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ABSTRACT

The classical algorithms of Schur and Levinson are efficient procedures to solve
sets of Hermitian Toeplitz linear equations or to invert the corresponding coefficient
matrices. They propagate pairs of variables that may describe incident and scattered
waves in an associated cascade-of-layered-media model, and thus they can be viewed
as scattering-domain algorithms. It was recently found that a certain transformation
of these variables followed by a change from two-term to three-term recursions results
in reduction in computational complexity in the abovementioned algorithms roughly
by a factor of two. The ratio of such pairs of transformed variables can be interpreted
in the above layered-media model as an impedance or admiftence; hence the name
immittance-domain variables. This paper provides extensions for previous immittance
Schur and Levinson algorithms from Hermitian to non-Hermitian matrices. It consid-
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ers both Toeplitz and gquasi-Toepliiz matrices (matrices with certain *hidden”
Toeplitz structure) and compares two- and three-term recursion algorithms in the two
domains. The comparison reveals that for non-Hermitian matrices the algorithms are
equally efficient in both domains. This observation adds new comprehension to the
source and value of algorithms in the immittance domain. The immittance algorithms,
like the scattering algorithms, exploit the (quasi-yToeplitz structure to produce fast
algorithms. However, unlike the scattering algorithms, they can respond also to
symmetry of the underlying matrix when such extra structure is present, and yield
algorithms with improved efficiency.

SUMMARY OF NOTATION

Vectors are denoted by bold lowercase letters and are always associated
with polynomials by the following convention:

m
am = [amO’am,h'"!am,m]t’ am(z) = [I,Z,..., z"l]am= 2 am,:'zi’

where ' denotes transposition. L(a, ) is a lower triangular Toeplitz matrix
with first column a

m,0
Lian) = | ’
am,m am,l am,()

Matrices are denoted by bold uppercase; e.gz., R, is a matrix of size
(m +1)x(m + 1), and is the leading submatrix of R, =[r, ;] m<n. T, isa
Toeplitz matrix T,, = [r,_;]. A circumflex dlstlngmshes varlables spemai to
the Toeplitz matrix; e.g., 1f a, is the last column of R} 1 then &, is the last
column of T, *.

The lower shift and exchange matrices are, respectively,

0.0 0 1
OI-IIO 1‘.0

and are square matrices of size determined by the context. Downshifted
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vectors and reversed matrices, vectors, and polynomials are, respectively,
J'amzzam’ Rm:]RmJ’ am=Jam’ am(z;)z[l,z,...,z"’]am.

Complex conjugation is denoted by *; e.g., R}, a%, and a%(2z) mean
complex conjugation of the entries of the matrix, the vector, and the
coefficients (only) of the polynomial, respectively.

Subscripts within parentheses are used to label matrices, vectors, or
polynomials when the index is not indicative of their (fixed at n) dimension.
For example, Wiy Ymy(2), M= 0,1,..., n, are all of length n + 1 and degree
n, respectively.

1. INTRODUCTION

The classical algorithms of Schur and Levinson are efficient procedures to
solve and factorize a Hermitian Toeplitz matrix and its inverse [25, 27, 19,
17]. They involve two-term polynomial or vector recursive updates in the
so-called scattering variables, namely variables that may describe incident
and scattered waves in an associated cascade-of-layered-media model [22, 24,
20]. However, it is also possible to treat these algorithms in some transformed
variables. In particular it was recently shown [7, 8] that a certain transforma-
tion of variables to a so-called immittance-variable form, followed by a
change from two-term to three-term recursions, results in reduction in com-
putational complexity in the abovementioned algorithms. The ratio of the
pair of transformed variables can be viewed as the impedance or admittance
of the associated layered-media model; hence the label immittance domain
given to all the new algorithms (the term immittance, for impedance /admit-
tance, is due to Bode [10]).

The redundancy in computation in the classical algorithms associated
with a Toeplitz matrix was first observed in several forms of a new test for
the zero location of polynomials with respect to the unit circle [1-3] and in a
modified Levinson algorithm for Toeplitz matrices [11, 7} that it inspired.
The Schur-Cohn algorithm for zero location of polynomials {also familiar in
tabular form as the Jury-Marden test [18]), the conditions for the stability of
the linear prediction filter [26], the classical Levinson algorithm to solve sets
of Toeplitz equations [25, 29, 30], testing whether a power series in z is
bounded [27, 19], and finding the inertia of a Toeplitz matrix [23] are only a
partial list of apparently diverse problems in mathematics and system theory
that are intimately related and can be resolved via similar two-term recursions
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of asymmetric (no particular structure) polynomials. In contrast, the new
zero-location and Levinson algorithms in [I, 2, 3, 7, 11] have introduced a
new formulation that, in polynomial notation, involves a certain three-term
recursion of symmetric (or antisymmetric) polynomials. It was surprising to
discover that the new algorithms were able to solve these classical problems
in, roughly, half the amount of computation. Thus, the new formulation
detected some inherent redundancy in the above classical algorithms by
revealing that the symmetric (or antisymmetric) parts of the polynomials
involved in the problem contain essentially the information needed to solve it.
Indeed, Delsarte and Genin called their algorithms in [11, 12} the “split
Levinson™ and “split Schur” algorithms. The adjective “split” arises from the
ability to work with the odd and even (or symmetric and skew-symmetric)
parts of the polynomials involved in the usual Levinson algorithm. Bistritz,
Lev-Ari, and Kailath [7] analyzed the new Levinson algorithm in a framework
that studied the possible effect of a general transformation of variables and a
change from twoterm to threeterm recursions on the efficiency of the
algorithm. This detailed study proved that the new immittance approach
applies not only to Toeplitz but also to certain symmetric quasi-Toeplitz
matrices, where the polynomials in the improved Levinson algorithm are not
symmetric or skew-symmetric and cannot be viewed as an even-odd split of
the polynomials in the usual Levinson algorithm. They also found that there
are three computationally efficient versions of the Levinson algorithm for real
Toeplitz and quasi-Toeplitz matrices, which differ in the form of the recur-
sion: the balanced, the monic, and the comonic forms. The zerolocation and
Toeplitz-Levinson algorithms in the balanced recursion format were extended
also to the complex case and found to retain the same relative efficiency over
the classical algorithms in terms of the number of real-arithmetic operations
[14, 4, 21]. A continuation of the study in [7] with a similarly systematic
study of complex Hermitian quasi-Toeplitz matrices was made in [8]. It
showed that in the complex case there exist five three-term different recur-
sions that have better efficiency than the scattering recursions, but that only
one, the balanced recursion, achieves the same improved efficiency that was
found before for algorithms associated with real Toeplitz and quasi-Toeplitz
matrices.

