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integer addr(0:1,10000),1l0c(0:1,10000)
integer*1l s(5100)

integer size,sj,snext

data addr/20000*0/

c array "s" is string of binary digits: s(i) = 0 or 1
¢ length of "s" has to be somewhat larger than imax

ksum=0
size=1
inextword=2
nwords=1
do 1 i=1,imax
k=1
nl=1
100 sj=s(i+k-1)
nn=addr(sj,nl)
ksum=ksum+1
if(nn.ne.0)
k=k+1
if(nn.1t.0) then
size=size+l
addr(sj,nl)=size
nn=size
jnext=loc(sj, nl)+1
snext=s(jnext)
addr(snext,size)=-k
loc(snext,size)=jnext
ksum=ksum+1
endif
nl=nn
goto 100
endif
addér(sj,nl)=-k
loc(sj,nl)=i+k-1
if(i.eq.inextword) then
inextword=i+k
nwords=nwords+1
endif
1 continue

then

¢ printout:
xlogé=alog(imax*1.)/alog(2.)
eta=imax*xlogi/ksum
ziv=xlogi/imax*nwords
print *,’Length of bit chain (=imax): ', imax
print *, 'Tree size (nr. of ncdes & leaves): ', size
print *, 'Entropy estimate eta(imax): ', eta
print * 'Number of words in Lempel-Ziv parsing: ', nwords
print *,'Lempel-Ziv entropy estimate: ', ziv

Fig. 6. Part of Fortran routine.
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Immittance-Domain Levinson Algorithms

Y. BISTRITZ, SENIOR MEMBER, IEEE, H. LEV-ARI, MEMBER, IEEE,
AND T. KAILATH, FELLOW, IEEE

Abstract —Several computationally efficient versions of the Levinson
algorithm for solving linear equations with Toeplitz and quasi-Toeplitz
matrices are presented, motivated by a new stability test due to Bistritz
(1983). The new versions require half the number of multiplications and
the same number of additions as the conventional form of the Levinson
algorithm. The saving is achieved by using three-term (rather than two-
term) recursions and propagating them in an impedance /admittance (or
immittance) domain rather than the conventional scattering domain. One
of our recursions coincides with the recent results of Delsarte and Genin
on “split-Levinson” algorithms for symmetric Toeplitz matrices, where the
efficiency is gained by using the symmetric and skew-symmetric versions
of the usual polynomials. This special structure is lost in the quasi-Toeplitz
case, but one still can obtain similar computational reductions by suitably
using three-term recursions in the immittance domain.

I. INTRODUCTION

In [1]-[4] Bistritz presented several tests for the root distribu-
tion of polynomials with respect to the unit circle that take only
half the number of multiplications (and the same number of
additions) as the well-known Schur-Cohn (or, equivalently, the
Jury—Marden table) test [S]. Estimation theorists have long known
that the Schur—Cohn test is essentially a reverse (degree-reduc-
ing) form of the Levinson algorithm for the prediction of station-
ary time series, which have Toeplitz covariance matrices [6]. It is,
therefore, reasonable to expect that similar reductions in compu-
tational complexity could also be obtained for the Levinson
algorithm. In fact, such improved algorithms were obtained by
Bube and Burridge [17], by Delsarte and Genin [8], by us [13],
and by Krishna and Morgera [14]. Our contribution is a different
approach that, among other things, serves to delimit the whole set
of efficient Levinson algorithms, which includes, among others, the
“split Levinson” algorithm of Delsarte and Genin [8] and the
recursion of Bistritz’s root-location procedure [1]. We find that
there are three classes of reduced complexity Levinson-type algo-
rithms and demonstrate the relationships between them. More-
over, our approach enables us to obtain similar results for a class
of nonstationary processes with what we have called quasi-
Toeplitz covariance matrices. Before making more specific com-
parisons, it will be useful to introduce some notation and back-
ground results.

The Levinson algorithm is a fast method of solving the set of
linear equations

1Ry, =R[0 --- 0 1] (la)

R;}, where R, is the square Hermi-

[a0, - au

for the unknowns {a
tian Toeplitz matrix

n.i?

