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ABSTRACT

This paper considers formulas and fast algorithms for the inversion and factoriza-
tion of non-Hermitian Toeplitz and quasi-Toeplitz (QT) matrices (matrices with a
certain “hidden” Toeplitz structure). The results include the following generaliza-
tions: (1) A Schur algorithm that extends to non-Hetrmitian matrices a previous
triangular factorization algorithm for Hermitian QT matrices. (2) A Levinson al-
gorithm that generalizes to non-Hermitian matrices a previous Levinson algorithmn
that finds the triangularly factorized inverses of certain {so-called admissible) QT
matrices. (3) The extension to QT matrices of the Gohberg-Semencul (GS) inversion
formula for non-Hermitian Toeplitz matrices. Next, the paper introduces a new fast
algorithm, called the extended QT factorization algorithm, that overcomes the restric-
tion to admissibility matrices of the above Levinson algorithm. The new algorithm is
efficient and comprehensive; it produces, for a general QT matrix R, of size
{n +1)X(n + 1), the triangularly factorized inverses and the GS type inverses of the
matrix and all its submatrices, as well as the triangular factorization of R, itself, all in
approximately 7n® elementary operations for a non-Hermitian and 3.5x% for a
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78 YUVAL BISTRITZ AND THOMAS KAILATH

Hermitian matrix. The fast algorithms for non-Hermitian QT matrices are shown to be
associated with two discrete transmission lines (which reduce to the familiar single
lattice in the Hermitian case). All the presented algorithms are illustrated and
interpreted in terms of input sequences and flows of signals in the related transmission
line realization.

SUMMARY OF NOTATION

Vectors are denoted by bold lowercase letters and are always associated
with polynomials by the following convention:

m
am = [amﬂiam,l""’am,m]t! am(z) = []"z""’ zm]am= Z am,izi
i=0

where ! denotes transposition. L(a,) is a lower triangular Toeplitz matrix
with first column a_,

Q0
0
L(a,)=| "
am,m Tt am.l am,()

Matrices are denoted by bold uppercase; e.g., R,, is a matrix of size
(m +1)xX(m +1), and is the leading submatrix of R, = [r, ], m<n. T, isa
Toeplitz matrix T,, = [r,_;]. A circumflex  distinguishes variables special to a
Toeplitz matrix; e.g., if a, is the last column of R, then d, is the last
column of T ',

The lower shift and exchange matrices are, respectively,

and are square matrices of size determined by context. Down-shifted vectors
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and reversed matrices, vectors, and polynomials are, respectively,

£y

Jfam=Z"\"m’ Bm=JRmJ’ §m=Jam’ Em(z)=[1!z""’zm]‘5m‘

Complex conjugation is denoted by *, e.g,, R, a%, and a¥ (2} mean
complex conjugation of the entries of the matrix, the vector, and the
coefficients (only) of the polynomial, respectively.

Subscripts within parentheses are used to label matrices, vectors, or
polynomials when the index is not indicative of their (fixed at n) dimension.

For example
Ry Uiy tm(2), m=40,1,...,n,

are of size (n +1)X(n +1), length n +1, and degree n, respectively.

1. INTRODUCTION

The inversion and factorization of matrices of size n takes, in general, of
the order of n® elementary operations (see e.g [12]). Consider a square matrix
of size {(n + 1) X{(n + 1) over the field of complex numbers,

0<i,j<n, =1}, (L.1)

and let R, m =0,...,n, denote the (m + 1) X(m + 1) leading submatrices
of R,. We make the assumption that R, is strongly regular, namely, that all
R_, m=0,1,...,n, are nonsingular. Therefore the two sets of equations

m?

bR, =[0,...,0,D,], R,a,=[0,...,0,D,]" (1.2a,b)

mT—m

have solutions for D,, and

b, = [Bo» brrs--»1]"s 8= [Gmgs@mis---> 11", (1.3)

m

for all m=0,...,n. Clearly b}, and a,, are the last row and last column,
respectively, of R;,!, divided by their common last entry D, ". Furthermore,

m 3

it is not difficult to see that the set of solutions {b,.a,, m=0,1,...,n)}
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yields an upper-lower triangular factorization for R %

R.'=A.D 'B;

1 ayp + 4,19 An0
0 1 o 4y ana
o 0 1 Qo1
0 0 1
1 0 0 0
by 1 0 0
xD, o : : aE (14)
'bu*l,() lbn*ll 1 0
IbnO Ib:n,l bn,nfl 1
in which
D, = diag[1, D,,..., D, ] (1.5)

and the two upper triangular matrices A, and B,, with unit diagonal
elements, have as their (m + 1)th column the vectors a,, and b,,, respectively.

We shall also be interested in lower-upper triangular factorization, with
unit diagonal entries, of R,

Rﬂ = PnD" :i’ (1'6)
which is obviously related to the factorization (1.4) of R, ! by the relations
Pn=Bn_t’ Qn =A;f’ (1‘7)

with D, given by (1.5).

The computational complexity of the inversion and factorization of R,
may be lower than order n® when the matrix has some special structure. It is
known that Toeplitz matrices, which have the form
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can be inverted by fast algorithms that require order n® operations [18, 23,
24, 1, 20, 25]. Toeplitz matrices, in particular Hermitian positive definite
Toeplitz matrices, have been extensively studied by mathematicians and
system theorists, as they appear frequently in many physical models and
engineering problems. Moreover, it has been found that these situations often
give rise to a set of equations that, while not Toeplitz, have a “hidden”
structural proximity to Toeplitz matrices. An important class of such matrices
for which the above factorizations can be carried out in order n® operations is
the class of Hermitian quasi-Toeplitz matrices [16, 17].

In this paper we abandon the requirement of symmetry and consider the
class of non-Hermitian quasi-Toeplitz matrices, which are those that can he
written in the form!

Rn=L(ﬁ(0))Lt(“(0)) _L(G(O))Lt("(m): (1-8)

where, as explained in the Summary of Notation, L(a,) denotes the lower
triangular Toeplitz matrix with first column a . The matrix R, is defined by
four generating vectors

1 1 0 0

_ it Uy, . o) Yo

Yo ™| 1 | Yo =] : | Yo <1 1 | Yo, = | . (1.9)
1I".‘E‘Z)n u()n 1“:"On vOn

This class includes and generalizes the class of non-Hermitian Toeplitz
matrices T, which can be obtained by making the special choice uy, = vy,
and iy, = ¥, to yield

Tn=[0i7,-]= Cp = Ogp, € = Doy (1.10)

An equivalent characterization of quasi-Toeplitz (QT) matrices R, is that
they have displacement A{R,} with rank 2 [15],

- o1 0
A{R,,}:R,,—znﬂnz;:[u(o),v(o)][o _1][u(0),v(0)]t (1.11)

The choice of minus sign in the definition (1.8) is not restrictive in a context of
non-Hermitian matrices. If R, is given by sum of two lower-upper Toeplitz products, the sign of
the third or fourth vector (1.9) can be changed before applying the subsequent theory. The
choice made here is intended to simplify the transitions to the extensively studied Hermitian and
positive definite matrices.
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where Z is the shift matrix defined in the Summary of Notation. This
property of QT matrices is also a constructive way to find whether a matrix
that does not exhibit “Toeplitzness” is nevertheless QT, and if it is, to
determine four vectors that can be used to generate the form (1.8). The
starting point of all the algorithms in this paper will be that R, is given by
(1.8) in terms of four known generating vectors. When the matrix R,
becomes Hermitian, ¢(1.11) implies that A{R,} can equivalently be char-
acterized by having one positive and one negative eigenvalue [17]. In the
non-Hermitian case, A{R, } may have any two (possibly complex) eigenval-
ues.

In this paper we shall present fast algorithms for the triangular factoriza-
tion of R, and R, ! for any strongly regular non-Hermitian QT matrix R .
Our results will include generalizations of the Hermitian Schur and the
Levinson algorithm [17] to non-Hermitian matrices.> We shall show that
these algorithms are intimately related to a pair of transmission lines such as
those shown in Figure 1, rather than to the single lattice arising in the
Hermitian case. While the mathematical derivations will not depend on it,
this (double) lattice description will be useful in providing insight into the
derivation and features of algorithms, as was shown also in the study of
symmetric QT matrices in [13]. We should note that the double lattice
picture had already been introduced at Stanford by S. Rao in connection with
the Schur algorithm for non-Hermitian Toeplitz matrices [19].

The inverse of a Toeplitz matrix is a QT matrix. This result follows from
the property of Toeplitz matrices that their reverse and transpose are equal,
viz.,

T, =JL,J=T", (1.12)
{see Summary of Notation) and from the linear algebra identity [15]
rank{M, — ZM, Z*} = rank{M' - Z'M'Z}. (1.13)

Indeed, Gohberg and Semencul (GS) [11] showed that T, ! can be written as

o
Yy

T = DL{L(bﬂ)L‘(En) - L(ia‘i")L’(Li)")}, (1.14)

n

where i)n and 4, are the first and last (normalized) columns, respectively, of

2We follow the usual distinction between the algorithms, which for a Toeplitz matrix is, for
example, that the Schur algorithm yields the factorization of T,, while the Levinson algorithm
gives the factorization of T L.
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Vin-1) V(n)
Kk, —
gn -
U(n—1) U(n)
Left lattice
Vin-1) V()
f n -
Kn -
Un-1 Uin)
Right lattice

Fic. 1. Transmission lines for the Schur algorithm (Section 2).