The efficiency of immittance algorithms for real or complex Hermitian
guasi-Toeplitz matrices in [7, 8] cannot be explained by symmetry of polyno-
mials, because in the non-Toeplitz case the polynomials in the levinson
algorithm have no particular structure in the immittance domain either. In
fact, the better performance of immittance algorithms is also apparent in
algorithms related to the Levinson algorithm, such as the Schur and the
autocorrelation algorithms [12, 9], where even in the Toeplitz case the
variables involved are as structureless in the immittance domain as they are
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in the scattering domain. This kind of evidence indicates that the advantage
of the immittance algorithms over the scattering algorithms must stem from
something more fundamental than splitting the classical algorithms into their
symmetric components, even if the possibility of working with just the
symmetric part of polynomials in some of the algorithms associated with
Toeplitz matrices suffices to explain the improved efficiency.

This paper deals with immittance-domain algorithms for Toeplitz and
quasi-Toeplitz (QT) real or complex matrices that are not Hermitian, and
compares them with the corresponding scattering algorithm studied recently
in another paper in this journal [6]. The most general form of a non-Hermi-
tian QT matrix can be written as

R, = L(G(O))Lt(“m}) - L(G(O))Lt(v(o))’ (1-1)

where L(a )} denotes the lower triangular Toeplitz matrix with first column
a,. The matrix R, is defined by four generating vectors

1 1 0 0

. Uy Uy . Vo1 to1

=] : 1 wo=|:| Yo=|:| Y| | (12
iy, Yor By, Uon

This class includes and generalizes the class of non-Hermitian Toeplitz
matrices T,, which can be obtained by making the special choice 1y, = vy,
and i, = ¥, to yield

T, = [Ciéj]’ Cx = Oor> € _r = Bor- (1.3)

An important subclass of so-called admissible QT matrices is obtained when
the four generating vectors are related by the constraints

ugy(2) = L+ agug(2), (1.4a)

fg)(z) = 1+ By 2), (1.4b)

where we have associated the generating vectors with polynomials by the
standard convention (see Summary of Notation). Obviously, the Toeplitz
matrix is a special case of an admissible QT matrix that corresponds to the
choice a,=f,=1.
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The fast algorithms for non-Hermitian QT matrices are associated with
two discrete transmission lines [6] that reduce to the familiar single * parcor”
lattice (e.g. [26]) in the Hermitian case. Omne transmission line can be thought
of as taking care of the “left” and the other of the “right” triangular factors
of R, or its inverse. Suppose we want to solve the following two sets of
normal equations:

bR, =[0....0,D,), R,a,=[0.....0,D,]" (15)
for an admissible QT matrix R, =(a,, = b,, = 1). This can be done by the
following (*“scattering”) Levinson algorithm for admissible QT matrices [6].
The algorithm consists of a pair of two-term recursions

() ko), () g o 2),

am(z) amfl(z) ﬁm(z) Bmfl(z)
(1.6a)
where
1 ﬁkm z 0 5 — 1 gm z 0
K’"(z):(—sm 1 )(0 1)’ K"‘(Z)'ﬁ(km 1 )(0 1)
(1.6b)

The initial values are

aolz) =1 hi(z) =1
{a0(2)=a0}’ {Bo(z)=30}’ (1.6¢)

while the reflection coefficients are computed from the inner products

[UOI"“’UO,m l]am [501»‘-”50,,1; l]bm
Kpi1= S SR (16d)
Dm=(1_£rnkm)Dm—1) D()=]-- (1-63)

The algorithm may be described by the pair of transmission lines in Figure 1.
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Right lattice

Fic. ). Scattering-domain transmission lines for the non-Hermitian Levinson
algorithm.

In the Hermitian case £,,=k,,, B, = aF. Consequently, the two recursions
.and the two lines become the (Hermitian) replicas of each other, and the
algorithm reduces to the admissible QT Levinson [22, 24] (or Toeplitz
Levinson for a,=1) with the familiar single (“parcor” [26]} transmission
line.

The solution of the two sets of normal equations (1.5) for a Toeplitz
matrix T, also provides the generating vectors for a Gohberg-Semencul
formula for the inversion of T,. Let 4, and i)n be the solutions to (1.5) for a
Toeplitz matrix, i.e. let R =T,. Then Gohberg and Semencul showed [16]
that T, ! can be written as

T 1= DL{L(ﬁ,,)L*(En) — L(1a,) L li),,)}, (1.7)

n

where | denotes downshifted vectors (see Summary of Notation). The
solution of the normal equations (1.5) for a general QT matrix is possible by
an extended QT algorithm proposed in [6]. It is based on the fact that a QT
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matrix R, is always related to some well-defined “hidden” Toeplitz matrix
T, by the relation

Rn = L(ilo: n)TnLt(h(): n)’ ilO:n = ﬁ({)) - G(O): h():n =Wy~ Vi (18)

which we shall refer to as congruence, as it extends a similar congruency
relation between Hermitian QT and Toeplitz matrices, studied in [13, 22, 24].
The extended QT algorithm in [6] comprises two stages. First, a Schur
algorithm for the non-Hermitian QT matrix (to be reviewed in the next
section) creates the set of reflection coefficients {£,,.k,}, m=1,...,n,
which characterize all QT matrices that are related by congruence to a
common Toeplitz matrix. Next, a recursive convolution algorithm uses to
advantage the interpretation of multiplications of the form L(hg, )a, as
convolution between two vectors, hy, , *a, to produce the solution vectors to
(1.5) and its submatrices. These congruence relations led us in {6] also to the
following GS-type inversion formula for an arbitrary QT matrix:

Ryt o (L LE) - LU L)) (19w)

n

in which the generating vectors are given by

en=L_l(h0:n)§n, dn:Lil(hO:n)i)ﬂ’

&, =L by, )b, d,=L ()4, (1.9b)

n

In the above B is the reversed matrix (see Summary of Notation) and &
and b, are the solutions of the normal equations (1.5) for the “hidden”
Toeplitz matrix T, of (1.8). The extended QT algorithm produces recursively
the generating vectors for (1.9) and solutions to (1.5) to all submatrices R,
m =1,...,n. Admissible QT matrices admit a more direct GS formula whose
generating vectors are produced by the Levinson algorithm (1.6) [5].