Ro.,={c_;0<i j<n). (1b)
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When the matrix R, is real (ie, ¢;_,
solved via the (Levinson) recursions

(D), @)
( z)) =L )(af_](n)

o[ Hs 9

n

=¢;_;), (1a) can be

(2a)

where

(2b)

n
a)l z) = Z a’l‘l‘znii
i=0

ay(z)=1 and a}(z)=1z"a,(z7"'), the reverse polynomial of
a,(z). The coefficients k, are computed by the inner-product
formula

n—1

kn=[Rf171]71 Z an~l.lcnfl (20)
i=0

and R;, are obtained from the recursion

Ri=(1-k)Ri_y,  Ri=c. (2d)

A real polynomial f(z):=X! ,fz' is called symmetric if
f#(z) = f(2), 1.e.,if f,= f,_,; such a polynomial is fully specified
by half of its coefficients (or, more precisely, [(n +1)/2] coeffi-
cients, where [x] denotes integer part of x). Since a,(z)+ a¥(z)
is symmetric, one way of trying to reduce complexity is to try to
propagate a,(z)+ aj(z) rather than a,(z). This turns out to
work, and interestingly, propagating a,(z)+ b,(z) instead of
a,(z) results in a reduction in computation even in cases where
b,(z) is nor the reciprocal polynomial a¥(z).

This so-called quasi-Toeplitz [7] case occurs when the matrix
R,., in (1a) has displacement inertia {1,1}, i.e,, Ry, is such
that the displacement R., — ZR,.,Z* is rank 2 and has one
positive and one negative eigenvalue, where Z is the (shift)
matrix with 1’s on the first subdiagonal and zeros elsewhere.
Quasi-Toeplitz matrices are completely characterized in terms of
the column vectors u, v, in the equation

— * — %
RO:n ZRO:nZ = Uyl _00”3'-

We shall restrict our discussion here to so-called admissible
quasi-Toeplitz matrices (see, e.g., {7]), which satisfy the constraint

u,—pvy=[1 0 ]T

where p is a suitable (real) scalar. Such matrices are encountered,
for example, in seismic deconvolution problems, where the reflec-
tion coefficient at the topmost layer is p rather than —1 (see, e.g.,
[15]). For notational simplicity we also assume that R,., has
been scaled so that 7, ,=1.

The set of equations (1a) is still solvable for admissible quasi-
Toeplitz R,., by a Levinson algorithm that has the form [7]

(a,,(Z) a,1(2)
b,(2) b,-1(2)

where b,(z) # a’(z) and p is the scalar associated with the
admissibility property (p =1 for Toeplitz matrices). A reduction
in computational complexity is possible also for such quasi-
Toeplitz matrices because replacing {a,(z), 5,(z)} by the pair
{f,(2), g,(z)} given by the reversible transformation

()Y (1 1)[a(2)
(mz))‘ ‘“‘(1 —1)(@@)’ b0

=Ln(2)( ) ao(2) =1, b(z) =p (3)

(42)
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£.(2) _ ¥, [l—k, 0 z+1 z=1\( f,_.(2)
g.,(2) _24;,,,1 0 1+k,/\z-1 z+1)\g,_(2)]
fo(2) =¥ (1+p), g5(2) =¥o(1-p). (4b)

which for a suitable choice of the scaling factors ¥, requires only
one multiplication (rather than two, as in (3)) per recursion step.

A comparison of (4b) with (3) shows that while the number of
multiplications has been reduced by the transformation (4a), the
number of additions has, in fact, increased. It turns out that the
increase in the number of additions can be avoided by converting
the rwo-term recursion (4b), which involves both f,(z) and g,(z)
into a three-term recursion involving only one of these polynomi-
als. The three-term recursion for f,(z) has the form

/;1+1(Z)

‘l/r1+1(1—kn+1) {
‘P’](l - k")

with a similar recursion for g,(z).

A suitable choice of the scaling factors ¥, leaves only one
nontrivial coefficient in this recursion. Since this choice can be
made only in three ways, there are three computationally efficient
forms of the recursion (5), namely,

results in the modified Levinson recursion

b
(z+1)f,,(z>—K(l—kn)zf,ﬂ(z)} (5)

foer(2) =8,(z2+1) £,(2) = of,1(2) (6a)
fis(2) = (2 4+1)£,(2) = N, of, -1 (2) (6b)
Micifaei(2) = (2 +1) £,(2) = o, (2). (6c)

The form (6a) is exactly the Bistritz recursion described in [1],
while (6b) is the recursion in an algorithm recently presented by
Delsarte and Genin [8] for the pure Toeplitz case and dubbed by
them a “split Levinson” algorithm. The same recursion has
already been obtained by Bube and Burridge {17] in the context
of solving the (discrete) Gopinath-Sondhi equation, which is the
same as (1) but with a right side of the form [1 1]. Even
though Delsarte and Genin were also motivated by the work of
Bistritz, they do not establish the relationship between their
algorithm and that of Bistritz. (The relations between these
recursions and stability tests are discussed in more detail in [12].)
The name “split Levinson” that they use arises from the fact
that, following Bistritz, Delsarte and Genin work with the sym-
metric (or antisymmetric) parts of the predictor polynomials
arising in the Levinson algorithm for symmetric Toeplitz matri-
ces. This symmetry structure is not available for quasi-Toeplitz
matrices, but the computational reductions can still be achieved
via the transformation (4a).