T, %, or, equivalently, the vectors that solve (1.2) for the Toeplitz matrix T,,.
(In the above, | denotes down-shifted vectors; see Summary of Notation.)
Does the inverse of a general QT matrix R, (ie. not Toeplitz or its inverse)
belong to this class? In general, A(R ) having rank 2 does not imply that
A(R; ") has rank 2. However, as (1.13) reveals, it does follow that ﬁ;l has
displacement rank 2. Therefore, for any QT matrix R, there exists a
lower-upper GS type inversion formula for R,. We shall derive such a
formula and provide an algorithm to find the vectors it involves. The GS type
inversion algorithm suggests the inversion of any QT matrix in only order n
requirement of storage, rather than in order n? for a triangular decomposi-
tion (1.4).

An interesting property of the class of QT matrices is that any matrix R |
in this class is related to a Toeplitz matrix T, by the following relation, which
extends the notion of Toeplitz congruence (see [5], [16]) to non-Hermitian
matrices:

R,= L(il():n)TnLr(hO:n)! BO:n = ﬁ(()) - i"(0)’ hg. .= Uy — Vioy

(1.15)
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This means that a QT matrix is always “close to” an intrinsic Toeplitz matrix.
In fact this “hidden” matrix T, is a well-defined matrix given by

T,=3{L (@ -9 L{O+%)+ L'(u+v)L ' (u—-v)]. (1.16)

n

Note that this is a Toeplitz matrix, because the product of two lower
triangular Toeplitz matrices, and the inverses of such matrices, are all
Toeplitz. The above relations stem from the identily, used in its symmetric
form already by Schur [21],

= L(a)LY(u) — L(¥)LYv)
=1L(@+¥)L{u—v)+LiL(@a—¥)L(ut+v)
=L@E-9{L (@ -V)L{E+9)+ L'{u+v)L (u—v)} L'(u —v).

In the Hermitian case, h,.,=h¥ ., and (1.15) expresses a congruence
relation between every QT matrix and a Toeplitz matrix [5, 16]. As we shall
see, following [13], this relation provides easily the generalized GS formula.
Furthermore, it also provides some crucial relations between the columns in
the factorizations of R;* and T, ! that, with appropriate interpretation, will
give rise to a “recursive convolution™ algorithm, which in combination with
the Schur algorithm will provide a hybrid comprehensive (extended QT
factorization) algorithm to calculate the lower-upper factorization of the
matrix and the inverses of a general QT matrix, both for the GS form and for
the upper-lower factorization form (1.4).

This paper is exclusively devoted to the factorization and inversion of
quasi-Toeplitz matrices defined by rank two displacement. Ancther measure
of closeness to Toeplitz has been defined in the literature in terms of shifted
difference operators, and fast algorithms for matrices with low rank shifted
differences were considered in [4], [6]-[9). A QT matrix can always be
expressed also as a close to Toeplitz matrix with shifted difference matrix of
rank 2; however, this alternative approach requires in general more com-
plicated lattice structures and is computationally more expensive.

QOutline of Results
First we address the factorization of R, and generalize the Schur al-
gorithm [17] to non-Hermitian QT matrices. We show in Section 2 that the
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Schur algorithm for QT matrices is

_ﬁ(m)(z)— — [ 1 _km_ _Z 0-| _ﬁ(m—l)(z)- (1 173)
_ﬁ(m)(z)_ kugm 1 i kO 1‘ gﬁ(mfl)(z)f
_u(m)(z)_ _ ! _gm- [z 0] -u(m—l)(z)- (1 l'?b)
_U(m}(z)_ g_k"' 1 ”0 luu(m,l)(z)f
5’71* m Vﬂ‘tf i
£, =—otm g, = —2bm (1.17¢,d)
umfl,mfl umfl,mfl

[The above polynomial recursions are equivalent to corresponding vector
recursions for the vectors @,,,, V() Um)> and vy, of their coefficients
according the rule in the Summary if Notation.] We shall refer to the
(complex) parameters of the recursions {k,, £, }, m=1,...,n, as reflection
coefficients. The algorithm is initiated by the polynomials associated with the
four generating vectors (1.9) of R .

The recursions (1.17) can be described by the pair of transmission lines of
Figure 1. If the four generating vectors (1.9) are applied as inputs to these
lattices, then the algorithm produces “on line” the reflection coefficients for
the two lattices, and simultaneously the columns for the factorization (1.6) of
R, appear (within a normalization) as the time responses of the two lattices
along the lower lines of each section of the lattice. More precisely, up to
normalization, @ ,,, and u,,, are the (m +th columns of P, and Q
respectively, in (1.6).

While the generalization of the Schur (R factorization) algorithm is fairly
straightforward once we introduce the displacement representation, the
generalization of the Levinson (R, ! factorization) algorithm is more com-
plicated. This was already seen in the Hermitian case in [17], where it was
also shown that a certain socalled admissibility constraint on the generators
of R, led to an algorithm of essentially the same form as the classical
Levinson algorithm for Toeplitz matrices. The admissibility constraint is that
the four generating vectors (1.9) can be related as

n*

um)(z) =1+ aovm)(z), (1.18a)

ﬁ(0)( z)=1+ Boﬁ(())( z). (1.18b)

Such constraints arise, for example, in reflection seismology, when the
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upgoing wave suffers only a partial reflection at the surface (complete
reflection leads to the Toeplitz case). For simplicity we first consider the

admissible case and show in Section 3 that the generalized Levinson al-
gorithm has the form

L
a,(z) —¢,, 1 0 1l|le, (2)]
ap(z) =1, ay(z)=a, (1.19a)
oIS S il P
Bu(2)] [~k 1 J[O 1|8, (2)]
bo(z) =1, By(z) =48, (1.18b)

The reflection coefficients are to be calculated by two inner products

[901’---=U0,m l]am [501""’60,m l]bm
Kooy = D, e B, * (1.19¢,d)
with D,, updated by
w=(1=8,k,)D,_1, Dy=1 (1.19€)

All the algorithms that will be presented in this paper are related to the
{double) lattices picture and will be given interpretations as flows of signals
created as responses to appropriate input sequences. The above Levinson
recursion, for example, corresponds to the situation where the two lattices are
excited by impulses of intensities 1,a, and 1,8,; the variables in the
Levinson recursions appear as state vectors along the four lines as depicted in
Figure 2.

In Section 3 we also go through the instructive task of deducing the
Levinson algorithms for non-Hermitian Toeplitz, Hermitian QT, and Hermi-
tian Toeplitz matrices as special cases from the general setting that we have
established; see Figure 3.

In Section 4, we consider the factorization problem for R}, ! in the general
setting of not necessarily admissible non-Hermitian QT matrices. The basic
approach is to exploit the extension to non-Hermitian case of the congruence
relationship between R, and some canonical matrix, which in the QT case is
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Xp—1 Otn
kn -
€./ \—

@n-1 a,

Left lattice
Bo B B2 Bn-1 B
‘.‘;n -
kn -
bn-l bn

Right lattice

Fic. 2. Transmission lines for the Levinson algorithm (Section 3).

a Toeplitz matrix, similar to the treatment in [13] of the symmetric matrix
case. More precisely, from (1.15) we see that the inverse of a general
non-Hermitian QT matrix can, by (1.15), be written as

R;'= LT, )T 'L(T,.,) =A,D; B! (1.20)

n?

where the vectors T, and T}, are defined hy

Ln(ro:n):Lil(ho;n): Ln(f‘ﬂ:ﬂ) :Lil(ilo:n) (1-21)

This suggests that we use known results for determining the various quanti-
ties related to the “hidden” T;' and then modify them by using the
“prefilters” L _(T,,, )} and L(T,.,). This prefiltering can be done in several
ways; however, care has to be exercised to ensure that the prefiltering is done
in a way that does not increase the computations by an order of magnitude.
In Section 4, we shall describe one of these methods for the non-Hermitian
case. First the Schur algorithm will be used to determine the reflection
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Non-Hermitian U(g) = U(o) Hermitian
Quasi-Toeplitz y Quasi-Toeplitz

Y(0) = V(o)

bn=an . By =, . £, =k,

ag =1 a=1
Bo=1 Bo=1
Non-Hermitian [¥() = 8(o) Hermitian
i = . Toeplitz
Toeplitz o) = Vo) oep
am='i°m . Bm::‘]_;.m b, =a,, G = l,f,

Fic. 3. Particularization routes for the generalized (admissible) Levinson al-
gorithin (Section 3).

coefficients associated with T, and T, !, Then, we observe that the responses
to impulse inputs would determine the entries of the triangular factorization
of T '. Using next an appropriate interpretation of the relations (1.20)-(1.21)
as convolutions, we are able to propose a fast recursive convolution algorithm
to efficiently execute the prefiltering by L (Ty.,) and L_(T,.,). As before,
the lattice picture illuminates the procedure. We show that if the two
sequences defined by the vectors T, and T, are applied to the two lattices as
described in Figure 4, then the colummns for A | and B, appear as {part of the)
time responses along the upper lines of the two lattices. Furthermore, we
derive in Section 4 the alternative inversion formula for R,

Ryt = (L(e)LE) - LU LUE))  (122)

which is obtained from the generalization of the GS inversion formula for
reversed QT matrices, and show that the four vectors for this formula, as well
as for the inversions of all the submatrices R, appear as (parts of the) time
responses at points along the upper and lower lines of the two lattices in the
situation described by Figure 4. We shall call this combination of the Schur
algorithm with the recursive convolution algorithm the extended quasi-Toe-
plitz factorization algorithm,
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Y(r—1) Y(n)

Left lattice

€n—1) €n)

Right lattice

Fic. 4. Transmission lines for the recursive convelution algorithm (Section 4).