This paper carries out a systematic study of algorithms for the solution of
the normal equations obtained by transformation of the scattering algorithms
to immittance variables and by passing from two-term to three-term recur-
sions. We obtain, for example, that the above (1.6) Levinson algorithm for
admissible QT matrices transforms into a pair of three-term recursions for
linear combinations of the scattering Levinson variables. For efficient algo-
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rithms, the immittance variables in the pair of three-term recursions have to
be linear combinations of the scattering variables of the forms

ful2) = ¥n0u(2) +v,0,(2),  8m(2) = vabu(2) + ¥nBu(2). (1.102,b)

where ¢, and v, are some scalars (complex numbers) common, in the
manner shown, to the two combinations and obey some well-defined addi-
tional constraints. For example, the Levinson algorithm (1.6) has as one of its
possible immittance versions the following form:

Ffoii(2) =0,z + {u ) ful2) — 2f,\(2), (1.11a)
Emet(2) = ($nz +8,)8.(2) — 22,,_1(2) (1.11b)
with
B T(fme.) _ 'F(gm—l) m o
Sm-—,r(fm) : §,,,———+.(gm) , >1, (1.11c,d)

T(fm) = [l’u()l"“’u()m]fm’ 'F(gm) = []"ﬁﬂl""’ﬂﬂm]gm' (llle)

The algorithm is initiated by the values
ofo(x)=b1-2)(1-a)),  Alz)=i(+a), =1, (111f)

g (2)=3(1-2)1-8),  gulz)=:(1+8), LH=1 (1llg)

The above algorithin features a pair of so-called balanced recursions. Our
study reveals that there are five different pairs of efficient recursions. We
found similarly five efficient recursions also for the Hermitian case [8].
However, unlike the case there, where one of the recursions (the balanced
recursion) was more efficient than the other four, in the non-Hermitian case
all the five are of equal efficiency. If required, at the end of n recursion steps
the scattering variables a_(z), b,(z) that form the solutions to the normal
sets (1.5) as well as the two complementary variables a,(z) and 8,(z) can be
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recovered at a negligible (order n) extra cost in computation. For example,
we show that the solutions for (1.5) are given by

0l5) = e () ), (1.12a)
() = ——(e.() +1.(2)) (1.12)
where
(- Do) - 2 ) g, (aw
(Z—I)Y(Z)=%"—(l)g (z) —(z+1)g.(z).  (L13b)
) = B :

The non-Hermitian immittance algorithms are associated with two trans-
mission lines as illustrated in Figure 2 for the above balanced recursions. The
other four versions have similar transmission lines that differ only in the
location of the multipliers. Similar pairs of Iattices are associated also with the
immittance versions of the Schur and the extended QT algorithms, which are
also studied in this paper.

We examine in detail the computational complexity of the best possible
immittance Schur, Levinson, and extended QT algorithms for non-Hermitian
quasi-Toeplitz matrices. In all cases there are five versions of equally efficient
algorithms. The comparison of the count of arithmetic is summarized in
Table 1. The table may be compared with Table 2, reproduced from {8],
which similarly summarizes algorithms for Hermitian matrices. It is observed
that in the non-Hermitian case, in contrast with the Hermitian case, the
algorithms are roughly of the same efficiency in both domains. As we have
already discussed, this observation has significance of its own in relating the
“mysterious” factor two (roughly) of computational saving found in all the
previously reported immittance algorithms to the symmetry in the underlin-
ing matrices, as all previous reports considered Hermitian problems.

The outline of the paper is as follows. The next section (Section 2} reviews
the scattering-domain Schur algorithm to complement the Levinson algorithm
already shown above. Then it describes the general technique of moving from
two-term to three-term recursions and demonstrates it by converting the
above Levinson algorithm for admissible QT matrices to a three-term recur-
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Left lattice

8a-1 B
Sn—l
oz ) ZBa-1

Right lattice

Fic. 2. Immittance-domain transmission lines for the non-Hermitian Levinson
algorithm (balanced form).

sion version. The immittance transformation is introduced in Section 3, which
carefully studies the set of all possible pairs of recursions of highest efficiency
and shows five essentially different pairs of recursions of equal efficiency.
The relations that exist between the coefficients of the five recursions are also
exposed. In the subsequent Section 4 we first develop the rest of the formulae
required to complete each of the five pairs of recursions into a Schur and a
Levinson algorithm. Then, we show how the extended QT factorization
algorithm can also be transformed intc immittance algorithms. Finally, we
address the problem of recovering conveniently the immittance variables that
were suppressed during the conversion to three-term recursions and the
reconstruction of the original scattering variables as necessary. The counts of
arithmetic operations in the different algorithms is summarized conveniently
in a table, Table 1, whose comparison with the corresponding Table 2 for
Hermitian matrices exhibits, on one hand, the immittance compatability with
the scattering-domain algorithms in the general non-Hermitian case, and on
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the other hand links its relative advantage on all previous reports, which
always dealt with Hermitian matrices, to its further ability to use to advan-
tage the additional structure that exist in Hermitian matrices by virtue of
their symmetry.

2. NON-HERMITIAN SCATTERING ALGORITHMS

2.1,  The Schur and Levinson Algorithms
The Schur algorithm for a non-Hermitian QT matrix [6] is given by the
recursions m =0,...,m:

[a(m)(z) _ Km(z)[fi(nwl)(z) }, [u(m)(z) ] _ Km(z)[u(m—l)(z) }

5(m)(z) U(mfl)(z) D(m)(z) U(m—l)(z)

(2.1a,b)

with transmission matrices K (z) and K, (z) identical to those already
introduced in (1.6b), and where the coefficients £, and k,, are computed by

v vmfl,m

£, = —— k= (22¢,d)
U l,m-1 U1, m—1

The algorithm is initiated by the polynomials defined by the generating

vectors (1.2) of R,,. All vectors are of length n + 1 with increasing number of

leading zeros, viz.,

Wimy =0, 0,68 s Bl o]y B = Do (2.3a)
Wiy = [0,,0, Uy st o]y U =D, (2.3b)
Vomy = [0,:4.0,0, 80 s 15eves B ] (2.3¢)
Yoy = [0,+:,0,0, 6 s1seves O ] (2.3d)

A transmission-line realization of this Schur algorithm is depicted by the
pair of lattices in Figure 3. The algorithm presents the situation in which the
four vectors (1.2) are applied as inputs to the two lattices in the way
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;(n—l) ;(n)
kn -
fn -
a(u—l) Ein)
Left lattice
Y Y Y(2) Yin-1) Vin)
| £n -
k, -
U (n—-1) Hin)

Right lattice

Fic. 3. Scattering-domain transmission lines for the non-Hermitian Schur algo-
rithm.

illustrated by Figure 3. The Schur algorithm produces the LDU factorization
of R, [6], viz. R, =, D; U}, where the columns of U, and U, are given by
the Schur variables i ,,, and u,,,,. More significant to our current interest is
that the Schur algorithm provides the most direct way to obtain the set of
reflection coefficients {k,,£,.}. If z blocks are interpreted as unit time
delays, the “reflection coefficient” £, (or k,,) is the ratio of the upper-line to
the lowerline input signals to section m at “time” m; that is, the Schur
algorithm offers an “on-line” construction of the two transmission lines. The
importance of the Schur algorithm as a means to “construct” the pair of
transmission lines that is common to all fast algorithms for QT matrices with
a common “hidden” Toeplitz matrix (1.8) is illuminated by the extended QT
algorithm [6], which can produce all the inversion and factorization algo-
rithms, including the cases where the Levinson algorithms are not applicable.
We shall see that the immittance Schur algorithms provide similarly a means
to construct the pair of immittance lattices which again admit, via the
immittance version of the extended QT algorithm, the solution of the
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fundamental equations (1.5) and the generation of the GS inversion formula
(1.9), even when the matrix is not Toeplitz or admissible QT.

