Kharitonov’s criterion asserts that P, (s) has all
its zeros in the left half of the complex plane (is Hurwitz) for all admissible
values of the coefficients, if, and only if, some well-defined 8 complex
fixed coefficient polynomials are Hurwitz. When the uncertain polynomial
is real the criterion involves only four fixed real polynomials. We restate
and give a simple proof for Kharitonov’s criterion for both real and
complex polynomials. Our derivation is based on evaluation of complex
rational lossless positive real functions and their relation to Hurwitz

polynomials.

I. INTRODUCTION

Systems designs are based on mathematical models whose
exact parameters are known only approximately or are subject to
variations from their nominal values. The possibility arises that
certain polynomials designed to have zeros in the stability region
—the left half of the complex plane for continuous-time systems
—may actually have coefficients in some interval around their
assumed values. Consequently, it is of interest to have a robust
stability criterion, one that guarantees stability (zeros in the left
half of the complex plane) for all expected variations of the
coefficients within assumed intervals of uncertainty. We shall
refer to a polynomial whose zeros are all in the open left half of
complex plane as Hurwitz polynomial (the term “strictly Hurwitz”
is sometimes used for this case to emphasize that zeros on the
imaginary axis are excluded)

The Robust Stability Problem

Given the infinite family of polynomials,

8= ()6 = £ (a0 8)s' 0 <10

i=0
b,E[b,,B,]‘i=1,~--,n} (1)

find conditions under which A, is a subset of $”, the set of all
Hurwitz polynomials of degree n.

Kharitonov gave a simple criterion to solve this problem. For
real polynomials the necessary and sufficient condition for A, C
S is equivalent to the stability of 4 deterministic (fixed coeffi-
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cient) polynomials {1]. Complex polynomials require the inspect-
ion of 8 deterministic polynomials whose coefficients are com-
posed from the boundary values a;, a@,, b, and b, [2]. ([2] is
available only in Russian, [1] has Enghsh translauon).
Kharitonov’s theorem for real polynomial caught the attention of
additional researchers who suggested alternative derivations, re-
lated forms, or applications {6]-[10]. The complex version of the
criterion was not tackled with similar attention. Naturally, the
derivation of Kharitonov’s theorem for complex polynomials is
slightly more complicated. In contrast to the real case, Hurwitz
conditions for complex polynomials are less known and not as
well supported by closely related and well-established mathemati-
cal theory of networks and systems. Furthermore, (and as also
experienced by the author), the paper in which Kharitonov
extends his interesting criterion to complex polynomials [2], and
this may have escaped the notice of many researchers for whom it
is relatively inaccessible and the Russian text presents a language
obstacle. The original intention of the author in this research was
to bring forth an extension of Kharitonov’s (real) criterion to
complex polynomials and deduce an alternative and simple proof
for the real case. While being aware of {2], the emphasis of this
paper is in providing an alternative and simple derivation for
Kharitonov’s theorem for both the complex and the real cases.

Our approach is based on extensions to complex polynomials
of certain properties associated with Hurwitz polynomials that
are well known for the real case in the context of passive network
theory [3], [4]. First, in Section II, we define and characterize
lossless positive real (LPR) complex rational functions. Next, in
Section III, we associate them with (complex) Hurwitz polynomi-
als. Based on these mathematical preliminaries, Kharitonov’s
stability criterion for uncertain complex polynomials is derived in
Section IV. This last section also considers the special form of the
criterion for real polynomials.

IL

We consider the division of the complex plane into two (left
and right) halves and denote the left and right half oper domains
and their (common) boundary, respectively, by

LOSSLESS POSITIVE REAL FUNCTIONS

LHP = {s|Res <0} (2a)
RHP = {s[Res >0} (2b)
Ti={s|s=jw, w€[—00,00]}. (2¢)

Definition 1: A function F(s) is positive real (PR, in the right
half plane) if:

(a) F(s) is analytic in RHP, and
(b) Re F(s)> 0 in RHP.