The extended QT factorization algorithm, which is summarized in Table
1, is demonstrated to be a comprehensive and efficient fast algorithm for
non-Hermitian quasi-Toeplitz matrices. At a computational cost (counted in
complex or real multiplications for complex or real matrices, respectively) of
O(7n?) [or O(3.5n2) for Hermitian matrices],” it provides all of the following:
the triangular factorization for R ,, the triangular factorization of the inverses
of R, forall m=1,...,n, and the GS type inversesof R, forallm=1,...,n.

Since a QT matrix corresponds to a well-defined rank 2 shifted matrix in
the close to Toeplitz class considered in [4], [6]-[9), it is possible, in principle,
to have Levinson or Schur algorithm based on the close to Toeeplitz al-
gorithms in these references. (References [6] and [7] consider also the
non-Hermitian Levinson and Schur algorithms, respectively. We also note
that these references all consider block matrices; therefore, to compare the
two approaches one has to either extend the results in this paper to block
matrices or, as we do in the following, deduce the scalar case from these

3We use N=0(an®) to mean that N =an?+ bn + ¢, but order n counts are ignored for
simplicity.
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references using the relation between the two notions of closeness to Toe-
plitz; see [8].) Algorithms based on the close to Toeplitz approach would
involve two (for non-Hermitian; one for Hermitian,) two-term recursions each
with four polynomial variables, and would be computationally more expen-
sive. If we apply a general count formula of operations for the inversion of a
Hermitian close to Toeplitz matrix that appears in [9], to the scalar case and
distance 2 (p =1 and &= 2 in the notation there), we find O(14n?) for the
Hermitian Levinson algorithm and an expected double of this count for the
non-Hermitian case [8]. Consequently, the new extended factorization al-
gorithm appears to be computationally more efficient by approximately a
factor of four (and it also provides more than just the inversion of R ). Also, a
lattice realization of rank 2 close to Toeplitz matrices would be more
complicated than the ones in Figures 1 or 2; it would invelve two lattices
with four lines (with delays along three of them) in each lattice and have
multipliers interconnecting the four lines at each section of each lattice.

A complexity account for the various algorithms in this paper is given in
Table 2. It indicates how, depending on the case, an amount of computation
less than of the extended QT factorization algorithm may suffice. The Schur
algorithm, which provides the reflection coefficients and the factorization of
R, requires only O(2n”) operations. In the admissible case, the generalized
Levinson algorithms that provides the reflection coefficients and the triangu-
lar factorization of R ! (only) requires only O(3n?) operations. Therefore, to
obtain a factorized inverse of an admissible QT matrix, the generalized
Levinson algorithm is more efficient than the extended factorization al-
gorithm (which does not give any special allowance to the admissible
subclass). We may further note that even for a general QT matrix, other
methods as suggested in [17, Figure 4] may reduce the computational count
for the factorization of the inverse matrix slightly below the count for the
extended QT factorization algorithm.

2. NON-HERMITIAN SCHUR ALGORITHM

In this section we consider the generalization of the Schur algorithm to
non-Hermitian matrices and show that it yields fast lower-upper triangular
factorization for non-Hermitian Toeplitz and QT matrices (1.6). A lower-upper
triangular factorization of an arbitrary strongly regular matrix, such that the
factors have unit diagonal elements, is of the form

R,=PDQ!= Y D,y s (2.1a)

m=0
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where p,,, and q ., are the (m +1)th columns (of length n +1) of B, and
Q, forall m=0,1,...,n of the form

Pony = [0 .0, 1, Py 150 Pl (2.1b)
Ay = 05,0, 1, G s 1oe > G s (2.1c)

and
D, = diag| D,,..., D, ]- (2.1d)

We now define for m =0,...,n matrices R, of size (n +1)X(n +1)

Riomy= L(ﬁ(m))L'(u(m}) - L(f’(m])Lt(V(m))a (2.2)
whose four vectors are defined by the coefficients of the polynomials in the

following algorithmn, which generalizes to non-Hermitian QT matrices the
Schur algorithm of [17]:

ﬁ(m)(z) ] _ - km— [ 0] —ﬁ(m—l)(z) ] (2 3a)
_6(m)(z)_ __gm 1 1__5(:117].)(1)‘, '
_”(m)(z)- _ [ _Em- 0 -u(m—l)(z)A (2.3b)
_v(m)(z)_ g_km 1 __v(m—l)(z)_’

an17 m vm— m
o= —" k= (2.3¢,d)
um*l,mfl um—l.m—l

The algorithm is initiated by the polynomials that correspond to the gener-
ating vectors (1.9) of R . Therefore it starts with (2.2) R =R,.. Also, it is
not difficult to see that the first m entries of @, and u,,, and m +1 entries
of V,,, and v, are zeros. In fact,

iy=[0,..,0,d, G ]'s  Tuw™ D (2.43)
Wiy =[0,00,0, 8, sty 1y, =D (2.4b)
Vomy = [0,0..,0,0,8, s 8 1", (2.4c)
Vi = [0,0,0, 0,1 i1s V]’ (2.4d)
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Note also that the parameters £,, and k,, of the recursion are found as the
ratios of the first two nonzero entries of the input vectors at stage m.
We proceed to show that

l‘l(m) p(m)D u(m) q(m)Dm (25)

for all m=0,...,n, from which it will follow that the Schur algorithm
produces the columns for the factorization (2.1a) up to multiplication by the
diagonal scaling matrix D,,. The required proof follows if we show that

R(m 1}y — u(m l)u(m 1) (l_gmkm) wlR(m)’ (2‘6)
because then,
~ 1.
Ry =luip +{1-£k,) [Uu)ll!u)
-1~ +
+{1-&,5k,) [“(2)“(2)
(1= £ok,) T i) - )]

or, since R_=R,,,
n (0)

1 .
Fﬁ m)u(m) (27)

=
2
Il
n M=

We need the following identity for the proof:

[ oy ¥ | [(1) _?][“(rn)"’(m)]t
— o ~ 1 0 t
- (1_ginkm)[zu(m—l)’v(fn~l)][0 _I:I[Zu(mfl)’v(mfl)] (2‘8)

It can be verified from the recursions (2.3) by substitution and simple
evaluation. The proof of (2.6) can now be given.
The displacements of the matrices R ., (2.2) are

A{R(rn)} = ﬁ(m)“t(m) - i;(m)v(i'n)' (2.9)
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Multiply the two sides of the last equality by (1 — £, k,,)~; then substituting
(2.8) into the right hand side gives

{(1 gm m) B 1l{(rn)} = Zi'.i(:rnfl)ut(mfl)zt - i.';(m—l)v(‘m—l)'
Subtracting this from A{R ,,_,,}, as given by (2.9), yields
— 1 ~ t ~ ! t
A{ (m—1) -(1- ‘Emkm) R(m)} Ui Mm—-1y zu(mfl)u(mfl)z :

or

A{ (m—1) (1 gm m) 1R(m)—ﬁ(m—1)ut(m—l)}=0’ (210)

from which (2.6) follows.
With this we proved that the algorithin (2.3) produces the lower-upper
triangular factorization for R :

R,=U,D;'U’, (2.11a)
where the columns of U, and U, are given by the Schur variables & ,,, and
U .\, viz

(my» V1Z.

U.=[doplayobigm],  Ui=[ugugs-oumls (2.11b,¢)

and D, is given by (2.1d). We note that due to the nested structure of
triangular factorizations and the recursiveness of the algorithm, substituting
m for n in (2.11) yields the triangular factorization for the submatrices R,
m=0,...,n.