The conventional formulation of the Levinson recursion (3)
can be related to transmission-line models (see, e.g., [7]). In
particular, the ratio b,(z)/a,(z) can be interpreted as the scatter-
ing function of a transmission line consisting of a cascade of
(uniform) sections with different characteristic impedances. On
the other hand, the ratio g,(z)/f,(z) can be interpreted as the
impedance (or admittance) function of the same transmission
line. For this reason we shall say that the original recursion (3) is
expressed in the scattering domain, whereas the transformed
recursions (4b) or (6) are expressed in the immittance domain!

Finally, we note that to propagate the three-term immittance-
domain recursions (6) beginning with the given covariance R,,. ,,
we must also have a procedure for computing the coefficients
A,,8,, similar to the inner product formula (2c,d) used in the
scattering-domain formulation to compute the reflection coeffi-
cients k,. These calculations, which also require only half the

'Bode coined the term immittance to denote both impedance and admit-
tance [9].
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number of multiplications of those in (2c,d), are derived in
Section III. We also present in Section III the relations required
to reconstruct { g,(z)} from the three-term recursion for { £,(z)}.
This makes it possible to reconstruct the predictor polynomial
a,(z) when necessary.

II. IMMITTANCE-DOMAIN RECURSIONS

It has been known for some time that the Levinson algorithm
can be implemented with a single multiplier (and three adders)
per iteration (see, e.g. [10]) by a suitable scaling of the polynomi-
als a,(z), b,(z). Here we consider the more general possibility of
a linear transformation, viz.

W) an(z)) o
8.(2) b,(z)
where T, is any constant nonsingular 2 X 2 matrix.

The choice of T, determines the structure of a digital network
that propagates f,(z) or g,(z). Since we would like to keep the
structure of such networks uniform, we shall restrict ourselves to
transformations that differ from section to section only by a
scaling factor, viz.,

T,=9,T, ¢,#0,detT+0. (8

We observe that the choice of the matrix T affects both the
structure (i.e., the configuration of delay elements, adders, and
multipliers) and the computational complexity of the recursions,
whereas the choice of ¢, only affects the computational require-
ments. For instance, the choice

n=w(; _}) 9

leads to the immittance-domain recursions (4b). These reduce, for
a suitable choice of ¥, to a single-multiplier recursion, viz.,

£,(2) (1 0)[z+1 z-1)\[f_i(2) .
(g,,(z))‘(o y,,)(z—l z+1)(g“<z)) (102)

which requires only one multiplication and six additions per
recursion step, per polynomial coefficient. Here vy, is a constant
defined as

(10b)

In contrast, the scattering-domain recursion (2) involves two
multiplications and two additions per recursion step per polyno-
mial coefficient.

We show in Appendix I that (9) is essentially the only transfor-
mation (7) that achieves this reduction in the number of multipli-
cations. Every choice of T that reduces by half the number of
multiplications in the Levinson recursion (3) is related to (9) by
either scaling or permutations of rows and/or columns and
further reduction in the number of multiplications is impossible.

Any two-term recursion for a pair of polynomials can be
converted into a three-term recursion involving only one of the
two polynomials in the pair. Indeed, let {f,(z), g,(z)} be a
sequence of polynomial pairs satisfying the two-term recursion

In(2) =, (2) f-1(2) + B(2) 8,1 (2) (11a)
8:(2) = (2)f,-1(2) +8,(2) g, (2). (11b)
Some simple algebra shows that
B.:1(2)8,(z2)
B.(2)
B.-1(2) A, (2)

_——E'(z)—fnwl(z) (12a)

f,,“(z>={a,,ﬂ(z)+ }f,,<z)
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where

4,(2) =a,(2)8,(z) = (2)B,(2). (12b)

This resuit is obtained by eliminating g, ,(z) from (11) which
leads to the auxiliary equation

()4 - () fo(2)
gn(z)_ B,,(Z)

which in conjunction with (11a) produces the three-term recur-
sion (12a). The auxiliary equation is required in certain applica-
tions, e.g., when one wants to recover via (7) the polynomials
{a,(2),b,(2)} from the linearly equivalent pair { f,(z), g,(z)}.

The previously introduced two-term recursions (4b) are charac-
terized by the choices

(12¢)

a,(z) =% \P\fil (1-k,)(z+1)
B2 =3 (- k(D)
0(3) =3 (k)
8,(z) =% Jil (1+k,)(z+1).

Consequently,

2
o LR
1

n—

4,(z) =

—
<

and (12a) reduces to

.r;1+l(z)
tPn-e—l(l_kn+l) \I/n(l—k?’ }
=———((z+) f(z)————=f,_ (2 13a
1=k (z+1)/,(2) o i(2)) (133)
together with the auxiliary equation

2¢,(1-k,)

=7,,{(2+1)f"(2)— -

an*l(z)> (13b)

where v, is given by (10b). The three-term recursion (13a) is
propagated independently of (13b), which need not be used until
an explicit expression for g,(z) is required, e.g. when the full
order has been reached.