The definition extends an identical term used in classma]
network theory as a synonym to immittance functions, by drop-
ping the extra requirement on F(s) to be real for real s. The
extended definition requires a careful revision of the properties of
PR functions. Subsequently, we characterize the class of (com-
plex) PR functions and its important subclass of lossless PR
functions (to be defined below) in a series of comments mainly
that emphasize those points that will be utilized later. Usually,
these extended features can be proven by reasonings that are
similar, or only slightly modify, proofs for corresponding real
properties. A possibly resulting slightly casual approach to proofs
in the sequel should not reflect on the credibility of the state-
ments; fully detailed proofs can always be completed using the
provided remarks and following the outlines of proofs for the real
form of these properties as available in mathematical texts on
network theory (e.g., [3], [4]).
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Remarks

(1) It follows from the maximum modulus principle for Re F(s)
asserts that Re F(s) = 0 is possible only for Res =0 (the
imaginary axis, IA) or at s =o0. More precisely, Re F(s)
takes its minimum on the boundary T of the RHP (e.g,, {3],
(4D,

Clearly, if F(s)is PR then F~!(s)is PR and rF(s) is PR
for a real and positive scalar r. Furthermore, if F(s) is
another PR function, then F(s)+ F(s) is also PR.

Poles of a PR function on T, if any, must be simple and
with positive residues. A proof of this property for the
complex case is essentially the same as for the real case
(e.g., [4D).

If F(s) is a rational function, Re F(s) > 0 in the RHP is a
sufficient definition for its positive realness. (Analyticity
follows by properties of harmonic functions.)

@

~

3

C

For subsequent purposes we may consider only rational func-
tions of finite degree n, F, (s). It follows from Remark 4) that the
two polynomials that compose a PR rational function of degree 7
miust both have degree n or degree » and n —1 because a greater
than 1 difference in degrees would imply pole at infinity of
multiplicity greater than 1 for F,(s) or its inverse. Our interest
will focus on lossless PR functions, a special subclass of finite
rational PR functions.

Definition 2: A rational function L,(s) is Lossless Positive
Real (LPR) if:

(a) L,(s)is PR, and
(b) L,(s) has all its zeros and poles on T.

Remarks

(5) If L,(s) is LPR and r is a real positive scalar then L, '(s)
and rL,(s) are LPR of the same degree. If L, (s) is
another LPR function then L,(s)+ L, (s) is also a LPR
function (of degree < m + n).

L, (s) is LPR if, and only if,

ReL,(s)>0in RHP and Re L, (s) < 0in LHP.

(Re L, (s) =0 on T, though superfluous, can also be added
to this characterization.) The statement can be proven as
follows. Assume that the above property holds, then, by
Remark 4), L,(s)is PR (in the RHP) and “negative real”
(e, — L,(s) is positive real) in the LHP. Therefore, L, (s)
is analytic in both the LHP and the RHP hence its pole%
are confined to I'. Repeating the last argument for L, '(s)
reveals that its zeros must be on T too. This proves that
L,(s) is LPR. Conversely, if L,(s) is LPR its zeros and
poles are confined to I' and, therefore it is analytic in both
(open) half planes. Since the real part of a function ana-
lytic in an open domain takes its extremum values on the
boundary (cf. Remark 1), the real part of L, (s) maintains
a constant sign in each of the two open half planes. The
sign has to be positive in the RHP and of opposite sign in
the LHP.
Lemma 1: L,(s)is LPR if, and only if,

(6

=

4 IO
L =jr,+ + -+ 3
n(s) Jh ngwl S_jwn ( )

where 7, is a real number and the residues are real and positive,
r,>0, i=1,-+-,n. In wording, L,(s) if LPR, if, and only if,

(i) The poles of L,(s) are simple and on T

(i) Their residues are positive.

Proof: 1f L,(s) is LPR then by Definition 2, part (b), all its
poles are on T. Part (a) of the same definition and Remark 3)
imply (i) and (ii). For the converse, if (3) holds then, since each
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term in the sum is a PR function with zeros and poles on T their
sum L,(s) is LPR by Remark 5).
Remarks
(7) L,(s) may have a zero at oo in which case r, = 0 in (3) (1,

may otherwise take any real value). L,(s) may have a

pole at co in which case a term, say the nth term, takes

the form #,s. Note however, that in the complex case, in
contrast to the real case, it is not necessary for a LPR

L, (s) to have a zero or a pole at infinity or at zero. (See

also Remark 11) in the sequel.)