The unit diagonal factorization (2.1a) can be obtained by

r,=0D/! Q,=UD" (2.12)

A unit diagonal triangular factorization can also be obtained directly by the
Schur algorithm if the right hand sides of the recursions (2.3a,b) are
normalized by multipliers (1 — £, k,,) . Note that the unnormalized recur-
sion involves ((2n?) elementary operations. The scaling (2.12) requires an
extra O(n?) multiplications whereas the normalized recursions would take a
total of O(4n?) operations.
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The Schur algorithm in its presented (unnormalized) form is realizable by
the pair of lattices of Figure 1. The algorithm presents the situation in which
the four vectors (1.9) are applied as inputs to the two lattices in the way
illustrated by Figure 1. Interpreting the z blocks as unit time delays, we have
at the lower and upper inputs to section m +1 at time i in the left (right)
lattice the signals 4, ; and &, ; (4, ; and v, ;), respectively. The mth
columns of U, and U, appear as the time responses in front of the mth delay
of, respectwely, the left and right lattices. Also, the reflection coefficient £,,
(resp. k) is the ratio of the upper line to the lower line input signals to
section m at time m of the left (resp. right) lattice. It is possible to gain
additional physical insight if the signal flows in the delayfree lines are
reversed, so that each section forms a scatterer that relates inputs u ,,,_ 1), V.,
to outputs Y (s Vim - 1) in the right lattice and inputs @, ), ¥, to outputs
1,3, ¥,, 1y in the left lattice. In this rearrangement the structure of zeros in
(2.4) follows from causality arguments. See [13] for such arguments in the
symmetric matrix (one lattice) case.

When the matrix R, becomes Hermitian, we have from (1.8)

g =up, V=Y (2.13)
From these initial conditions, the recursions {(2.3) imply
$m = k::s ﬁ(m)(z) =u(*m)(z), ﬁ(m)(z) = U(*m)(z) (2.14)

for all m=1,...,n. So now D, are real, and the factorization in (2.1) or
(2.11) is indeed Hermitian with U U*. Most important, (2.14) indicates that
it is sufficient to consider the familiar one two-term recursions [17]

Bm(2) | _ 11—k flz O Ey(2)
[6(m)(z)}_[-‘k;; 1 ”0 1”6(,”_1)(;5)]’ (2.15a)
k ___M. (2.15b)

m
umfl,mfl

The amount of computation involved in the Schur algorithm is O(2n?) in
the non-Hermitian case and O(n?) in the Hermitian case.

3. GENERALIZED LEVINSON ALGORITHM

We shall in this section derive the Levinson algorithm (1.17)-(1.19). For
the sake of the subsequent derivation and to illustrate at least once the
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transition between the polynomial and vectorial forms of the recursions (1.17)
that are available in all the algorithms of this paper, we write the Levinson
algorithm (1.17)—(1.19) in explicit vectorial form.

We establish in this section (and corresponding appendices) that the
solutions to the two sets of equations

b.R,=]0,...,0,D.], R_a,=][0,...,0,D,], (3.1a,b)

m

for m = 0,...,n with R, an admissible QT matrix given by (1.8), (1.9), and
(1.18), are produced by an algorithm that is composed of the pair of
recursions (1.19) and two inner products to compute the reflection coeffi-
cients. The complete (L.evinson) algorithm is: for m =1,..., n compute

o] 0 1,0
" Bm_1,0 :
= . -k, . , (3.2a)
a am—l.m—l
e am—l.m—l 0
a, o] 0 Am—1,0
n_]' _ am—l,D (3 2b
a: - gm am—l,m—l ’ ' )
mem A 1,m—1 0
b, . 0 B0
. Br_1.0 ;
= - - ¢, . (3.3a)
b Bm—l,m—l
. bm—l,m—l A 0
Bm o b 0 Bmfl,()
S R N I o, (3.3h)
B . Bm—l,m—l
e b1 m—1 0

with initial conditions

ag0=bgo=1, Ay p = Ay, Bo.0 = Bo (3.4)
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and inner products

t
Vopseovs g pm [ JPOY S
km+l=[ o1 o, all .0 ] ’ (3.52)
Dm
Botse- > Bo.ma 1) [P P m)
5m+1=[ 01 0, +11]D[ 0 ) ] , (3.5b)
Dm=(1_‘$mkm)Dm—l’ D(J:l' (36)

The initial conditions in (3.4) correspond to the admissibility conditions
(1.18). They also can be viewed as the most arbitrary possible zeroth degree
polynomials to start the recursions with. [Note that normalizing the four
initial conditions so that ay(z) = by(2z) =1 does not restrict generality and is
consistent with the normalization 7y, =1 in (1.1), which implies a by, = 7y
via (1.4).] Consequently, the admissible QT class is the most general class of
matrices whose inverses can be factorized as in (1.4) using the Levinson
algorithm (1.19).

After proving the above algorithm, we shall show how the general
Levinson algorithm simplifies for Toeplitz and Hermitian matrices; see
Figure 3. The Levinson algerithm is associated to the same pair of lattices as
the Schur algorithm as described in Figure 2. The admissibility values «, and
By can be viewed as connecting the two inputs by wires with these respective
gains, and the variables in the recursions are then the impulse responses at (or
transfer functions from the inputs to) the indicated points along the lines of
the lattices, as indicated in Figure 2.

)
3.1. Non-Hermitian Admissible Quasi-Toeplitz Matrices
An inspection on the Levinson recursions (3.2)—(3.6) immediately reveals
that the first and last entries of the four propagated vectors exhibit the
pattern

Gy w=1, Qo= — ko, (3.7)
b, =1, b, o= —£.8, (3.8)
o= — & &, 0= A, (3.9
Bum=~km:  Buo=Bo- (3.10)

More relations required for verifying the algorithm are the following.
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Lemma 1. The Levinson algorithm also has the following sequence of
properties.

[0, 415> Vo )8 = ks (3.11)
[0, Boys-- s Boun Iy = £ | (3.12)
[1, thgps-ev» oy ) @ = €D, (3.13)
[1,Gyye- s Gigm) B = BoDim>» (3.14)
1+ [0, 5415+ +5 Vo] 4 = Dips (3.15)
1+ [0, Bo1s- .-, Bom) B = Do (3.18)

We shall prove this lemma in Appendix A.

To establish our claims for the presented Levinson algorithm we need to
show that the mth vector solutions to (3.1a,b) are given by the vectors a,,
and b, of (3.2a) and (3.32). We shall give a proof by induction. This
statement is trivial for n = 1, thus we have to show the induction step.

2

ProposiTion 1. Assume that the algorithm (3.2)-(3.6) produces solu-
tions fo (3.1a,b) for m=1,...,n— 1. Then the nth step of the algorithm
produces solutions to

bR, =[0,...,0,D,], R,a,=[0,....0,D,]". (3.17a,b)

A key observation for the proof is that the definition of R, implies that it
has the following nested structure:

Bn=ﬁ0:nuf():n_§0:nvl;:n+[ 0 O;AI ]’ (3‘18)
Onfl Rn—l

in which 0, is vector, of length n + 1 with zero entries (and we introduce the
notation t,,, = [ty ---s U], M < 1, thus ug,, = ug)). We prove Proposi-
tion 1 in Appendix B. The proof of this induction step establishes the claims
made on the generalized Levinson algorithm.

3.2.  Non-Hermitian Toeplitz Matrices
The Toeplitz case corresponds to choosing

ag=1, By=1 (3.19)
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The condition (3.19) means [see (1.18)] that the first and second vectors in
(1.9) differ from the third and fourth only in their first entry. That is, (3.19) is
equivalent to the condition

1 1

N o1 Dy

Ug.n = . ’ Ug., = . . (320)
50n Yo.a

It is seen from (3.18) that if (3.19) and (3.20) hold, then 7, =Ty j-) forany
i, j > 1, which expresses the fact that the entries in the first column i, ,, and
first row uf,_, determine completely the Toeplitz matrix

b (3.21)

.

AN

Ug s
Tnz(rij)’ fsj={ ! i

Ug,i—j

Note that T,, is not Hermitian, because ii,,, # uf, . The condition 3.19) or
(3.20) is also necessary for a QT matrix to be Toeplitz because 7, = Tio1j
implies, using (3.18), that &, = 6, and u, i =Yp bhj>1

The Levinson algorithm for non-Hermitian Toeplitz matrices T, solves
recursively the set of equations (3.1) with T, replacing R, i.e.,

b, T,={0,...,0,D,], T,a,=[0,...,0,D,]", (3.22)

which solves for the last row and last column of R, for m=0,...,n
However, the property (1.12) of Toeplitz matrices makes this set replaceable
by any of the following alternative pairs: find the last row and first row of
R

b, T,=[0,...,0,D,], &7T,=[D,,0,...,0,]; (3.23a)

find the first column and last column of R,

mbn = [D,,,0,...,0],  T,a,=1[0,.,0,D.]%  (3.23b)

mTm

or find the first column and first row of R,
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Correspondingly, we shall see that the triangular factorization can now be
given either as an upper-lower or as a lower-upper factorization.

A Levinson algorithm for the Toeplitz case can be obtained by merely
changing the initial conditions in the general algorithm (3.2)(3.6) to comply
with (3.19). Returning to the more compact polynomial notation (1.17) and
distinguishing quantities related to Toeplitz matrices by a ", the Levinson
recursions for a Toeplitz matrix are given by

O e ]
&, (2) —-¢, 1 |0 1l{a, (=)

do(z) =1, &,(z)=1, (3.24a)

PN
3, (2) ~k, L [0 1]|8, (2}]
by(2) =1, f,(z)=1, (3.24b)

with inner products still given by (3.5).