To initialize the three-term recursion for { f,(z)}, one needs to
know both f,(z) and f,(z). The two-term recursion (4) implies
that

fo(z)=¢o(l+P) f1(z)=4’1(1*k1)(z+l’) (14)

but it will be more convenient to replace the initial condition on
f1(z) by an equivalent initial condition on the (previously) unde-
fined quantities f_,(z), ¥_; and k,, which occur in (13a,b) for
n=0. We will show that one consistent choice is

Yo=(1-ko) ™" Vo =14k (152)

for all ky=1. In particular, we find it convenient to choose
ko= —1 yielding
Yo =

¥_,1=0 (15b)

1
2
and

1
S =50-08)  f(5)=3(1+p). (150
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Notice that fer a Toeplitz system p =1, so that f_,(z) =0 and
fo(z) =1

The computational advantage of converting the two-term re-
cursion (4b) into the three-term form (13) becomes apparent
when we consider specific choices for the scaling factors .
Suitable choices of {y,} will result in minimum-complexity
recursions with only one multiplication and two additions per
recursion step, and per polynomial coefficient, in contrast to one
multiplication and six additions involved in the two-term recur-
sion (4b), and the two multiplications and two additions involved
in the scattering-domain recursions (3). It is interesting to note
that the three-term scattering-domain recursion (which is known
in the Toeplitz case, see Geronimus [11, p. 132]), has the same
computational requirements as the two-term scattering-domain
recursion (3). Thus conversion of a two-term form into a three-
term form does not by itself necessarily reduce computational
complexity. We obtain a reduction by the combination of a
change of variables and a three-term recursion. To obtain the
minimum-complexity form of the recursions we note that there
are only three choices of the scaling factors ¢, which leave a
single nontrivial coefficient in (13a).

1) Balanced recursions, obtained by choosing y, to satisfy the
constraint

¢"+1(1—k,,“)(1+k,,)=1, n=0 (16)
¥,

result in
$5a(2) =8,(z+ 1) f2(2) = 212 (). (17a)

The constraint (16) leaves y_,, ,, and k, unspecified. In
particular, we may adopt (15b), resulting in the initial conditions
(15¢) and
8 =1. (17b)
The remaining {8,} are related to each other by a recursion
derived from the constraint of y,, viz
8,8, 1A, =1,

non—1

n>1 (18a)

where

An :=(1+k11)(1_kn>1)’ nx1. (18b)
The reason for the name “balanced” for (15a) is that the recur-
sions for ascending and descending indices are, essentially, iden-
tical.

2) Monic recursions, obtained by choosing y, to satisfy the
constraint

¥,(1-%,) =1, n>0 (19)

result in
n+1( )"(Z+l)an(Z) A nZn— l(z)

where A, is defined by (18b). The constraint (19) (with n = 0) is
consistent with (15a) and leaves only _; and k, unspecified.
Thus we may adopt (15b,c¢), which results in

(20a)

Ao=1. (20b)
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3) Dual recursions, obtained by choosing ¥, to satisfy the

constraint
b (1-k2)=1, n=0 (21)
‘Pn*l
result in
Aafiia(2) =(2+1) fP(2) = 212 4(2) (22)

where A, is given by (18b). As in the monic case, the constraint
(21) (with n = 0) is consistent with (15a) and leaves only ¥ _, and
ko unspecified. Thus we may adopt (15b,c). Here there is no
need to specify A,.

Since the three polynomials £2(z), f¥(z), and fP(z) are all
proportional to a,(z)+ b,(z) via different ¢, they differ only by
a scaling factor (i.e., they have the same zeros). In fact, we have

n—1

ff(z)=(£106,-)mz) an(z)=(§xi)f"M<z>. (23)

The three recursions differ not only in the location of their
nonunity coefficients, but also in the remaining flexibility avail-
able for scaling each polynomial of the sequence, or equivalently,
by the freedom to choose the initial conditions. The sequence
(fM (2)} is completely determined by the requlrement of bemg
monic. Indeed, any choice of f(z), fM(z), and A, that is
admissible by the constraints (13) and (14) yields the same
sequence of polynomials fM (z), n>1. The dual recursions have
Y _, unspecified. Therefore, it is perm1551ble (by (13) and (19)) to
multiply the pairs f2,(z) and f(z) in (20b) by any constant
€+ 0 and, consequently, scale all fP(z) by the same constant,
viz. [P (z) — ¢fP(z). The balanced recursions have a useful extra
degree of freedom. A pair of admissible initial conditions { /2 12),
fOB(z)} say (15b), can be replaced by another admissible pair
{e.fB(2), 6, f£(2)} with any €, ¢, # 0, with the effect of alter-
natingly scaling the odd and the even degree polynomials of the
sequence by €, and ¢,, respectively, viz
lelg—l(z)_'flfllf-#l(z) and f3(z) > f3(2), i20.