We have already described the scattering Levinson algorithm in the
introduction section [see (1.6)]; therefore it need not be repeated here. It
applies for QT matrices that satisfy the admissibility constraints (1.4). These
cases have an important significance in modeling the propagation of waves in
layered media by extending the model to allow partial surface reflectance. It
also presents the “fairest” generalization of the Levinson algorithm that
leaves its simple form essentially unaffected. The solution of the normal set of
equations (1.5) for a general QT matrix is possible by the extended QT
algorithm, which is composed of the Schur algorithm followed by a recursive
convolution algorithm. We shall give a description of this algorithm in a later
section (Section 4.3), side by side with its immittance version.

2.2. Three-Term Recursions

It is always possible to replace a two-term recursion in two variables
(polynomials or vectors) by a three-term recursion that involves only one of
the variables in the pair [7, 8). Suppose { f(z},g,.(z)} is a sequence of
polynomials satisfying the two-term recursion

fulz) ] Fur(2) [anlz)  B8.(2) i
[qu(z)}—Mm(z)[q,ml(z)}’ Mm(z)—[ym(z) Bm(z)]' (2.4a,b)

Following the general technique for converting two-term recursions into
three-term recursions, eliminating, say, ¢,.(z) (see [9]), we obtain

Brsi{2)8,(2)
Bn(z)

Bni1(7)4,(2)

Bm(z) fm—l(z)’

foorlz) = {am+l<z)+ }fm(Z)—

(2.5a)

where A (z)=det M (z). The second variable that is eliminated can, when
desirable, be retrieved from last two primary variables by an auxiliary
equation

8.(2)£.(2) ~ 8(3)f, ()
B.(z) '

$.(z) = (2.5b)
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A useful demonstration of the above technique would be its application to
the Levinson algorithm for non-Hermitian admissible QT matrices (1.6). The
demonstration will be constructive in two ways. First, since the algorithm
(1.6) is considered to be new in [6], the following will also present an
algorithm not presented before. Second, in our line of exposition, it serves to
demonstrate that the technique of this section that was found to reduce the
arithmetic counts in the Hermitian immittance algorithms in [7, 8] does not
in itself necessarily achieve such an effect, not even in the Hermitian case for
the scattering variables.

We choose to replace the two two-term Levinson recursions (1.6a,b) by
two three-term recursions in the variables @,(z) and b, (z), which are the
only variables actually needed as solutions for (1.5) or in the LDU decomposi-
tion of R, ! [6]. The resulting Levinson algorithm, as a simple exercise of the
technique depicted by (2.4,5) would verify, is as follows:

o)
()= 5= T an(a) - 2 1= ks (0), 00

m

byor(2) = ( - 'g"'“]b.,,(z) e kY (2), (2.6b)

£m Em
[001""100,11; l]am [601"'”60,111 I]bm
km+1= D - > £m+l= D s Y (2.6C)
Dm-__(l_gmkm)Dm—l D0=1' (2'6d)

The algorithm is initiated by

a_(2)=b_4(x)=0.  a(z)=hyz)=1, k0=aio, ‘5":3%'
(2.6¢)

A similar threeterm version for the Schur algorithm, taking ., (z) and
t,(%) as the primary variables is also possible.

The above also illustrates the usefulness of the technique, in certain cases,
for singling out the truly primary variables while eliminating variables that
are redundant. In these cases, the variables v, (z), 6, (z) and a,(z), B.(z)
are not required, for example, in LDU factorization of R, or its inverse,
respectively. It may also be observed, though, that the three-term versions
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offer no computational advantage over their two-term counterpart, since in
both cases four polynomial multiplications are required per recursion step.
Identical counts characterize also the Hermitian case, where, as mentioned in
the introduction (see [6] for details) £ =k* and the second recursion and
inner product can be dropped in both (1.6) and (2.6} here. Finally, we
mention that for Hermitian matrices the relation of the polynomials in the
Levinson algorithm for Toeplitz matrices to polynomials orthogonal on the
unit circle is well known, and threeterm recursions for polynomials orthogo-
nal on the circle do appear already in some early classical works {15, 28].

3. IMMITTANCE TRANSFORMATIONS

Suppose we transform each of the two twoterm recursions into new
variables according to

L] o] e [Bul) )
[%(z)]‘T'“[am(z)}’ [ma] Tm[ﬁm(z)] (3.1a)

£l 2 Ul z Xl 2 o | el ®
)|y [en®] [l | g [l | g
y(m)(z) U(m)(z) y(m)(z) D(m)(z)

It has been shown in [8, 7] that a most general transformation that yields a

uniform transmission line structure and computationally efficient recursions
has to be of the form

S N B ] I
1 -1{0 v, 1 1|0 v,

A transformation of this type has the effect of replacing a pair of polynomials
{a(z),a,(z))}, whose ratio is a bounded function, by a pair of polynomials
whose ratio is a positive real function. Indeed, let

L] [an(®)
|¢m(z)] ‘Tm[am(z)}’
an(2) 6.(%) v
()

or

fm(z) » M © I"—‘ (32)

8.(2) =
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Then it can be seen that if S, (z) is analytic in |z|> 1, and |8,(z)] <1 there,
and [n,,| < 1, then Z_(z) is analytic and Re Z,(2) > (1 — [MmD/(A+ 1, =0
in |z} > L. In network theory, bounded functions like S (z) and positive real
functions like Z (2} describe, respectively, ratios of forward to scattered
waves and the impedance or admittance ratios of pairs of wave variables. For
this reason we called these transformed variables immittance variables. Thus,
depending on the physical wave propagation phenomenon that is being
modeled, the immittance variables may present, for example, voltage and
current, seismological or acoustical pressure and velocity, etc.