Since a Toeplitz matrix is simpler than the non-Toeplitz matrix, one might
expect some corresponding reduction in the complexity of the algorithms.
Indeed there is redundancy in (3.24), and it is revealed as follows. If we apply
reverse operations on the polynomials in (3.24b) and subsequently inter-
change the first and the second rows, we obtain

~

Bl |1 —klle o[£ (2
i;’m(z) -£, 1 |lo 1 E,,,_l(z),

B(z)=1, by(z)=1.

The comparison of this recursions with (3.24a) reveals that

B(2)=d,(2), Bo(z)=a.(z). (3.25)

Therefore the two-term recursions (3.24a) and (3.24b) contain the same
information, and one of them can be discarded. The convenient way to
removing the redundancy is to retain the primary variables 4_ and b,,. One
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can choose recursions that propagate the pair {d,,(2), 5,,(7,)} or the pair
{b,.(2),&,,(z)}. Picking the first of the two choices, the Levinson algorithm
for non-Hermitian Toeplitz matrices in its least complex form comprises a
single two-term recursion

mlz) ~ 1 -k, {lz 0]|d,_,(z)
baz)| -6, 1 |lo 1[5 _u2)|

Go(z) =1, hy(z)=1, (3.26)

=3

]

and two inner products

_ [“01’-'-’“0,m]5m4 [ﬁOI"“’ﬁO,m]Bm—l

. 5 .

m—1 m—1

k

(3.27a,b)

with
Dm= (l_gmkm)Dm—li D0=1 (3-270)

The algorithm provides the upperlower triangular factorization of T ™!

T,=A,D !B, (3.28)
where
1 &l() é\nfl,o "in,o |
. 1 dnfl,l &n,l
A= : N (3.29a)
0 0 1 b,
[0 0 1]
1 BIO ‘",1 0 Bn 0
- 0 1 T n—-1,1 n,1
B,=1|: : : (3.29b)
0 0 1 bn,n—l
10 0 1

D=diag[1,D,,...,D.]. (3.30)
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Alternatively, applying the reverse operation on this factorization and using
the property (1.12) yields

~

T '=B D WA, (3.31)

that is, a lower-upper factorization for T, ..

3.3.  Quasi-Toeplitz Hermitian Matrices
Consider now what happens when the QT matrix becomes Hermitian.
Imposing RY, = R* on (1.8) and (1.9) implies

Gy =ug. Yo = Vo) or i (z) = uf(z), B0y (%) = v ().

(3.32)

This in turn implies £, = k* and (for our current admissible case) af = f,. It
can be shown from here [by induction or showing that (3.32) implies that all
subsequent Schur variables, presented in Section 2, also satisfy uX(z) = @i(z)
and v}*(z)=0(z)) that £, =k* also for all subsequent reflection coeffi-
cients. Therefore the quasi-Toeplitz Hermitian Levinson algorithm is ob-
tained from the non-Hermitian quasi-Toeplitz algorithm by setting

Bo=af and ¢, =kx, m=0,..,n. (3.33)

Consequently,
bo(z)=ax(z),  B.(z)=e¥(z). (3.34)
The last two equations indicate that the second two-term recursion (1.17b) is

in the Hermitian case just the conjugate replica of the first. Similarly, the set
of equations for b, is the conjugate transpose of the other,

(R,) " =R,a,=[0,...,0,D,]", (3.35)

where we have used (3.33) and (3.34) to deduce that D, are now real.
We therefore deduce that the Levinson algorithm for Hermitian quasi-
Toeplitz matrices concerns one set of equations only, .

R,a,=[0,...,0,D,]", (3.36)

mom
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which is solved by one two-term recursion

an(z)| | 1 ~k,llz 0O]la,._.z)
a,(z)]| — kX 1 0 1l{a,_(2)]
ag(2) =1, anlz)=a,, (3.37)

that requires only one inner product

Vppseers Oy m a,
km+1=[ L D:’ Sy (3.38a)
D,=(1-1k,?)D,_,, Dy=1 (3.38b)

In the Hermitian case it is adequate to associate the recursions with a single
lattice, say, only the left lattice in Figure 2 with £, =k *, which becomes the
well-known form of lattice associated with fast algorithms for QT matrices
[17].

The upper-lower factorization for the inverse of a QT Hermitian matrix is
deduced from (1.4), and from the fact that now b,, = a*,, to be

R;1=A D 'A%, (3.39)

where the columns of A, are now determined by (3.37), superscript #
denotes conjugate transposition, and D, is a diagenal matrix (1.5) with real
entries (3.38b).

3.4, Hermitian Toeplitz Matrices

The Levinson algorithm for Hermitian Toeplitz matrices is the best-known
special case. In the present context we can deduce it either from Section 3.2
or 3.3 or directly from Section 3.1; see Figure 3. It emerges as the combina-
tion of the following constraints on the QT non-Hermitian algorithm [see
(3.19) and (3.32)]:

Conseguently, all the implied conditions (3.20), (3.21), (3.25) as well as (3.33)

and (3.34) hold and superpose. Incorporating all these simplifications, the
following situation is revealed.
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The Toeplitz matrix is given by [cf. (1.10)]

i,

Yo j-ir |2
i< {3.41)

1.

Tn=(ci—j)! ij={

Ui js
The Levinson algorithm solves recursively the set of equations

T,4, = [0,...,0,D,]" (3.42)

1

The four variables originally in the general algorithm become now simply
related to 4, (z)=a_(z)

bo(z)=ax(z),  Bulz) =dn(z), a,(z)=d%(z) (3.43)

where we defined the reciprocal of a polynomial or a vector as the superposi-
tion of reversion and complex conjugation,

at(z)=a*(z)=z"aX(z '), &% :=3%. (3.44)

The Levinson algorithm becomes the following:

a,.(z) 11 -k, 1z 0]ld,._.(z)
ai(z)| | -kx L {0 1f|ak i(z) [
do(z)=1 a%(z)=1, (3.45)

[”01»---s“0,m+1]am
km-i"].2 D 2

m

(3.46a)

D, = (1= |k, [*)D

. D=1 (3.46b)
The triangular factorizations for the inverse of the Hermitian Toeplitz matrix
are given, respectively, by the upper-lower and lower-upper triangular forms

-

T,1=AD;R4,  T'=X,D K, (3.47a.b)

non i

where ﬁn has the form (3.29a) with its columns determined by (3.45), and
the diagonal matrix (1.5) has real entries (3.46b).
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3.5. A Remark on Single Two-Term Becursions

We draw attention to a significant difference between the single two-term
recursions (3.26) we saw for the non-Hermitian Toeplitz case and the single
two-term recursions (3.37) and (3.45) for the Hermitian cases (Toeplitz or
not). In the Hermitian case, the symmetry simplifies not only the Levinson
algorithm, but (as we shall see) all the algorithms for the inversion and
factorization of any Hermitian QT matrix; and throughout, two sets of
equations, recursions, inner products, and lattices reduce to one. In contrast,
for a non-Hermitian Toeplitz matrix the possibility of having a single two-term
recursion for its inversion by the Levinson algorithm stands out as an
anomaly (in the context of the non-Hermitian QT matrix theory that we shall
continue to develop in the rest of this paper) which, if not perceived
properly, may obscure the “doubleness” inherently possessed by the
non-Hermitian QT structure in all cases (including the Toeplitz case): two
transmission lines, two two-term recursions in all subsequent Schur and
recursive convolution algorithms, etc. We shall further see in Section 4 that
we need to use the two two-term recursions (3.24) rather than (3.26) as the
recursions for the Toeplitz matrix in order to derive fast inversion algorithms
for nonadmissible QT matrices.

The “anomalous” simplification in the Levinson recursions in the class of
non-Hermitian QT matrices when the matrix becomes Toeplitz should not be
taken as more than a reduction in computation that reflects the extra
simplicity of the Toeplitz structure. It is properly comparable to the observa-
tion that, within the class of Hermitian QT matrices, the Levinson recursions
simplify in the Toeplitz case by the fact that in (3.45) the second variable is
the reverse of the first and thus does not require extra computation. However,
the phenomenon has no further implications for the structure of the Hermi-
tian QT lattice or for any corresponding simplification in the Schur algorithm
for Toeplitz matrices.

The remark we are making here has further interesting aspects. The
recursion (3.38) is quite well known. It can be found implicitly already in the
original algorithm of Trench [23] for the fast inversion of non-Hermitian
Toeplitz matrices [23, 24, 1, 20, 25], where his algorithm circumvents the
inner product formulas and produces an unfactorized inverse. The connection
of the Levinson polynomial for Hermitian Toeplitz matrices with the poly-
nomials orthogonal on the unit circle is well known. Similar connections
between the polynomials in the recursions (3.26) and biorthogonal polynormi-
als on the unit circle were established in [2] and subsequent work; see [14]
and references therein. Concluding a discussion on the interesting connec-
tions between variables in the recursion (3.26), biorthogonal polynomials,
their Christoffel-Darboux formula, and the GS formula (1.14), the authors in
[14] express the desirability of finding a generalization of the theory discussed
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to QT matrices. The difficulty in deriving such an extended theory can be
eliminated once the underlying recursion in the existing theory (3.26) is
understood to be an anomalous collapse of the four variables (or two lattices)
that are required for a true description of non-Hermitian Quasi-Toeplitz
matrices. These aspects of the present theory, while not required for the
algorithms that we derive, are of interest for their pure mathematical content.
We shall discuss them in a separate paper.