The two degrees of freedom of the balanced recursions and their
self-dual structure (the same recursion for ascending and de-
scending degrees) make them the most useful in further applica-
tions. This is illustrated in Fig. 1 which presents a lattice realiza-
tion of the balanced Levinson recursion. If the inputs f, =1 and
zf =0 are replaced by f,_; and f,, the lattice of Fig 1
produces {f,.} in descending degrees. Thus for appropriate
choices of inputs, the same lattice implements degree reducing
schemes such as the stability test of [1] or an immittance version
of the Schur algorithm, as discussed in [12]. Finally, we remark
that we can rewrite (23) as

n—1 -1 n
wo-(Ts) 26 we=(11s)re e
a form that further justifies the terms dual and balanced.

fn+1

Z

| S|

LTJ

X

Fig. 1.

zfn b

Balanced recursion lattice.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 3, MAY 1989

1II. RECURSION COEFFICIENTS

To complete our immittance-domain algorithms, we have to
provide formulas to compute the coefficients §,, A, for the
three-term recursions (6) (and v, for the two-term recursions
(10)). For some applications (e.g., a solution to (1)) we also have
to show how g, (z) and a,(z) can be recovered.

The derivation of recursive expressions for k, in the scattering
domain Levinson recursions for non-Toeplitz systems involves
the concept of a generalized Schur algorithm [7], which we briefly
summarize in Appendix II. The same comment also applies to
computing 8, A,,.

We show in Appendix II that for n >1

Tn’=[fn,o Ja fn.n][l uo.n]T
=py,R¢, (25)

where {f, ,} are the coefficients of f,(z) and {u, )} are the
elements of the column vector u,. We also define in agreement
with (15b) and the right side of (25),

Uo,)

n>1

P
N =¥ Ry =, (26)
Thus the ratio of two successive 7, is
T Y
= 1-k2). 27
-1 ‘l/n—l( 1) (2)

Substituting in (27) the constraints (16) for the balanced recur-
sions, and (19) for the monic recursions, leads to expressions for
the coefficients of these recursions given, respectively, by

B M
T, T
n—1 n
8" = B A" = (28)
Ta Ti-1

Proceeding similarly for the dual recursions, substitution of (21)
into (27) results in 7, =7 for all n. This result expresses the

fact that the determination of the right side expression in (6¢),
hn(z) :=(Z+1)/;1071(z)—'zf/1D—2 Z)= Zhn.izi (29a)
i=0

does not require any new coefficients. If instead one takes the
inner product with [1  #g Uy , ] of both sides of (6c¢),
the required inner product for the computation of A,,; in this
case is found to be

2 n
A1 == Z hy, U - (29b)
Pi=0
The two-term recursion (10a) can also be completed to a
Levinson algorithm; the choice of v, that yields (10a) implies, in
conjunction with (27), that 7, /1,_, =2(1+ k). Consequently,

‘r"

(30)

K 41;17 17 T
with the inner product 7, given by (25).

For the Toeplitz case p=1 and b,(z) = a¥(z). Thus the scat-
tering-domain computation is reduced by half because it is only
necessary to propagate the a,(z) polynomials. In the immittance
domain the fact that b,(z)=a¥(z) means that f,(z)=f7(2)
and g,(z) = — g7(z). Therefore, the computation (both in the
two-term and the three-term recursions) is reduced by half be-
cause only half of the coefficients need to be calculated. Since the
Toeplitz case, both in the scattering and the immittance domains,
involves half the computation, the ratios of the computational
complexities are maintained. In particular, each of the three
three-term recursions requires half the number of multiplications
and the same number of additions as the Levinson recursions (2).
Moreover, the computation of A, 8,, and y, via the formulas
(25)-(30) involves inner products with symmetric vectors. Such a
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symmetric inner product can be carried out in (approximately)
half the number of multiplications needed to compute k, via the
formula (2¢,d); viz. we can compute (25) as follows:

Tn=[fn.07fn.1’”"ﬁ1,[;]]

~[co+c,,,c1+c,,ﬁ1,~ . ',C[ﬂ] +C[,.+1”T (31)