The partial fraction expansion (3) can be viewed as the

extension to complex polynomials of a form known in

network theory as Foster’s expansion for LC functions

[3}, [4].

A LPR L,(s) can alternatively be characterized by its

zeros and poles. L, (s) is LPR if, and only if, its zeros and

poles are simple, located on T, they interlace, and the
residue at one of the poles (or the real part at any RHP
point) is positive.! This theorem is less known for com-
plex polynomials than for the real case, although a proof
of the above generalization is not more difficult than its
real special form. In contrast to the real case, in the
complex case it is not required that the zeros and poles of

L,(s) appear in pairs + jw,, nor is it necessary that

L, (s) have a zero or pole at s =0 or a zero or pole at

§=00.

(10) After establishing the relation of LPR functions and
Hurwitz polynomials (in Lemma 4), we shall base our
derivation of Kharitonov’s criterion on the positivity of
the residues of the LPR functions associated with the
family A,. Kharitonov’s derivations in [1] and [2] are
based on the characterization in Remark 9).2 Thus rather
than employing arguments on the variation of zeros,
constrained to T, for varying polynomial coefficients, we
shall be able to use more transparent convexity relations
between the change of coefficients and retention of posi-
tivity of the residues.

@8

o

©

~

III. HURWITZ POLYNOMIALS

Consider a complex polynomial

ho(s)= X his'  hy=a;+jb,  h,#0. (4
i=0
It can always be decomposed as
1 1
hn(s) = 5,(5) + 30,(s) s)

where

e,(s) =h,(s)+h;(s)  o0,(s)=h,(s)—h}(s) (6a)
with /¥ (s) denoting the (conjugate) reciprocal polynomial,

B (s) =, (~s*)* =hg —hfs+ - +h3(~5)" (6b)

and * denoting complex conjugate. We note that e, (s) is even
and o,(s) is odd, that is,

e(s) =e,(s)  of(s)==0,(s). (N

1Zeros on T that are simple and interlacing admit both lossless positive real
as well as lossless negative real function. Consequently, they characterize
polynomials 4,(s), see Section III whose zeros are all in the LHP or the RHP.
The extra positivity condition is thus crucial as it sharpens the correspondence
to only LPR and Hurwitz polynomials. In the real case the extra condition can
be chosen to be positivity of the ratio of the leading coefficients of the
numerator and the denominator polynomials.

2The extra positivity condition discussed in Remark 9 and the previous
footnote seems to be overlooked in [1], (2], and [10].
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The following Lemma relates Hurwitz polynomials and LPR
functions.

Lemma 2: The polynomial h,(s) is Hurwitz (all its zeros are
in LHP, (2a)) if, and only if, the ratio of its odd part divided by
its even part, forms a LPR rational function of degree n.

Proof: Define

o,(5) k3 (s)
= = 8
m() =705 W) =3 (8)
and observe that they are related by the Cayley transform
1-¢,(s) 1-p,(s)
=17 = . 9
Ty S B A e O R

It is well known that the underling bilinear transformation maps
RHP (LHP) and the interior (exterior) of the unit circle one onto
the other. Assume 4, (s) =II(s +s;) and 5, =0, + jw,; then

—s+s*

b, () =TTe(s) ) =—-
i=1

s+,

where s=0+ jw. Checking the magnitudes |¢§(s)|* reveals
that ¢{7 are greater than, equal, or less than 1 iff oo, are
positive, zero or negative, respectively. Therefore, by Remark 6,
p,(s) is LPR iff all o, > 0.

We associate to a complex polynomial 4, (s) (4), a pair of real
polynomials { f, (w), g,(w)} such that along s = jw,

h(jo) = f,(w)+ jg,(w). (10)
Comparison with the decomposition (5) reveals that
H)=5600)  sg(e)=500e). (D

Conversely, the pair of real polynomials f,(w), g,(w), define a
complex polynomial k,(s) by the continuation of (10) to the
entire plane, that is by the substitution

h(s) =1,(s/i)+ jg.(s/J)- (12)

The coefficients of f,(w) and g,(w) are, therefore, related to the
real and imaginary parts of the coefficients 4, (s) in the follow-
ing manner:

n
f(w)=Y fiw=a,—bw—aw’ +bw +aw —---
i=0

(13a)

n
g (w)=3 g.0=by+aw—buw’ —ayw +bw+ .
i=0
(13b)

The pattern indicated in (13a) and (13b) is as follows: a, and b,
alternate, - - - a,, b,,1,4,,,,b;.5,-*+; with two plus and two
minus signs period, -+ ++——++—— -,

Definition 3: We shall say that a pair of real polynomials
{fu(w), g,(w)} is a stable pair, if it corresponds, via (12), to a
Hurwitz polynomial.