3.6. A Remark on Convolution and “Prefiltering”

It is important to realize that the transmission lines associated with the
Levinson and the Schur algorithms are indeed the same, with identical
reflection coefficients. If the inverse of Toeplitz matrix T,, as found by the
Levinson algorithm, is (3.35), and the Schur algorithm produces for T, the
factorization (2.1a) T, = P D Q‘ then the triangular matrices mvolved are
related by P = Bn_ ! and Q = A7’ This means, for example, that it is

possible to derive Arl and f!n by first applying the Schur algorithm to T, to
determine the reflection coefficients (i.e., the lattices), and then using the
Levinson recursions (3.31) or (3.33) to evaluate the columns for A, and B,
(that is, apply impulses to all the lattices inputs). This is a particular case (less
efficient than using the Levinson recursions with inner products) of the
extended factorization algorithm that we shall develop in the next section.
Utilizing this idea, it is possible (but not as efficient) to find the
factorization of R, starting with a Levingon algorithm, as we describe next.
Assume we have a non-Toeplitz R, and that we also know its “hidden”
=[c;_;] as in (1.15). We can “construct the lattices” (i.e. find the
reﬂectmn coefficients) using the Levinson algorithm for T,. Then we can
attach prefilters h(o)(z) to each of the two inputs of the ]eft lattice, and
prefilters hg (z) to each of the two inputs of the right lattice. If the four
generating vectors of the Toeplitz matrix

i= l,cgl,...,c_n], t§=[0,c_1,...,c_n],

[
i=[1l,cp,....,c,], B=[0,¢1,---,¢,], (3.48)

are applied appropriately through the prefiltered inputs, the lattices will
produce the Schur variables for R , as in Figure 1. Here

?‘0(3) = l"V(O)(Z’) - 6(0)(z), ho(z) = “(0)(z) - 9(0)(z)- (3-49)

The validity of this (hypothetical} scheme is shown by substitution of T,
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from (1.8) into (1.15):

R, L(Bﬂ:n){L(fi(O))Lt(ﬁ(O)) - L(e’m))y(%))}y(ho:n)

L(EO:N *ﬁ(()))L’(hO:n *ﬁ(())) - L(Eo:n *6(0))Lt(h0:n *%(0))‘ (350)

Here * denotes convolution and we used the fact that

L(Xn)L(YN):L(Wn) With wn=xn*YH=YH*xn’ (3.513)

so that if
r,(z)=YLx,7, y.(2) =2 y,z", (3.51b)
[} 0
then
n . k
wn(z)=xn(z)yn(z)’ wn(z)=zwiz" W = an,iyn,k—i‘
0 i=0
(3.51c)

Thus, by comparison of (3.50) with the expression (1.8), we see that

1I(n)=i‘l(o)(z)t"‘%(c))(Z)= 5(0)(5) =E(0)(z)§(0)(z), (3-523)

u(0)=h(0)(z)u"(0)(z), '—’(0)(3) =h(0)(z)6(0)(z), (3.52b)

and the above interpretation follows.

In the next section we shall see how fast algorithms for the inversion of
R, that are not restricted (like the Levinson algorithm) to Toeplitz or
admissible QT matrices emerge from the interpretation as convolutions of
various relations between the variables in the Toeplitz and non-Toeplitz
algorithms.

4. INVERSION OF GENERAL QT MATRICES

We saw that the Levinson algorithm produces the triangular factorization
of the inverse of a Toeplitz matrix

~ A

T '=A,D'Bt (4.1)
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at most for the admissible (1.18) subclass of QT matrices. An alternative
inversion formula for non-Hermitian Toeplitz matrices is

T
A

T, != Di{L(b,,)L*(‘é’n) ~ L(lﬁn)L‘(an)}: (42)

1t
which was proposed by Gohberg and Semencul (for nonsymmetric Toeplitz
matrices from the first). In this section we describe triangular factorizations,

Gohberg-Semencul (GS) type formulas, and fast algorithms for the inversion
of general (strongly regular) QT matrices.

4.1.  Triangular Factorizations
We return to our initial problem and would like to have fast (i.e. order n®
elementary operations) solutions to

bR, =[0,...,0,D,], R,a,=[0,...,0,D.]" (4.3a,b)

mTm
for m =0,..., n. These solutions provide the factorized inversion
R,'=A_D;'B, (4.4)

where A, and B, are upper triangular matrices whose (i +1)th column
begins with the entries of the vector a; and b,, respectively, and whose
remaining entries are zeros; see (1.4). Using (1.15), the inverse of R, is also
given by

R, '=L (ug— )T, 'L g~ V) (4.5)

We introduce some notation to simplify our subsequent derivations. Let

cray Pl

ho:ﬂ=u(0)'—v«})=[l,hl,...,hn]t, Tlo:n=ﬁ(0)_i;(0)=[1’ﬁl’ ’.; ]!,

(4.6)

and denote the lower triangular Toeplitz matrices inverses of L(h,, ) and
L (hO: n) by

L(F0=n)=Lu1(h0:n)’ L(f‘ﬂrn)=L_1(TIO:n)’ (47)

r0=n=["/00:701:---:70,n]" Fo:n=[700s701»---’70,n]£- (4.8)
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We note that an inverses such as L™ !(h,, .} requires only O(0.5n?) using the
(polynomial inversion) algorithm

Yoo =1, Yom= — Y Yo,iPm_i» m=1,...,n. (4.9)

Setting (4.7) and (4.1) into (4.5), we have
R;1=Lt(I‘O:n)AnD;lﬁnL(f‘O:n)‘ (410)

In this factorization of R, %, the product of the two upper (lower) triangular
unit diagonal matrices on the left (right) is itself a matrix of the same type.
Therefore comparison with (4.4) reveals that

n=L‘(r0=n)An’ anL!(FO:n)Bn' (411)

An algorithm to find the vectors a,, and b,, could consist of the following
steps:

(a) Use the Schur algorithm to find the parameters £,,, k. m =1,.
(Namely, determine the pair of lattices of Figure 2.)

(b) Find the inverses L(I}, ) and L(T},,) (4.7), using (4.9).

{c) Find the triangular factorization of the Toeplitz matrix (4.1) by
carrving out only the recursion part in the Levinson algorithm for non-Termi-
tian Toeplitz matrices. [This corresponds to applying impulse inputs to the
lattices determined in step (a) and reading out the state responses in front of
each delay element: see Section 3.2, which also shows that it is enough to
consider one of the two recursions and lattices. ]

{d) Carry out the matrix multiplications (4.11).

The first three steps are of order n* complexity, requiring O(2n%), O(n?),
and O(2n?) operations, respectively. The fourth step, however, requires order
n® operations. (The triangular matrices A and B are not Toeplitz). Conse-
quently, the scheme, as a whole, is not a fast algonthm for (4.4). Apparently,
the fault lies in the fact that the algorithm “waits” with the products (4.11)
tll after A and B have been found. Fortunately, after getting a better
insight into the mherent meaning of the products (4.11) (the transmission line
presentation becomes most helpful in this respect), we can now show that
steps (¢) and (d) are replaceable by an algorithm that produces A, and B,
m=40,...,n, directly, and in order n®> operations.

We rewrite the expressions that (4.11) induces on all the leading sub-
matrices, for m=0,...,n, in the form [we recall the property (1.12) for
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Toeplitz matrices]
JA,. =L(T,..)JA,  JB,=L(T,..)JB. (4.12)

The last columns in the right hand side are the reversed vectors &, = Ja,,
and b, = Jb,,. The equation makes it clear that the reciprocal of the solution
vectors of the QT matrix are related to corresponding reciprocals of the
solution vectors of the Toeplitz matrix by the convolutions

[liam,m—l""’am,ﬂ] = [YOO!YOI!""YO,TH] *[]"dm,mfl"“’ém,O]’ (4‘133)
[1’ bm,m—i""’ bm.O] = [700? ?0,1""’?0,171] * [l’j;m,m—l""’l';m,o] (4'13b)

for all m =0,..., n. We can regard (4.13a) as describing the response a,, of a
linear time-invariant filter whose impulse response is 8&,,, to the input
sequence [, .. However, recalling the lattice interpretation of the Levinson
algorithm for a Toeplitz matrix (see Section 3.4), we have that along the
upper line in the right filter the response to the impulse input is 8,(z)=
@ ,,(%). In other words, the points in Figure 2 denoted by 8, (z), m=1,...,n,
provide filters that realize the convolutions (4.13a). Thus, applying the
sequence I, as input to the right lattice will produce (in reverse order) the
elements of a,, at the upper line of section m + 1, for m = 0,..., n. Similarly,
(4.13b) can be interpreted as responses to inputs [, of filters whose
impulse responses are En; such filters are provided by the transfer functions
from the inputs to points along the upper line of the left lattice, which were
denoted in Figure 2 by «,(z), because in the Toeplitz case «,(z) = b, (z).
Therefore, applying the sequence f\o; . to the left filter will produce along the
upper line the columns (in reverse order) of B,,.