Setting the new variables into the two two-term recursions, we obtain two
two-term recursions in the new variables:

2|y 5] el [ 2)
[«bm(z)]‘M"*(z)[%_l(z)]’ [ym(z)]‘M"'( )[vm_l(z)}

(3.3a,b)

with matrices M, (2) =T, K (2)T;', and M, (z)=T K ()T 1,
The two two-term recursions (3.2a,b) can be transformed into a pair of
three-term recursions

4’m+l - vm+1$m+.l

fm+1(z)= lpm-vmgm
V¥ —1 v, .
X\ z+ T fm(z)_vm_l(l— mém)2fn_(z)|,  (3.42)
~m+ - ~m+ km+
gm+1(z)= L 3 Vm +1 1

X [(z + 6m¢m:l )gm(z) - a—ﬁm—(l - émkm)zgm_l(z)]. (3.4b)

m—1

This follows from the procedure (24.5) incorporating in each recursion an
implied condition shown in {8] (since each of the two two-term recursions
here has structure already considered in [8]) that has to be satisfied for the
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polynomials in the three-term recursions to have polynomial (rather than
rational functien) coefficients. The implied conditions are

(vm_‘Prnkm)#’m-l =c (U £ )J;
("Pm - l"mgn-:)"’m—l ’ (‘!Jm ij k )G -1

=5,

where ¢ and & are arbitrary complex numbers not dependent on m. As a first
step toward reducing the number of different coefficients in the pair of
recursions (3.4), it is observed that ¢ = £ is desirable. Setting them both equal
to 1 makes the current non-Hermitian extension consistent with the Hermi-
tian case [8] and also maintains the “scattering”-to-" immittance” interpreta-
tion of the variable transformation. The choice ¢ = =1 implies the simple
relations &, =,., ¥, =v, and reduces the number of different recursion
coefficients in (3.4) from six to three. We therefore set the following
Fundamental constrainis:

(vm - ‘!’mkm)\bm—l
("Pm - vmgm)vmfl

=]" l'}'t'rl=‘lbn':’ 1li;m=vm‘ (3'5)

The fundamental constraints imply the relations

nm_km _ 'qm—1+km

m— = 3 Tlm— Ui =1 3 3.63.,[)
K ! l_nmgm 1+nm—l£m ( ¢ ) ( )

where we denote, as in (3.2),

v, U,
Mo = = fpi= = =75 (3.6c,d)
Ym
These relations demonstrate that the fundamental constraints leave little
further freedom in choosing the scaling factors ¢,,,v,, and §,, 0, of the
immittance transformation. In fact it is possible to impose exactly one more
constraint, which we shall choose so as to reduce the number of different
nontrivial coefficients in the pair of recursions from three to two.

In the sequel we shall mostly be concerned with immittance algorithms
based on three-term recursions, which were found to be more efficient in our
previous studies [7, 8]. Nevertheless we want to comment beforehand that

(3.2) give rise also to two-term immittance recursions that can also be made
efficient. Indeed, the fundamental constraints of (3.5) also simplify the
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matrices M,(z) and M, (z) of (3.3). Thus, the entries of M, (z) [with
notation as in (2.4b)] become

m(Z)‘ 2% ) ( +1), (3.7a)
Y — Uk,
B’"(Z)=2—¢ml_( -1), (3.7b)
) = Y5 k), (3:70)
(z)———_g(x z+R,), (3.7d)
m 2¢m 1 .
where
Y. tv.é, . v, + ¥k,
RPN e

The corresponding entries &,(z), 8,(%), ¥u(2),8.(z) of M_(z) go through a
similar simplification and are obtained by exchanging ¢, < v,,, k,, < £, in
the right-hand sides of (3.7a,d). Let us also note that the best choice for low
arithmetic-operation counts in the recursions is the constraint that makes the
upper row entries in the two transmission matrices monic. This can be the
basis of the Levinson or Schur algorithms, the Hermitian versions of which
were discussed in [7, 8]. Such algorithms become useful when for some reason
one wants the complete sequence of immittance pairs of variables.

We next examine all the possible ways to set the additional constraints. It
turns out that there are five different choices, which result in five possible
pairs of recursions. These choices have the effect of reducing the number of
coefficients in the pair of recursions from three or two.

(1) Balanced pair. These recursions result from imposing the constraint

gﬁ - r§+ £m+ ”If
( (‘pﬂl_ :BEI)UBi)lv (1 - kmgm) =1 (38)
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to obtain the two recursions

forr(2) = (82 + $,) f(2) — 2 1(2), (3.9a)
Enei(2) =80z +8,)8.(3) — 28 _1(2) (3.9b)

with
§ =l o Yoo (3.10a,b)

" (1= k) Yull=kpén)

The constraint (3.8) clearly originates from an attempt to simplify in (3.4a)
the multiplier of zf,, _,(z). It is then seen via the fundamental constraint (3.5)
that

(¢m+1 Um+1km+l) .

(2 - 0Bk, )55 _,

~(1=knén) =1,

which in turn has an identical simplifying effect also on (3. 4b), yielding a
(3.9a) lookalike recursion with 8 and §' rather than 8, and {,. Finally, it
follows from (3.5) that §,=¢,, and {,,=8,,, which completes the proof for
the validity of (3.9a,b). In the Hermitian case these recutsions reduce to what
has been called the balanced recursion in [7, 8], the name “balanced”
pertaining to the fact that the two recursions look alike and are similar in
ascending and in descending indices.

(2) Left-monic pair. The constraint here originates from requiring the
recursion for f(z) to give monic polynomials (if appropriately initiated by
monic polynomials). The constraint is

Yl = n,¢,) =1 (3.11)
It results in the pair of recursions

fari(2) =(z+p)ful2) = Auaf, (), (3.12a)

gm+1(z) = (P’mz + l)gm(Z) - Angmfl(z) (312b)
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with
ot Vm (1-k,£ ).  (3.13,b)
Bm = M = T Rmem /e -loa,
4’?: vfj:lifl " ”r?f—l

Indeed, (3.11) is equivalent to

M M
m+1 Vi + lgm+ 1

=1
M M 2
m_vmg

m

which leaves zf, (z) free and admits monic polynomials. This constraint, in
combination with the fundamental constraint (3.4), implies

M _ ~M LM ~M

m+1 IJerJ.karl _ libm Upp— g
M _ ~M M ~M
m i"mkm m-1 Ym

from which (3.12) and (3.13) follow. It also becomes apparent now that either
the first or the second recursion, but not both simultaneously, can be made
monic.

(3} Right-monic pair. Imposing on (3.4) the constraint

W (0, — k) =1, (3.14)
one obtains
fors2) = (Bnz + V£ () = K2, ((2), (3.15a)
met(2)= (24 fn)gn(z) - A2z, i(2), (3.15b)
where
io= tM ””A‘i;‘ A, o (1-k,t).  (3.16a,b)

T oM
m—1 m "pmfl
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(4) Left-dual pair. A dual pair to the right-monic pair of recursions
follows from choosing the constraint to be

vP
= (1-k,¢,)=1. (3.17)
vn?—l
The resulting recursions are
9m+1 m+l(z)=(z+pm)fm(z)_zm—l(z)’ (3-183)
9m+1gm+1(z)=(sz+1)gm(z)*zgm—1(3) (3'18b)
with
3 E!_vn?gm 271 U,E (3 19 b)
m = 3 pm =" ' * a’
?1+l_v£+1£m+l :?1 U£71

(5) Right-dual pair. The constraint this time is taken to be

b
Vi
b

m—1

(1-k,£.)=1, (3.20)

and the resulting recursions are

~

Ores 1hur1(2) = (B + 1)f(2) — 2f,i(2), (3.21a)

Oy 18mar(2) = (24 B,0)80(2) — 28, _1(2) (3.21b)
with

5 - A P e 1 L (3.29)

" m—1 Vm , " U£+1_‘J!’2+1km+1‘ .