Necessary and sufficient conditions for the pair { £, (), g,(w)}
to be stable can be drawn from combining Lemma 1 with Lemma
2. For this, we define

w 1
) n o)

and deduce from Lemmas 1 and 2 the next lemma.

R, (w)= (14)
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Lemma 3: The pair {f,(w),g,(w)} is stable if and only if
R, (w) has a partial fraction expansion
w
8. (w) o
fi(w)
with real (arbitrary) r, and positive residues r/ >0, i =1,---,n.

Equivalently (by Remark 5), the pair { f,(w), g,(w)} is stable if
and only if

't (150
e - a
+ W),

—w

R, (0) = —w+
1

” Z
n n

=ttt (15b)

—w+ w -+

£, (@)
g.(w)

with real (arbitrary) r§’ and positive residues /" > 0, i =1, -
Remark
(11) Some modifications occur in (15) if either f,, or g,, are
equal to zero. (They can not be both zeros if h,(s) is
assumed to be of full degree). f,,=0 corresponds to
R,(w) having a pole at oo and R} !(w) having there a
zero. In this case, one of the partial fractions in (15a), say
the last, is replaced by r/w and

, gnn , gn,nfl fn,n72gn.n
= M=
fn,n-—l fn.n*l fn‘nfl
Similarly, g, , =0 corresponds to R, '(w) having a pole
at o and R, (w) having there a zero. In this case (say) the
last partial fraction in (15b) is replaced by »,’w and
gnn fn.n~l _ gn,n—Zf;t,n
" fann 8n—1 83.%1 '
Recalling Remark 7, a stable pair need not necessarily
have either of the above two forms. When g,(w) and
f.(w) both have full degrees, the partial fractions are
exactly as written in (15) with nonzero
L S Jan
0 fn,n ’ gn,n .

We shall need some more explicit expressions for the
residues r,. For this we denote

fi(@)

,
-0+ wi|w=m:

R;'(w) =

S, n.

>0, rg=0,

>0,

[ -
=0, r=

(16)

[
ry =

&, (16a)
g.(w)

_ 7t :
w+ w; |w=w[’

v = (16b)

where ¢,, v, # 0 but otherwise may be either positive or
negative. The residues in (15a) and (15b) are then given

by
w’
r,'=g"( ’), i=1,---,n (17a)
®;
wll
r,-”=f"( '), i=1,---,n. (17b)
‘YI

IV. RoOBUST STABILITY CRITERIA

Consider now A, the family of polynomials (1) in the robust
stability problem stated in Section I. If 4, (s) € A, then the range
of admissible values of the coefficients of #,(s) induce admissi-
ble ranges on the values of f,(w) and g,(w), say

Fui € [ fuir fud]
8 € | 8uir Bni]»

(18a)

i=0,1,---,n. (18b)
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The limits of these intervals can be determined from (13)

foo€la0,80]. 10 € [—7)1,—L)l],f,,ze[—ﬁz,-gz],etc.
(19a)

80 € [!’0’770] gn€la,a],g.0 € [_BZv"bz]’etC- (19b)

We now define four boundary polynomials, G, («), Gl (w),
G; (w), and G, (w), for the family of admissible polynomials
£,(s). The first two are defined by

™=

G (@)= 2 gue (20a)
i=0

6"+ (w) = Z gnlw, (20b)
i=0

and we immediately observe that if w}, > 0 then for all admissible
8ni €180 8nid

Gy (wp) < g (wi) <G (). (2
The second two polynomials are defined by

Q,T (w) = gnO + gnlw +§n2w2 + gnSwS t+ {gmi even, gnii Odd}

(22a)
G, (@) =8, 0+ 8uw+ 820" + g0’ + - { g, even, g,,i 0odd}
(22b)
and it is then seen that for gu} < 0 and all admissible g,,,
G, (- w}) <8 (@f) <Gy (—af). (23)