We can now easily formalize the above findings into an explicit algorithm.
They suggest taking the Levinson recursions (1.19a,b) and initiating the
recursion (1.19a), which correspond to the left lattice, by the sequence T, ,,
while the recursion (1.19b), which corresponds to the right lattice, has to be
initiated by the sequence I} ,. Subsequently, it will be possible to read out
the columns of A, and B, from the new propagated variables, and the above
argument also indicates the proper way of doing this reading. We choose
again to write the recursions in polynomial form and introduce the following
variables:

'Y(m)(z) = Z Ym,izi E(m)(z) = Z € i3 (4.14a)
i-0 i=0

n n
?(m)(z) = E ?m.izi c..(m)(z) = E é-m,izi' (4-14b)
i=0 i=0
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The recursions are

-?(m)(z)_ 1 _km- z 0] ?(rnfl)(z)-
_E(m)(z)_ __gm 1 0 ]‘J é.‘(m—l)(;“‘v)_

?(0)(z)=f‘0:n(z)» €(0)(z)=f‘0:n(Z), (4153)

F-Y(m)(z)- [ 1 _£m- z 0— Y(m,]_)(Z)-
‘c(m)(z)_ _km 1 J 0 l_ e(m*l)(z)

Y(O)(z) =To..(2), E(())(z) =Ty, o (2), (4.15b)

where the initial conditions are the polynomials associated with the vectors
(4.8),

To..(z)=[1z,...,2" Ty, To..(2)=[1,z,...,2"]T,. (4.15¢)

We shall refer to (4.14)-(4.15) as the recursive convolution algorithm. We
emphasize that all polynomials are of degree n without coefficients that are
zero, by structure. The recursive convolution requires O(4n?) multiplications.
Therefore it is fast, and it involves twice the computation in the Schur
algorithm, which has variables with increasing numbers of leading zeros.

The recursive convolution algorithm produces, in reversed order, the
vectors a,, and b, for the solutions of (4.3) as the first m + 1 coefficients of,
respectively, €,,,(z) and €,,,(z). This follows from the preceding discussion,
after noticing that these variables take the place of B,.(z) and «,,(2),
respectively, in the Levinson recursions (1.19). Therefore, the matrices A
and B, for the factorization (4.4) of a general QT matrix are given by

h 8 S S T | €an |
0 1 T €aln—2 €nn-1
A, = , (4.16a)
o o - 1 €1
[0 0 1 ]
(1 ¢, A
1 €n—1,n—2 gn,n—l
B, = . (4.16b)
0 0 1 €1
|0 0 0 1
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The complete fast algorithm for QT matrices therefore consists of the
following three parts:

(i) The Schur algorithm (2.3) that preduces the reflection coefficients
£k, m=0,...,n It also produces the triangular factorization of R,
m=0,..., n. It requires O(2n?) elementary operations.

(ii) Finding initial conditions for the recursive convolution. This process
uses (4.6)—(4.8) to produce the input sequences (4.15¢). It requires O(n?)
elementary operations.

(iii) The recursive convolution algorithm (4.15) that produces the triangu-
lar factorization for R;f, m=20,...,n It also produces the vectors for
Gohberg-Semencul type inversion forms for R, as will be derived next.

We shall refer to this algorithm as the extended quasi-Toeplitz foctorization
algorithm. The algorithm is also summarized in Table 1.

4.2. Gohberg-Semencul Type Inversion Formulas

We proved in Section 1 [see (1.13)] that the inverse of the reversed matrix
JR . J has displacement rank 2 and therefore there exists a GS type formula
for its inverse. To derive such a formula, we have from (4.5) and the property
(1.12) of Toeplitz matrices that

R, 1=, )T L(T,..)- (4.17)

Using the GS formula (1.14), we  .in

[

1 o by -
o= o L0 L (8, )b, ) 24T )
- LT, JL(b)LGa(E,L)) . (418)

The relations between products of two lower triangular Toeplitz matrices and
the convolution (3.51) can be used. If we define the convolutions

en=r0:n*%n’ gm=]'-|0:ril"‘.|\J é =f‘0:n*1; L gnzf‘ﬁ:n*ﬁn’
(4.19)

we can write (4.18) as

Bote o (LG)LE) - LUEILGE)).  (420)
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We want to find an algorithm to derive the four vectors (4.19), and we
return for this purpose to the transmission line picture.* We already saw that
the convolutions e, and &, can be read out as the outputs of the upper lines
of the right and left lattices, respectively, when fed by T}, and T},
respectively. Can the remaining two vectors in (4.19) be similarly identified?
The vector g,, [g,] would appear as the response to the input I}, , (T,..]ata
point at which the response to an impulse input would be b, {4 ). A second
glance at Figure 1 reveals that the right (left) lattice with I, , [f‘o,n] applied
to its input, which produces e, [&,] at the upper output, because the transfer
function from the input to there is &,(z) {b(2)], necessarily produces g,
[€,.] at the same time at the lower output, a point characterized by the
transfer function b .(2) [d,(z)]. Finally, it is also clear from the recursive a.nd
nested nature of all the structures involved that by replacing n by any m <
in (4.17)—(4.20), the four vectors that determine the submatrix R can be
read off as the respective outputs of the mth sections of the two lathces

We conclude that the four vectors required for the GS formula for R
well as for all its submatrices Bml, are prov1ded by the recursive convolutlon
algorithm (4.15) and given, for m=0,...,n, by

€n= [l’em,l""!em,m] H \Lgm-: [0=7m,0""’7m,m—1]t!

8n=1L ¢ 1€ mls VEm=[0Fmor s Tmom1) - (421}

We note that a lower-times-upper formula like (4.20) can also be written
as an upper-timeslower formula of the reversed matrix, which in this case
suggests an inversion formula for R ;:

R,'- o (Le)L@) - L )LUE)).  (42)

Two other inversion formulas can be obtained by modifying the coriginal GS
formula (4.2) using the property (1.12) of the Toeplitz matrix before substitu-
tion into (4.5).

As a final remark, we note that GS type formulas require order n storage,
compared to order n* in other forms of the inverses. Applications of fast

40One straightforward way to calculate the required four vectors could be to follow steps
{a)—(c} in Section 4.1 and replace step (d) there by the convolutions (4.19). This time the last
step is “fast,” because the four convolutions in (4.19) require O(2n?). The four vectors for the
inverse (4.20) are found in this way in O(7n®) operations, but inverses for R,,, m < n, are not
obtained in the process.
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TABLE 1
The ExTENDED (NoN-HERMITIAN) QUaSE-ToEPLITZ FACTORIZATION
ALGORITHM ASSUMPTIONS

The QT matrix R, (1.8) is strongly regular and is given in terms of its four vectors
(1.9) with d, ;, 2 ;. B0 4, 0,4- 1=0,1,0..,n (Higp =190 =1, Ty 0 =00 =0).

(i) The Schur aigorithm.

Do for m=1,...,n

m—1,m m-—1,m
§n== , k=
Uy _1m—1 U 1,m—1
Do for =m,...,n
um,:=um—l i—1 lkmvm—l [
um,i =~ ‘Emumfl,ifl + um—l,i
t“'m,t’=""’m—l,i—]._gﬂ':vm—.l.,i
vm,l' == kmumfl,ifl-{_ Um*l,l'

(ii) Lower triangular Toeplitz inversions.

Dofori=0,...,n

Do for m=1,...,n

m—1
‘YO,m = Z D.I'hrn—i! 70,0 =1
i=0

m—1

Yo, m = Z YO,ihmfi’ Yoo =1
i=0
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TABLE 1 (Continued)

(iii) The recursive convolution Algorithm.

Set, for i=0,...,n, €, =% €0.: = Yo.rr
Doform=1,...,n

-Ym,i = Ym—l,x‘—l_ kmemfl,i

€m,i = ém}'mfl,iﬁl_‘- €m—1.i

Ym,i = Ym—l,i—k_gmem—l,i

€m,i _km.}'m*l,ifl_*‘emfl,r‘

REMARKS.

(1) The entries for the diagonal matrix D, can be read from u,, ,, or
i, . see (2.4a,b).

(2) For the triangular factorization of R, m=1,...,n, see (2.11) and
(2.4a,b).

(3) For the triangular factorization of R}, m=1,...,n, see (4.4) and
(4.16).

(4) For GS type inversions R}, m=1,..., n, see (4.22) and (4.21).

(5) For Hermitian QT matrices, set £,, =k* and perform only (or skip
all) the calculations that involve variables with tilde ~.