2 2

where [x] denotes the integer part of x. Thus a complete Levin-
son algorithm for Toeplitz matrices based on one of the mini-
mum-complexity recursions (6) in conjunction with the appropri-
ate inner-product formula for the coefficients of the recursion
((28) or (29)) requires half the number of multiplications (and the
same number of additions) as the conventional Levinson algo-
rithm (2) for Toeplitz matrices. The two-term immittance-domain
Levinson algorithm consisting of (10a) and (30) also requires half
the number of multiplications but twice the number of additions.
After producing {fi(z); 0<i<n} in n steps of any of the
three-term recursions (6) with coefficients calculated as before, it
is possible to reconstruct g,(z) for the respective last two terms
f.(2), and f,_,(z) using (13b). The reconstruction requires two
coefficients. The first is found by setting z =1 into (13b),

= 24/"(1_](") = 2f;l(l)
fo Yo LD

The second coefficient is y,, which was defined in (10b) and is
obtained after computing the coefficient

(32)

1+, 2
g" = = (33a)
Y. 1+k,
by one of the following three formulas
M
£, = 8pn == =y (33b)

n

Finally, the monic polynomial a,(z) can be reconstructed using
the expression

L@ +s ()
(20) + 8,()

where f,(o0) indicates the leading coefficient of the polynomial
£,(z). The complexity of reconstructing a,(z) is approximately
2n multiplications and additions. Since the computation is car-
ried out only once (for the highest desirable n), this complexity is
negligible in comparison to the rest of the algorithm, which
involves O(an®) computations (see Table II for specific values
of a).

a,(z) (34)

IV. SuUMMARY AND CONCLUSIONS

We have derived some new Levinson-type algorithms that are
computationally more efficient than the conventional Levinson
algorithm. The immittance-domain Levinson algorithms de-
scribed in this paper are summarized for convenience in Table L.
The computational requirements of the new algorithms are sum-
marized and compared to the scattering-domain algorithms in
Table II.

The key to reduction in computation is really the proper use of
the following two additional degrees of freedom:

1) the possibility of linear transformations of the variables
propagated in the Levinson and Schur algorithms, and
especially the transformations (well-known in circuit the-
ory) between wave variables and immittance (voltage, cur-
rent) variables;

2) the use of three-term recursions
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TABLE 1
IMMITTANCE-DOMAIN THREE-TERM RECURSIONS FOR QUASI-TOEPLITZ COVARIANCES
Balanced Monic Dual
#f (2)=11-2)1-p)
fo(2)=51+p)
=10 8=1=X
fori=0,1,2,---,n—1do
i) = M= hP(2) =

8,z +DfF(2)— AP (2) (z+DfM(2)— N 2fM (2)
LMzl = fM(z)

M _ M a
T -ijl,juo,_/

L fPz = f3()

B_ B a
T _Zj./l.juo,_/

(z+D)fP(2)- 22 (2)
L kP 2/ = hP(2)

A= ZP_lzjhﬂl,,“o,/a

81=7',’11/"':B )‘1=".M/7,,i41 fili)»l(z)=>\i_+11hib+l(z)
w,=2£,1)/f, (D)
§2 =8, & =p. /N, £ =pin

8i(2) = {(z +1)f,(2) = p,2f,_1(2)}/{(z = 1§, — 1)}
a,(2) = {fu(2)+ 8,(2)}/{ () + g, ()}

“For Toeplitz systems we compute this inner product via the symmetric formula

(31).
TABLE 1I
COMPARISON OF COMPUTATION COUNTS FOR VARIOUS LEVINSON ALGORITHMS
Quasi-Toeplitz Toeplitz

Recursion Inner Product Total Recursion Inner Product Total
Scattering
Multiplications |  O(#?) 0(0.5n%)  0@.5n%) | 0(0.5n%) 0(0.51%) o(n?)
Additions o(n?) 0057  01.50%) | 0(0.5n%) 0(0.57%) o(n?)
Immittance
two-term
Multiplications | 0(0.5n%) 0(0.5n%) 0(n?) | 0(0250%)  0(0257%)  0(0.5n%)
Additions 0@3n?) 0(0.5n%)  0(3.5n%) | 0(1.57%) 0(0.5n%) o@2n?)
Immittance
three-term
Multiplications | 0(0.51%) 0(0.5n%) o(n*) | 0(0.257%)  0(0.257%)  0(0.5n%)
Additions O(n?) 0(0.57%)  0(1.5n%) | 0(0.5n%) 0(0.5n%) 0(n?)

This is the approach developed here and in [13]. We may note
that besides enabling a simple extension from Toeplitz to quasi-
Toeplitz systems, our approach has also served to delimit the
whole set of efficient Levinson algorithms.

Closely related to the Levinson algorithm in the scattering
domain are the Schur algorithm and the Schur-Cohn test, having
in common recursion forms and lattice structures. Analogous
relationships also hold in the immittance domain. For example,
the lattice in Fig. 1, which realizes the balanced Levinson recur-
sion (17), can also be viewed for appropriate inputs as the
implementation of an immittance-domain Schur-Cohn test (es-
sentially [1]), or an immittance-domain Schur algorithm. Efficient
immittance-domain versions of the Schur algorithm and the
Levinson algorithm for the “near-Toeplitz” cases are discussed
in [12].