Similarly, we define for the family of admissible polynomials

f,(w), four boundary polynomial, F," (@), F (w), F,” (w), and
I?,,' (w). The first two are defined by

E(w)= Y fu« (242)
i=0
p— " - .
Fi(w)= 2 fu¢ (24b)
i=0
and satisfy for w > 0, and all admissible f,, € [ £, f,.,
EF (o)) <folwf) <E (o}). (25)

The last two boundary polynomials are defined by

E («)=f0 + faw +f"2w2 + [0+ {_fm.i even, f,i odd}
(26a)

F(w) =1, + fa® + £ ,0? +_fn3w3 o {fmi even, f,.i odd}
(26b)

and they satisfy for w}’ <0, and all admissible values of f,,, the
inequalities

E (=) <f(wf) <F (- ). (27)
Lemma 4:
(a) If the two pairs of polynomials
{£,(0),G7 (@)}, {fu(«).G/(«)} (28)

are stable then R, (w) has positive residues r{ > 0 at the
positive zeros, w), > 0, of (the fixed) f, (), for all admis-

sible {g,(w)}.
(b) If the two pairs of polynomials

(E7(0),8,(w)}, {E (0).8(e)} (29
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are stable then R; !(w) has positive residues r{’ >0 at
the positive zeros, w} > 0, of (the fixed) g, (w) for all
admissible { f,(w)}.

(¢) If the two pairs of polynomials

{7(0).G (@)}, {£(«).G (@)} (30)

are stable then R, (w) has positive residues r; > 0 at the
negative zeros, wj <0, of (the fixed) f,(w), for all
admissible {g,(w)}.

If the two pairs of polynomials

{E (0).8.(0)}, {E (@).8(e)} (1)

are stable then R} !(w) has positive residues r;’ > 0 at
the negative zeros, w} <0, of (the fixed) g,(w) for all
admissible { f,(w)}.

Proof: We prove (a) using (21) and (17a) as follows. If
¢, >0 then r/>r/" =G (w})/¢, by the left side inequality in
(21), while if ¢, <0 then r/>7 " =G} (w,)/¢, by the right
side inequality in (21). In both situations, r{> 0 because r/*,
7{' > 0 by the stability assumption on the pairs in (28).

To prove (b) we use (25) and (17b) to observe that

rert=E(ef) /7> 0

d

=

ify,>0
P =B () /%> 0
Similarly, (c) is obtained from (23) and (17a)

if v, <0.

Her =G (—w)/$,>0 if ¢, <0

K>FT =G, (~w)/6>0  if ¢, >0.
Finally, (d) is seen from

e r’=E (=el)/v%>0 ify>0

K> =E (-e)/%>0  ify <0

using (27) and (17b).

A criterion for the robust stability problem posed in Section I
can now be obtained from the next couple of observations.

Observation 1. If the four pairs of polynomials of (28) and (30)
are stable then, by the conditions on (15a) in Lemma 3,
{ f,(w), g,(w)} is stable for f, (w) and all admissible {g,(s)}.

Observation 2. 1f the four pair of polynomials in (29) and (31)
are stable then, by the conditions on (15b) in Lemma 3,
{fi(w), g,(w)} is stable for g,(w) and all admissible { f,(w)}.

Taking for the fixed polynomial in Observation 1, the four
boundary polynomials F* (w), F," (w), F,” (w) and F, (w), and
for the fixed polynomial in Observation 2, the four boundary
polynomials G} (w), G, (w), G, (w) and G, () yields im-
mediately

Theorem 1. A necessary and sufficient condition for all poly-
nomials in the infinite family of polynomials A, (1), to be stable,

A, c §", is that all pairs { f,(w), g,(w)}, with f,(w) taken from
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the set

{E"(«),E (@), E (@), F, ()} (322)
and g,(w) taken from the set

{G (©),G/ («).G, (©).G, (@)} (32b)

are stable.