TABLE 2
CoMpuTaTION COUNTS FOR VARIOUS FACTORIZATION ALGORITHMS
FOR QUaSH-TOEPLITZ MaTRICES

Count
Hermitian Non-Hermitian
Algorithm Toeplitz  Admiss. QT QT Toeplitz Admiss. QT QT
Levinson O(n?) O(L5n?) N.A. 0@n?) oGt N.A.
Schur O(n®) o) O(r®) 0@n?)  0@n?) 0@nd)

Extended QT
factorization O(1.5n%) O0@B5r%) O0@5n?) 0@r%)  O(Tnd)  O(Tnd)
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inversion algorithms uvsually involve large size matrices and often impose
memory and storage limitations. Both the triangular and the GS type
formulas have order n requirement of memory for execution and order n2
complexity. However, the GS type formulas require order n storage, whereas
the triangular factorization’s storage requirement is order n2, which in some
applications may become a disadvantage and in certain cases may even
exceed the capacity of a computer.

5. CONCLUDING REMARKS

We have presented in this paper a generalization of known fast algorithms
for the factorization and inversion of QT Hermitian matrices to non-Hermi-
tian matrices, as well as new inversion formulas for such matrices. We have
also shown that the fast factorization algorithms for non-Hermitian QT
matrices are related to a pair of lattices, reducing to the familiar one lattice
when the matrix becomes Hermitian. The use of these lattices makes the
theory more intuitive and enhances the understanding of the algorithms and
their possible applications.

The extended QT factorization algorithm presented in Section 4 and
summarized in Table 1 is a comprehensive fast algorithm which computes
virtually any factorization that may be required in applications of QT
matrices: the triangular factorization for R, the triangular factorization of
the inverses of R, for all m =1,..., n, and the GS type inverses of R, for all
m = 1,..., n. Occasionally, however, depending on the required factorization,
it may be sufficient and require less computation to carry out the Levinson
algorithm or just the Schur algorithm. A complexity account for the various
algorithms discussed in this paper is given in Table 2.

All the algorithmns for the factorization and the inversion of the QT matrix
were given in the form of two-term recursions. It is always possible to replace
a two-term recursion by a three-term recursion for one of the variables and an
auxiliary equation that may be used to recover the other (or by two
three-term recursions, one for each variable) [3]. It can be shown that in fact
there exist three-term versions for all the algorithms that appear in this paper.
One advantage of threeterm versions is that they can be used to relax the
strong regularity conditions on the applicability of the algorithms, We shall
discuss this topic elsewhere.

The relations between the polynomials in the Levinson recursions for
Hermitian Toeplitz matrices and the polynomials orthogonal on the unit
circle, studied by Szego, Geronimus, and others, are well known [22, 10]. The
extension of the theory to non-Hermitian Toeplitz matrices involves biorthog-
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onal polynomials and corresponding Christoffel-Darboux formulas; it was
introduced by Baxter [2] and led to further research by him and others: see
[14] and references therein. Concluding the discussion of the interconnec-
tions between biorthogonality, non-Hermitian Toeplitz matrices, and gener-
alized Christoffel-Darboux formulas for reproducing kernels, the authors in
[14] expressed the hope that a generalization of such connections to non-
Toeplitz matrices would be discovered. The theory developed in this paper is
a further contribution to the several results that have been discovered since
then by using the concept of displacement structure to go beyond the purely
Toeplitz case.

APPENDIX A. PROOF OF LEMMA 1 (SECTION 3.1)

We shall prove (3.11), (3.13) and (3.15). The proofs for (3.12), (3.14) and
(3.16) can be deduced by obvious dual argumnents.

(3.11): The first row of (1.2a) implies [1, #1y,..., #,,,]a,, = 0. Using then
(1.18a) and (3.7) yields

0=[1,0,...,0]a,, +[0,04,..., Vo ]2y = — k,.ao + [0, vg1s..., Bg,, |20
and (3.11) follows.

(3.13): Evidently (3.13) holds for m = 0. To show that if (3.13) holds for
m =n — I, then it holds for m = n, we use (3.2b) to calculate

[1’ uﬂl""’u()m]am“Tsa) - 'Sna()[DOl""i u()m]a'm—l-l- [liu()l’""u()m]am—l

(3?3) - gn%[vop---’”on]anﬂ ta,D,_,

= —ap k., ta,D, =a,D _(1-£k ) = a,D..
(3.50) Ogn n 0%n—1 0'n l( S:n N)(S.S) 0™n

(3.15): Follows immediately from (3.13) using (1.18a) and (3.9).

APPENDIX B. PROOF OF PROPOSITION 1 (SECTION 3.1)

We first prepare ourselves with the following lemma.
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Lemma 2. If the relations (3.2)—(3.6) produce the solutions to (3.1) for
m=1,...,n—1, then

0 0 Ugy
n—2 _ n—2 _ : _
|: 2] ] - |:D"_1:| kn . knpnfl’ (B']')

Con

where we define

Prn1'™ Rnfl[anfl,l"'”anfl,nfl’o]f (B.2)
and a,_, ; are elements of a,, . Similarly,

[0;—2> Dn] = [Qﬁ-z: Dn—l] - £n[901s---> g, ] — £ 1> (B.3)

where

9y’ = [Bn—l,b""Bn—l,nkl’O]B‘n—l (B.4)
and B, _, ; are elements of B, .

Proof. Denote for each m < n

B i
Xp=| + |+R.| - (B.5)
~ amm
1I".'O,m+1 0
with x_, = [%,.0,--+ ¥pum)’ (Xg = Tg1). The identity that we have to show,

(B.1), becomes

ESREREN #

It is easy to check that if
iEm:= [xm(]!""xm,m—l] =0m—1’ xmm=€m+le (B7a>b)

hold for m = n — 1, then (B.8) follows. Therefore, we proceed to prove that,
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under the assumptions of Lemma 2, (B.7) holds for all m < n — 1. First we

note that (B.7) holds for m = 0; then, assuming it holds for m =n — 2, we
evaluate & ,_ . Taking the update for a,,_, in vector form (3.2b),

_ 0 a,_,
anl_gn—l[a"_2]+[ 0 J:

and, after deleting first row, and substituting the result into & ,_,, one has
anfz,l

N 0, .
Xa1< . _En—l +Rn--2 ) > (B8)

uO,n—l 0

where (3.1b) was used in the second summand. Therefore,

0,
inl=xv12_£n--].|:l) 2:|=0n—2’ (B'g)

where we first recognized in (B.8) x ,_,, as defined in (B.5), and obtained the
equality to zero from the assumption that (B.7) holds for m = n — 2. This
furnishes (B.7a) for m = n — 1. To show (B.7b) for m = n — 1, we multiply
the two sides of equation (B.5) by the row vector bf,_,; the left hand side
gives bl (X, %, ;. (]'=%,_1,-1, using %, ;=0 from (B9) and
b, |, =1 from (3.8); on the right hand side, the inner product indeed
vields the required result for (B.7b) to hold for m =n — 1,

) an—.l,l
b:,‘71 +b:171Bn71 . =EnDn—l+O’

. n—1,n-1
vo’n 0

where we have applied (3.5b) and (3.1a). The proof for the second part of
Lemma 2 follows by replacing in the above all variables by their duals in the
pairs such as {a,,,b,.}, {k.. €.}, (€, v ;) ]

Proof of Proposition 1. Now we are ready to prove the proposition in
Section 2. First, we have to verify that the new vector a,, given by (3.2a),

0 a, 1
T [“nl] B k"[ 0

, (B.10)
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is a solution to (3.17b). To calculate R a, we take the product of R,
expressed by (3.18), with each of the two summands in (B.10):

o] . . 0| . . 0 0
Rn[anvl]_uo:rluﬂ:n[an_l] uO:nuo"nlian—]_]+|:Rn—laﬂ—l]

- - 0
= g, 0 [ ors-s VondBn1— Yo.n [ Corsers Vonlan_y +
(1.182) 0: a0 L~01> s ¥Onl%a D.n[ 01> » Dn] n—1 anl

0
= @, e, _k, —¥,. D .k -+ B.11
(3,11)u0'na0 n—1"r Vo:ndn—1%n [D ] ( )

o
n—1] _ =~ I - |
Rn{ 0 ]_u():nuo:nlanl VO:nVO:nlan—l+[p 1]
n—

0
= g, 00D _ — V. 4D, _,— 1)+ B.1
(3.13),(3A15)u0'"a0 h—1 "'o.n( o1~ 1) [p" 1] (B.12)

where p,,_, was defined in (B.2). Substitution of (B.11) and (B.12) into (B.10)
multiplied by R, gives

_ 0 _ 0.'r.l—l
Rnan_Rn[an_ll kan[ 0 l

. 0
=kna()I)n—lu(}:n k Dn lv0 n+[D ]

n—1

- - 0
-k { n— 1“0 n_Dn—lv():n+v0:n+|:p"_1:|}

= 0,1 = 0 _ 0, .
- [Dn—l] _knv():n—kn[pn_l] - [ Dn ]

The final equality was prepared in Lemma 2, (B.1). This verifies (3.17b). A
complementary derivation with the dual variables shows that b, solves
(3.17a), and that completes the proof. |

Y. Bistritz thanks M. M. Sondhi from ATGT Bell Labs for stimulating him
to find a fast algorithm with linear storage for an inverse acoustic problem
that involved a large size non-Hermitian QT matrix.
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