3.1.  Interrelations among Coefficients
As might be expected, there exist close connections among the coeffi-
cients in the five pairs of recursions [because the different constraints on ,,
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and v,, act only by weighting and scaling linear combinations of scattering
variables; cf. (3.1)]. Suppose we pick the left-monic recursion coefficients
(3.13) as reference parameters and check their relations to the coefficients in
the remaining pairs of recursions. We first observe that the coefficients in the
left-monic recursions are also given by

Nm _
IJ-,,,=T’ ] A1-;1=(‘nmil_sm--l)('r,m—l-|'-km)' (3‘23)
m-—1

Examination of the left-dual recursions reveals that their coefficients are
identical with the left-monic coefficients (hence the name dual), viz.,

By ™ B 8m+1=Am‘ (324)

The balanced recursion coefficients, in turn, are related to the u_, and A, by
1
§m:l"‘m8m’ amam—lz A_ (3(}:1) (325)

Switching from “left” to “right” recursions, we similarly find that

, . Nm— 7 _
Py = Uy = " 1= Bm+1=xm=(nmfl_km—l)(nmll-‘_gm)' (326)

Finally, the connections between left and right recursion coefficients are

o Ny
R (3.27)
Mm

We note that with the above, we have also established the connections
between the various immittance coefficients and the scattering coefficients
{ ks £} They follow through (3.23), or (3.26) and the recursive definition
(3.6D) for the sequence {17,,} starting with 5, =1 [the initiation that corre-
sponds to our choices in (4.3,5) below].

We choose not to incorporate the relations shown above in the various
pairs of recursions, but retain for each the original individual notation. This
will add to the clarity of the completion of these recursions into Schur and
Levinson algorithms that we shall carry out in the sequel. As we shall see, the
derivation of the inner products in the various Levinson algorithms employs
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the relations between the recursion coefficients and their corresponding
constraints, to which identical parameters in different recursions relate differ-
ently.

4. IMMITTANCE SCHUR AND LEVINSON ALGORITHMS

In this section we bring the details of five Schur and Levinson algorithms
into correspondence with the five forms of efficient recursion pairs that were
evaluated in the previous section. The Schur recursions propagate

f(m)(z) = ‘Pnﬁ(m)(z) + Unﬁ(m)(z’)’ x(m)(z) = Umu(m)(z) + ‘va(m)(z)

(4.1a,b)

[see (3.1)], and the Levinson algorithms propagate corresponding linear
combinations of the scattering Levinson polynomials, that is,

Ful(2) = ¥ () vp0(2), gn(2) = vbn(2) + ¥Bulz). (4.22,b)

It is possible to arrange initial conditions that are common to all the five
versions of the algorithms by making some careful choices of available
indeterminate scalars such as ¥, ¥_,. Uy, v_1, ko, and &, Such a possible
set of initial conditions for all subsequent algorithms is as follows. Take

So=1, §H=1, Ay=1, 5\0=1, po=to=1, By=fo=1. (4.3)
Initiate the Schur algorithms with

2E = %(1 - z){ii(o)(z) - 5(0)(Z)}’ f(())(z) =é{fi(0)(z)+ 5(0)(2’)}

(4.4a)

-1 =%(1 - 3){“(0)(27) - U(O)(z)}’ x(m(z) :é{u(ﬂ)(z)'}_ ”{0)(3)}-

(4.4b)
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Initiate the Levinson algorithms with

#F(2)=3(1-2)(1-a),  fi(z)=3(1+0a),  (450)
2 (2)=3(1-2)(0-58),  go(z)=3(1+8).  (45b)

The above initial conditions are chosen so as to be consistent with [7, 8] and
to become “nice” for the Toeplitz (a, = 8, = 1) case.

4.1.  Immitiance Schur Algorithm

We list in the sequel the five possible forms of the Schur recursions. All
subsequent formulae for the computation of the recursion coefficients emerge
easily from the observation that the first m coefficients of T(my(7) and
X(m)(2) vanish, ie.,

Tou(2) =0, % o £, W11 24000, 2],
(4.6)

Xam(2) =0, % o wm W)L 2,000, 27

This fact follows from (2.4) and (4.1).
(1) Balanced algorithm. The balanced Schur algorithm consists of the

recursions
f(BrJl+l)(z) = (amz + g’m)f(Bm)(z) - Zf(Bm—l)(z)= (4.7a)
x(Bm+l)(z) = ({mz + am)I(Bm](z) - zx(Bm—l)(z) (47b)

[cf. (3.9)] with coefficients determined by

—+B ~B — B B .
g'm_xrnfl,m—]./xm,m’ Sm_xm—l,mfl/xm,m‘, (48d”b)

We describe the Schur algorithm by the transmission line in Figure 4. Similar
descriptions are possible also for the four subsequent algorithms. The trans-
mission lines will have the same form, differing only in the position of the
multipliers at each section. As mentioned for the scattering Schur algorithms
with the transmission lines of Figure 2 (and as discussed in more detail in
[6]), interpretation of the z blocks as delays permits a flow-graph interpreta-



TOEFLITZ AND QUASI-TOEPLITZ MATRICES 873

Right lattice

Fic. 4. Immittance-domain transmission lines for the non-Iermitian Schur algo-
rithm (balanced form).

tion of the algorithm in which {,, (8,,) is formed by the ratio of the signals at
the two inputs to section m of the left (right) lattice at “time” m.

(2) Left-monic algorithm. The left-monic Schur algorithm is given by
the recursions (3.12):

fz‘r{1+1}(z) = (Z + Mﬂl)f?fﬂ)(z) - Amz:f(“:a—l)(z)! (493)
x(I‘:1+l)(z) = (p.mz + l)x(“,{,)(z) - Amzx?iifl)(z) (4-9]3)

with coefficients determined by the formulae

M ~M
A = x _A xm*l,m*l
m Ay » B = A fM

m—-1,m—1 m,m

(4.10a,b)
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(3) Right-monic algorithm. This Schur algorithm is given by the recur-
sions (3.15):

M ow(z) =i,z +1)2M (2) - K, 280 (2), (4.11a)
B y(2) = (z+ 4,02 (2) - Azl (2) (4.11b)

and the coefficient formulae

,i.-zﬁ' xM’
~ m,m A m—1l,m—1
A= Ba=R, T (4.12a,b)
xm—l,mfl xm,

(4) Left-dual algorithm. The dualform algorithms, as we shall see re-
peatedly, always require the following ordering of computation: first compute
the recursions’ right-hand sides, then the coefficients, then the new (m + 1)th
variables. Here, in the left-dual Schur algorithm, the procedure is

D 1y(2) = (2 + 0,)E00(2) = 2D _ (7). R y(2) =051 B2, 1(2),
{(4.13a)