This (preliminary) version of Kharitonov’s criterion, requires
the inspection of 16 polynomials. However, it is possible to
decide whether A, C S” from a lower number of deterministic
polynomials. To see this, we return to Lemma 4 and notice that
the conditions there can be grouped in an interesting different
way; Parts (a) and (b) in Lemma 4 can be combined and
rephrased to state that if the four pairs,

{E (), G/ (@)} { £ (0).G (@)},
{E (0),G (0)} (£ («).G («)} (33)

are stable then the “lossless behavior” is guaranteed for w > 0,
for all admissible pairs { f,(w), g,(w)}. Here, “lossless behavior”
is taken to mean real, simple poles with positive residues of
R, (w) or its inverse. Similarly, the combination of parts (c) and
(d) in Lemma 4 implies that if the four pairs,

{F (0,6, (o)}, { £ ()., (@)},
{E ().G ()}.{E («).G, («)} (39)

are stable then the “lossless behavior” is guaranteed for w <0,
for all admissible pairs { f,(®), g,(w)}. It remains to show that
the stability of the eight pairs of polynomials in (33) and (34) is a
sufficient condition for A, C S” (they are trivially also necessary,
see Remark 11 in the sequel) and can replace the 16 pairs in
Theorem 1. This can be seen as follows. Since R, (w) corre-
sponds via (14) to p,(s), if it is “lossless” along all we
[~ oo, + 0] then p,(s) is LPR. But, if both (33) and (34) repre-
sent stable pairs then clearly R, (w) is “lossless” along [— 0,0]
and [0, 00]. The “lossless” behavior passes smoothly through the
joint point w =0, since each respective plus and minus super-
scripted two boundary polynomials, G, G,', F,' and F,', take
a common value at w = 0. The other joint point, viewing T’ as a
closed curve, is at infinity, where the two points w = + 00 coin-
cide and if R, (w) has a pole there, the positivity of its residue is
guaranteed either by the limit at + co or — oo. This completes the
proof for the following complex version of Kharitonov’s theorem.

Theorem 2. Necessary and sufficient conditions for all poly-
nomials in the infinite family of polynomials 4, defined in (1),
to be Hurwitz is that the eight pairs in (33) and (34) are stable.
Equivalently, A, < S” if, and only, if, the following 8 polynomi-
als are Hurwitz

H (s) = (@g+ jBo )+ (@ + jbu)s+ (ay + jby)s? + (a3 + jby ) s* + (@4 + jba)s* v -

HP (s) = (do + jbo)+ (a1 + jb)s +(as + jby) s> + (3 + jby)s? + (dg+ jhy)st

HO (5) = (ao+ jbo) + (@ + jby ) s + (a5 + jby ) s + (a3 +jby)s? + (ag+ jby)st+ -

H® ()= (dp + jbo )+ (ar+ jby) s+ (@y + sby ) s> +(@y + jby)s* + (aq + jba)s* + o

(35)

HP (s)=(ao+ J770)+(§1 + ]7’1)-V+(£‘2 + ]bz)x2+(173 + Jb;)sl +(da Jf.li’A)-V4 o

H® (5) = (g + jbo)+ (@ *‘ﬂ;l)s + (a3 JrJ'Ez)-Vz +(¢3 +,/173)53+(‘7a + f!’a)yt koo

H (s) = (a0 + jbo )+ (ay + jby ) s + (dy + jby ) s> + (@3 + jby ) s> + (ag + jby)s* + -

H® (s) = (ao+ jbo)+ (@ + jby)s +(ay+ jby)s* + (a3 + jby ) s> + (aq + jbg)s* - -+
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The equivalence of the eight real pairs in (33) and (34) and the
eight complex polynomials in (35) follows from (10) to (12).

Remarks

(12) We did not comment so far on the necessity that has

been added to the conditions in Theorems 1, 2, and
before that, to related statements. The necessity of the
conditions in each of these cases is trivial because the
problem is formulated such that the boundary poly-
nomials (or pairs) are themselves required to belong to
the stable family.
Without the requirement that the bounds of the uncer-
tainty intervals be attained, the criterion provides (least
restrictive but just) sufficient conditions. Thus in prac-
tice it is important to remember that an indication
that A, is not in S" does not exclude the existence of
tighter bounds on the coefficients with a correspond-
ing subset A, c A, such that &, c §”. Kharitonov’s
theorem can be applied in fact to find maximal vicin-
ity intervals around nominal coefficient values of a
(complex or real) Hurwitz polynomial such that the
corresponding family of polynomials A, is in S§”
[51-19).