We should note that we have not exploited the whole family of
possible fast Levinson algorithms as there are many compatible
alternatives. For example, one can choose g, (z) rather than f,(z)
as the primary polynomial and obtain three additional three-term
recursions that propagate antisymmetric polynomials and require
antisymmetric scalar products to compute their coefficients. One
can further obtain hybrid three-term recursions to propagate
polynomials that are symmetric for even n and antisymmetric for
odd n (cf. [3], [4], [8]). The immittance-domain two-term recur-
sions (10a) also have an immediate dual form in which diag [1,v,]
is replaced by diag [y, !,1] and v, ! is computed as an antisym-
metric scalar product. Our choice of the four fast algorithms
presented here reflects the conceptual simplicity (in contrast to
computational complexity) of dealing with a sequence of polyno-

mials of the same symmetry class and of using symmetric, rather
than antisymmetric, polynomials and scalar products to exploit
the reduced amount of computation.

Morgera and Krishna have recently derived the balanced ver-
sion of the three-term immittance-domain Levinson algorithm for
Toeplitz matrices with complex entries {14]. The same recursion
has been previously derived in the context of stability testing for
polynomials with complex coefficients by Delsarte and Genin
[16] and by Bistritz [2]. We show in [12] how the results of our
work extend to the complex case for both Toeplitz and quasi-
Toeplitz matrices. The key to this extension is the selection of the
linear transformation 7, in (7) as

T

where 7, is an arbitrary complex coefficient. The analysis of
Section II can be carried out with this choice of 7, instead of the
one given by (9), resulting in a new three-term recursion for
f,(2). We show in [12] that the coefficients of f,(z) and of
f,~1(2) in this recursion are rational functions of z. We also show
that this additional complication can be avoided if and only if
the 7, in (35) satisfy the recursive relation

_ nn—l+kn
" Tk,

(36)

where k, are the reflection coefficients associated with the matrix
R. This means that the {7,} are uniquely determined by the
reflection coefficients and cannot be chosen at will. In the real
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case it follows from (36) that 7, =1, and (35) reduces to the
linear transformation (9), which is the one used here.

APPENDIX I

We show in this appendix that (9) is essentially the only
transformation (7) that achieves the factor two reduction in the
number of multiplications. The memoryless part of L, (z) in (2)
and (3) can be transformed into

1 —k A+k,T k,(B*-<o?
M,:=T( n)T;1=A n H(B a )
—k, 1 k,(y*-8%)  A-k,T
(1.1a)
where

T= (‘; g) A=ad—By, T=ay—ps. (Llb)
Our objective is to select T to reduce to a minimum the number
of elements of M, that depend upon n since each such element
implies a multiplication of a polynomial of degree n—1 by a
scalar.

The off-diagonal elements of M, can be completely eliminated
by choosing |af=|B| and |y|=|8|. Since T is required to be
nonsingular, it follows that it must have the form

T= (soé —Ssa)‘ A=2ab, =2sad (1.2a)
where s = +1. Consequently,
1+ sk 0
- 2 n
M, = (2a8) ( 0 1~sk,,)‘ (1.2b)

Since T, =y, T, we can absorb scaling constants into ¢, result-

n

ing in a single multiplier section, viz.,
1+ sk,
1-sk,

0 1

M, ~

(13)

This is the only form of T that leaves a single nontrivial element
in M,. If we fail to set the off-diagonal elements of M, to zero,
then the best we can do is set I' = 0 which results in a two-multi-
plier form

BZ_aZ

1 k, A

o A 1
T

(1.4)

which has the same complexity as the original scattering-domain
section.

The dynamic part of L,(z) transforms in a similar way and,
for T as in (1.2), we obtain

a
1 z+1 SE(Z_l)
T(Z O)T“=§ s . (1)
s—(z-1) z+1
o

Thus the simplest choice is 8§ = sa, which results, essentially, in
our choice (7)-(10), leading to immittance-domain recursions.
Alternatively, we could choose &= 2sa, which would require
some additional scaling by powers of 2 (i.e., shifts in a binary
representation).
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APPENDIX 1

The Schur algorithm for quasi-Toeplitz complex Hermitian
matrices is, according to [7],

G,(2) =6,:(2)( & ?)(k1 kl")(l—lk,.lz)’”2 (I11)

where G,(z) is a row vector consisting of two functions (power
series) in z. To get a recursion similar in form to (4) we need to
convert (II.1) into a column vector format and eliminate the
scaling factor (1—|k,|>)"!/2. For this purpose let us define
power series (in z) u,(z), v,(z) as follows:

[u,(z) —uv,(2)]=/R;G,(2) (11.2)
where
Ry =TT (1=K 2). (113)

i=1

Notice that [ug(z) — vy(z)]=Gy(z) and, therefore, that the

- quasi-Toeplitz covariance associated with G,(z), in the sense of

[7}, is
Ro.n=Ly(uo) LY (up)~ Ly(ve) L (v5) (11.4)
where L, (f) denotes the lower triangular Toeplitz matrix associ-
ated with a power series f(z) =XN fz', namely,
fo
fi b o
Ly(f)=|FL Hh F (1L5)
In fo
With this definition of uy(z),v,(z) the admissibility constraint
Go(2)1 p]"=1 of [7] results in uy(z)— puy(z) =1, as men-
tioned in the introduction. Since (I1.4) remains unaltered when
v(z) is multiplied by a unit modulus scalar, we can always make

p real and nonnegative by a suitable scaling of vy(z).
The recursion (II.1) can, therefore, be rearranged in the form

u,(z 1 -k, \{z 0\f&, ,(z
~n( ) - n ~n 1( ) (11.6)
U"(Z) _k: 1 0 1 Unfl(z)
where i,(z) denotes conjugation of coefficients alone in the
power series u,(z). It can be rewritten as the following nonrecur-

sive expression
W) _ 502
(a,,(z)) =M )(ao(z))

M, (2) =L, (2)L,_,(2) --- Li(2)

and L,(z) is the matrix defined in (2a). The internal symmetry of
the matrix L,(z) induces a corresponding symmetry in the
matrix function M, (z), viz,,

(11.7a)

where

(I1.7b)

A(z) ma(2)
wa(z)  XN(2)

where the sharp (#) denotes conjugate reversal of coefficients of
a polynomial, namely,

p*(2) = 270 p(1/2)]". (ILsb)

We now turn to expressing (IL.7) directly in terms of the
coefficients of the polynomials

}\”(2) = Z >\n.lzi }.L”(Z) = Z 'l’n,izl'
=0 i=0

M,(z)= ( (11.8a)




682

Introduce the row vectors of coefficients
N\, ==[)\,,‘0>\,,,1-~}\ (11.9a)
B, :=[pn,()l"'n,l o 'p‘n‘n] (IIgb)

and recall (from [7]) that the first n coefficients of u,(z), v,(z)
are zero. Consequently, (I1.7) and (11.8) imply that

N, L3 (ug) +w, LY (w) =Ri[0 -~ 0

n,n]

1] (11.10a)

and
ann(uU)+}\nLn(vo) =0. (IIlOb)

This is a set of linear equations in the unknown vectors \,, n,
and its (unique) solution is

x:1=Rf1[0 0
#,=—R;[0

1]Ra:lnLn(uO)
0 l]RazlnLn(UO)

(IL.11a)
(I1.11b)

where L, (u,), L, (v,) are truncated to size (n+1)X(n+1), and
R,., is the corresponding truncation of the covariance matrix
Q:N-
The Levinson algorithm propagates the polynomials a,(z)
b,(z) which, by (3), are linear combinations of the elements of
M,(z), viz,,

a,(z 1 A(2)+pp,(z2
(2) - M.(2) #( ) p##( )

b,(2) Pl \wi(2)+pX(2)
Consequently, the corresponding row vectors of coefficients a,,,

b, are given by the same combination of the coefficient vectors
N,s B, of (IL11), namely,

. (IL12)

a,,=Rf,[1 )
B*=R[0 --- 0

n

1R {L,(u) = pL,(v5)} (IL13a)
11Ro,{ pL,(45) ~ L,(15)} (IL13b)

where b denotes the row vector of coefficients of 5¥(2), i.e.,
bF ==[b*, .- b*,] Admissibility implies that L (uy)— pL(v,)
=1I, which simplifies (IL.13a). In fact, we obtain the normal
equation

anRO:n=R$t[0 e 0 1] (II'14)
Since L,(v,) has zero diagonal elements, it follows from (II.14)

that

R, ,[1 © 0]’
={L,(uo) L (up) = L,(05) L} (1) }[1 0 o]”
=L, (u)[1 o 0]"=[1 wu, o]

which establishes the result

a,[1 g, up.,]" =0. (11.152)

Similarly, we observe that under admissiblity (IL.13b) trans-
forms into

bfL»T u0)=R!e1[0 O 1]R6:]n{pR0:n—Ln(UO)}

and, consequently, that

L (ue)[ 0 0 11" =R:p.
Thus,
b1 up, Uy .] = Rep (11.15b)

and a linear combination of (II.15a) and (I1.15b) establishes (25).
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