Wi s n(2) = (p, 2+ l)x(?n)(z) - zx(Ea;—l)(Z)! Tmep(2)= 6r;-ilw(m+ INED]
(4.13b)

with formulae for the coefficients

S S 0m+1=2w1‘7?+1,m+1: (4.14a,b}

where w,, | ; are the coefficients of w,,, , 1(z) by the regular association of
polynomials with their coefficients vectors, that is, w_,, = PnXpm mar T+
Xy — X

m,m m—1,m*
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(5) Right-dual algorithm. In this Schur algorithm, we again start with
the computation of the right-hand sides of the recursions (3.21),

@0, (2) = (Buz + 1D, (2) — 2D, (2),  #5,.(2) =871 180 (2),
(4.15a)
w2,y (3) = (2 + p)xb(x) — 2B (2),  xB(a) =6, 1wl (),
(4.15b)

where the coefficients are computed by

—1,m-1 a

pm=1“)—’ Bm+l=2tbvlrz+l,m+l' (4‘163’b)

4.2. Immittance Levinson Algorithm

In order to complete the five pairs of three-term recursions into immit-
tance-domain Levinson algorithms, we have to provide inner-product formu-
lae for the computation of the recursion coefficients. We introduce the
following compact notation:

T(pm) = [l’uﬂl"‘ 'y uOm]pm= ’F(pm) = [11 aOl""’ ﬁOm]pm (417)

for inner products of some vector p,, = [Pnos+--» Pmm)’ With vectors of the
first column and row of R,,. Each algorithm involves two inner products of
this form per step, usually 7(£,) and 7(g,,). The actual way these inner
products yield the coefficients for the recursions varies from one version to
the other. It depends on the expressions obtained in Section 3 for the
coefficients and on the following key identities:

(fu) = @0nDp,  H(8n) =B¥mDpr  m>1; (4.18)

we formally define 7(f))=%a, and 7(g,) =3B, The identities (4.18) are
obtained by inserting (4.2) into the identities

(a,)=0, a,,) =aeD,,, (b, ) =0, 7(B8,) = ByD.., (4.19)
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which were obtained in [6]. We note that since (4.18) follows from (4.2) and
(4.19), it holds for all the five recursion forms.

(1) Balanced algorithm. The Levinson algorithm in its balanced form
consists of the recursions (3.9) with the formulae for the coefficients, found
by considering (4.18) and (3.10),

5 7( n?ﬁl) _ f(gﬁ—l)

oy = 'r(f,,?) , fm—m, mz=l. (4.208.,b)

(2) Left-monic algorithm. The left-monic Levinson algorithm consists of
the recursion (3.12) with coefficients given by [cf. (4.19) and (3.13)]

_ T(me) _a *'(gﬁ_l)

Am ’T( ’:1‘\{1) » lum m 'F(g::{) H

m>1. (4.2la,b)

(3) Right-monic algorithm. The right-monic version of the Levinson
algorithm consists of the recursions (3.15) and the following formulae that
follow from (4.18) and (3.16):

‘ #al) N
Am:_u"—-—’ Am=Am Y ?
el ) ()

mz1l. (4.22a,b)

(4) Left-dual algorithm. As always the case with the dual recursions, in
this Levinson algorithm the right-hand sides of (3.18a,b) need to be com-
puted before the second coefficients can be found. The algorithm is:

1
hr£+l(z) = (Z + pm)me(z) - zmefl(z)’ fm+1(z) - rh;£+l(z)’

m+1

1
hngu+1(z)=(pmz+1)g£(z)_Zg371(z)’ gm+l(z): a h§,+1(z).

m+1

Here we have to proceed somehow differently, because it follows from (4.18)
and (3.15) that now

Pmﬁ—m, m—a—of(hm), mzl. (4.23a,b)
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The necessary order of computation is: first p,,, then hZ, (z) and h$ ,(z),
then 6, , ,, then £, ((z) and g,,, (). We note that by (4.18) and (3.17)

T( n?fl) V-1

{£2)  vall=knén)

=1,

namely, 7(£P) are the same for all m, and thus equal to 7( "} = a,/2. This
is the reason for the slight deviation from the order of computation that
might be expected.

(5) Right-dual algorithm. This Levinson algorithm too proceeds differ-
ently than the first three versions and is similar to the previous case with the
role of the first and second recursion interchanged. The algorithm is given by

. N 1
hrzz‘+1(z)=(ﬁmz+l)fn?(z)_zfr (z)s fo(z)= F) hn{+1(3),

m+ 1

hE \(z)=(z+p,)el(z) — 25 _\(2), g,'3+1(z)=9a he (=)
m+1
with
ﬁm=ii?éi, §m=—2—f(h,§), m . (4.24a,b)
=(£P) Bo

This time the modifications are required by the fact that now (4.18) with
(3.22) imply 7(g,,) = 7(go) = B/ for all m.

4.3. Immittance Extended QT Algorithm

A socalled extended QT algorithm in the scattering variables was sug-
gested in [6] for the inversion of a general non-Hermitian QT algorithm. It is
based on the observation that one can use the Schur algorithm to first find
the reflection coefficients { k,,, £,, } for any QT matrix R . Then, since these
coefficients are common to all R, that are congruent to the same “hidden”
Toeplitz matrix T, by the relation (1.8), it is possible to solve (1.5) by proper
interpretation of the similarity relations (1. 8) as convolution between the
solutions of (1.5) in the Toeplitz case and the “congruency” vectors h,, , and
h,,,. Similar considerations also led us to obtain the GS-type inversion
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formula (1.9) and show that its generating vectors (1.9b) are recursively
produced by the following so-called recursive convolution algorithm:

( (m)(Z)) Kn( )( . 1)(Z)) g(oJ(z)=f0=n(Z): é(u)(z)=f‘0="(z)’

e(m)( ) e(m 1)(Z)

(4.25a)

dey(2 . dim- (7
( ol ))=Km(z)( m=sf )), o) =To.u(2),  €o(7) =To.m(2),

e(m)(z) e(mfl)(z)

(4.25b)

where the initial conditions are the polynormals associated with the vectors
Ty, , and T}, , defined by the “filter inversion” operation,

L(]'-‘O:n)='l"71(h0:n)’ L(f‘O:n)=Lﬁl(EO:n)’ (4250)
and by our regular association of vectors with polynomials,
To.alz)=1[1,2,...,2"|T,,.,  To.u(2)=1[lz,...,2"]T, . (4.25d)

In further accordance with the Summary of Notation, we note that the four
variables are polynomials of degrees n for all m, say,

dmlz)= 2 d, emi2)= Y. e, .2 (4.26a)
i=0 i=0

Eemlz) = > Emiz', e(2) = X 6, %%, (4.26b)
i=0 i=0

and the coefficients for the formula (1.9) have to be extracted as follows:
en=[Le, ey ] U, =[0,d, gdp 1]’ (4.272)