In considering the use of the robust stability criterion of
Theorem 2, one immediately thinks of testing the stability of
each of the deterministic complex polynomials by an ap-
propriate test. Appropriate tests are the (complex) continued
fraction expansion test of Frank [11] and Routh table type
tests [12], [13]. By a formulation due to Bilharz [13], the
stability test of a complex polynomial of degree n can be
carried out by examining a Routh table for a real polynomial
of degree 2n [12]. With a slight modification of the latter
procedure, it can be shown that the initial first and second
rows for each of the 8 modified Routh tables needed for
Kharitonov’s criterion, are given precisely by the coefficient
vectors of the first and second polynomials in the pairs (33)
and (34). Therefore, the robust stability criterion can be carried
out by testing directly the stability of the eight pairs of (33)
and (34) without a further actual formation of the eight poly-
nomials. At the same time, it is important to realize that,
compared to the difficulty of the robust stability problem at
first sight, Kharitonov’s criterion is of merit even if used with
numerical calculation of the zeros of the 8 polynomials. In fact,
with the accessibility of computers (and advance of calculators),
today, this latter approach may be convenient and the most
immediate way of using the criterion in unrepeated applica-
tions (at least for polynomials of not too high degrees).

Finally, we consider Kharitonov’s theorem for special case
of real polynomials. The zeros of a real polynomial are located
in symmetry with respect to the real axis of the complex plane.
Reviewing the line of arguments from Lemma 4 to Theorem 2,
the main changes (simplifications) in the more general deriva-
tion outlined so far would be the dropping everywhere of the
separate consideration of the w <0 cases together with the
corresponding boundary functions that have minus super-
scripts, because positivity of residues (or other “lossless” prop-
erties) for w > 0 induces, by reflection with respect to the real
axis, similar properties also for the lower half plane. Therefore,
in the real case, it is sufficient to require the stability of the
pairs in (33) only, or equivalently, to require only that the first
four polynomials in (35) be Hurwitz. It is noticed also that the
even and odd parts (6) of a real polynomial %, (s) =X/_qa;s'
involve only even and odd powers of s.

m
e,(s)= 02.52” 0,(s) = Z aztﬂsziH (36)
i=0

i

13)

IngE!

0
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where n=2m (and a,,,,;=0) or n=2m+1. Similarly, the
real polynomials f,(w) and g,(w) in the decomposition (10)
have only even and odd powers of w, respectively,

m m
()= £ (Ve )= B () a e
- I=O (37)
Thus the boundary real polynomials that participate in (33)
take now the forms
F () = - gyt + g — ags + -
FE(w)=g,—a,0" +a,0* —ag’+ -+ (38)
G (w) =80~ a0 +350° — g0 + -+
s

G, (@) =agw—a;0° +as0° —a;w+ .

and the criterion for real polynomials becomes
Corollary 1. All the polynomials in the infinite family of real
polynomials
o

A, = {h"(s)]h,,(s) =Y as',a,;€[q;,a,].i
(39)

i=0
are Hurwitz if, and only if, the four pairs in (38) are stable, or
equivalently, if and only if, the following four polynomials are

1,

- Hurwitz:
H,‘,”(s) =ap+ a5+ a8t + 3387 +agst+ ass® + dgs® + g5+ - (401)
H®(s)y=ao+as+ Gys?+ays® Hagst+ Ggs® + st + agsTH e (402)
H,‘,J)(s) =dg+ as+ gzsz + 1_1333 + 5745'4 + (7555 + g6s" + g7.\'7 + o (403)
H® (s)=ay+a;s+ a;st+ Gys® + ayst+ ass® +ags® + Gys T+ (4044)

We obtained Corollary 1 by indicating what should be the main
differences in an independent derivation based on LPR func-
tions. Of course, this corollary can be deduced from the complex
criterion simply by setting everywhere the imaginary parts b, of
the coefficients to zero. It is then clear that (34) repeats (33) when
the boundary polynomials are just (38). Similarly, the last and
first four polynomials in (35) become identical and simplify into
the four in (40).

Numerical Illustration. We illustrate Theorem 2 by a simple
numerical example. Suppose the coefficients of a third-degree
polynomial

3

hy(s) = Z (a,+ jb)s;

i=0
may take values in the following intervals:

a, €[25,36], by € [42,56], a, € [5,8], by €[20,25]
a,€[1,4], b, €[7,10], a, €[0.6,1], b; €[0.7,1.1].

To determine whether /5 (s) is Hurwitz for all the above admissi-
ble coefficients values, one has to test the stability of eight fixed
polynomials which are given for this case, see (35), by

H®P(s) =(36+ j56) +(8+ j20)s +(1+ j7)s? +(0.6+ j1.1)s°
HP(s5) = (36+ ja2)+(5+ j20)s +(1+ j10)s? +(1+ j1.1)s?
HP (s) = (25+ j56) +(8+ j25)s +(4+ j7)s* +(0.6+ jO.7)s*
H®(5) =(25+ j42) +(5+ j25)s +(4+ j10)s> +(1+ j0.7)s*
HO(s) = (36+ j56) +(5+ j25)s +(1+ jT)s* +(1+ j0.7) s
H®(s) =(36+ j42) +(8+ j25)s +(1+ j10)s? +(0.6+ ;j0.7)s’
H{(5) =(25+ j56)+(5+ j20)s +(4+ jT) s> +(1+ j1.1)s°
H®(s) = (25+/42) +(8+4/20) s+ (4+/10) s> +(0.64,1.1) s*.
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Applying an appropriate stability test (or computing the zeros)
for each of these 8 polynomials shows that they are all Hurwitz.
Therefore, h,(s) is Hurwitz for all the admissible variations of its
coefficients.
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The Lyapunov Equation for n-Dimensional
Discrete Systems

P. AGATHOKLIS

Abstract —The necessary and sufficient conditions for the existence of
positive definite solutions to the n-D Lyapunov equation are presented. It
is shown that such an existence is sufficient but not necessary for n-D
stability. Furthermore, the extension from the 2-D to the n-D Lyapunov
equation (n > 3) is discussed and it is shown that some properties of the
2-D Lyapunov equation cannot be extended to the n-D (n > 3) case.

1. INTRODUCTION

The study of stability of multidimensional systems in state-
space description is important for both, the design and imple-
mentation of such systems. An approach to this problem has
been the extension of the Lyapunov equation to the n-dimen-
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sional case. This was first noted in [1] for the n-dimensional
continuous case and extended in [2] to the n-dimensional discrete
case using the n-dimensional bilinear transformation. In [3] both
the necessary and sufficient conditions for the existence of posi-
tive definite solutions to the 2-D Lyapunov equation were devel-
oped based on strictly bounded real functions. These strictly
bounded real conditions were compared with the 2-D stability
conditions and it was shown that they are stronger than the 2-D
stability conditions. This was demonstrated with an example of a
stable 2-D system realization for which no positive definite
solution to the 2-D Lyapunov equation exists.

This paper deals with the extension of these results on the 2-D
Lyapunov equation to the n-D case as indicated in [4]. In Section
II the n-D discrete state-space model is presented and some
results on the 2-D Lyapunov equation are outlined. In Section III
the necessary and sufficient conditions for the existence of posi-
tive definite solutions to the n-D Lyapunov equation are pre-
sented, and it is shown that they are stronger than the n-D
stability condition. Finally, in Section IV some special cases are
discussed and it is shown that some results from 2-D case cannot
be extended to the n-D case.

Notation: U" denotes the closed unit n-disk

U ={(z, . 2)||z) =1z, 1)
T" the distinguished boundary of U"
= {(Zl""»Zn)HZl:l"‘lzn|:1}'

I, the n X n unit matrix, @ the direct sum of matrices and for a
symmetric matrix W, W > 0 indicates that W is positive definite.

II. PRELIMINARIES

Linear shift invariant n-D systems can be represented by a
state-space model of the following form [5], [7]:

(i + 1,05, 00,0,)
xz(il,[z +1,---,1,

xn(il’[27- : .’in +1)

AIl AIZ Am
_ Ay
Anl Ann
xl(ilviz""vin)
x,(iy,iyy i)
Bl
| e ady) (1)
Bn
x (i, eady)
y(iy i, eoyi,) =[C -G (2)
xn(il"”’in)

where x, €R™, j=1,---, n represent the states, # is the input
and y the output. The stability of a n-D system described by
such a model depends on the locations of the zeros of the
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