&n=[Lbp b nl’s U, =[0.d, 0 nd ]’ (4.27b)

m
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The scattering-domain recursions (4.25) have the same formal structure
with which we dealt before in transforming the Schur and the Levinson
algorithms. We therefore can proceed in a familiar manner to transform the
recursions to immittance variables. Let us define the immittance variables

7oz d,, o2 . (2

~( (2) -T, ~( (z) , (%) ~F o) . (4.28a,b)
p(m)(z) e(m)(z) p(m)(z) e(m)(z)

Then, choosing 7,,,(z) and Tim) @S OUr primary variables, we can immediately

write down five different pairs of threeterm recursions. For example, the
balanced pair is

ﬁfnﬂ)(z) = (8,2 + Km)ﬁﬁ)(z) - zﬁifl)(z)» (4.29a)

T(gw 1)(z) = ({2 + sm)x?m)(z) - Zf(i—l)(z)- (4.29b)

We recall that the convolution algorithm always follows a Schur algorithm
that has prepared the recursion coefficients for it. Thus a possible immittance
extended QT algorithm would comprise for example the balanced Schur
algorithm (4.7, 8) followed by (4.29) above initiated with

"(0)(z)=r0:n(z)» (0)(z) 1_‘0 (2), 7'(—1)(2)="'E—1)(3)=0; (4.30)

which would be the initial conditions for all four other immittance recursive
algorithms. Since, the extended QT algorithm has two separate stages, it is
simpler but not necessary for the Schur and recursive convolution to be of the
same recursion type, because the relations between the coefficients in the
various recursions can be applied. The choice to illustrate the immittance
extended QT algorithm as a balanced Schur algorithm followed by the
balanced recursive convolutions is not incidental. While all recursions exhibit
the same efficiency in the non-Hermitian case, the balanced recursion is the
form that becomes more efficient than the others in the Hermitian case. For
a case where the second in the pair of three-term balanced recursions can be
dropped and then the two coefficients become related by {,, = 8%, see [8]. It
was shown in [6] that the extended QT algorithm can produce the generating
vectors for (1.9) or solve (1.5) for a general QT matrix in O(7n®) for
non-Hermitian and O(3.5n%) for a Hermitian matrix. The immittance algo-
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rithm in the balanced form will require O(7n?) for non-Hermitian but only
O(2n?) for a Hermitian matrix approached by Hermitian balanced Schur and
recursive convolution algorithms.?

4.4. Recovery of Scattering Variables

The immittance Levinson algorithms have replaced the pairs
(@u(2).2,(2)) and (B,(z),B,(2)] by the pairs {f£,(2),$n(z)} and
{€,.(2), ¥..(2)}. Subsequently, in the process of passing from two-term to
three-term recursions, the second variable in each transformed pair has been
eliminated. In this subsection we deal with the problems of recovering the
eliminated variables and the reconstruction of the scattering variables when
necessary. Such need may arise for example when the final goal is the
solution of the normal sets of equations or the inversion formula of the GS
type (see [5, 6] for details on generalized GS inversion formulae).

The routes to recovering the eliminated immittance variables and to
reconstructing the scattering variables are, in principle, already clear. A
variable eliminated in passing to three-term recursion can be recovered by
using an auxiliary equation like (2.5b), for which the entries of M, (z) of
(2.4b} are always given by expressions like (3.7) [a valid simplification due to
the fundamental constraints (3.5)), where relations of the scalars in the
expressions (3.7) to the already available recursion coefficients provide addi-
tional simplification. Similarly, to reconstruct the scattering variables one has,
in principle, just to invert (3.1).

In the sequel we show some simplified ways, with setting common to all
five recursions, to recover the secondary immittance variables and the
scattering variables, when desirable. We use here the Levinson polynomial
notation. However, unless specifically restricted to Levinson algorithms, the
approach applies also to recovery of the Schur variables (or the convolution
algorithm variables of Section 4.3).

Consider replacing two-term recursions for the pair { f,(z), $.(z)} by
three-term recursions of { f,(z)}. Then, the general procedure (2.5) also
implies

Bﬂ+1(z)¢n(z)=ﬁ1+l(z)7a’n+lf;l(z)' (4‘31)

Since the immittance transformations are in all cases assumed to satisfy the
fundamental constraints, the two-term recursions for the pair { f,(z), o.(2)}

IWe use O(an®) to mean a count of an® + (negligible order-n remainder).
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are governed by the transition matrix M, (2) of (3.3) with entries «,(z) and
B.(%) as in (3.7). We obtain

(2 =1)¢,(2) = 2d,.f,.:(z) — (2 +1}£,(2) (4.32a)
and similarly
(z -1y, (z) = 2d g, (2) — (2 +1)g,(2), (4.32b)

where we define the constants d,,d, by

Vi 1 - Ve 1
dm = = ’ dm '_ = .
libm - Um‘fm 1- T’mgm U — 1tbmkm N — km

{4.33a,b)

d, and d, can be related to the recursion coefficients of each specific
recursion form through comparison of (4.33a,b) with relations between those
coefficients and ¢, ,v,,, k, , £,. This way of recovering the auxiliary variable
is not restricted to the Levinson algorithms, but may be used also for the
Schur algorithms or the recursive convolution algorithms. A more convenient
way to find d, and d, that has a common form for all Levinson algorithms
arises from setting z =1 in (4.32), viz.,

_ A - &all)
G e (4.342.0)

In cases where one wishes to have more than just one (the last) scalar in the
sequences {d,, } and {d, }, it may be simpler to compute them iteratively by
setting z=1 in the relevant recursion. For example, for the balanced
recursion, it follows from (3.9a) that the d s are related by d;'=
(6, +¢,)—d,_,, and so on.

After the pair of immittance variables have become available, the scatter-
ing variables can be recovered using the inverses of the relations (3.1). This
may require in general the evaluation of the scalars ¥, and v, or in fact just
7., using the appropriate relations with the relevant recursion coefficient.

For the reconstruction of the scattering-domain Levinson-algorithm poly-
nomials, a simpler approach can be obtained as follows. By the definition



882 Y. BISTRITZ, H. LEV-ARI, AND T. KAILATH
(3.1) and the fundamental constraints (3.5), we have
flz) =¥pan(2) tv,a,(2),  gu(2)=v,b,(2)+ ¥.B,(2), (4.353)
bl 2) = ¥nan(2) = v,0,(2),  ¥u(2) =v,b,(2) - ¥,.B8,(z). (4.35b)

We also observe from the scattering Levinson algorithm that the first and last
entries of its vectors exhibit the pattern

am,mzl’ Ao~ _kmaﬁ’ Aom = _gm’ X0 = Qo> (4363)
bm,m=l: bm,()= _£mBOa Bm,m= _km’ ﬁm,O:BO‘ (436b)

They induce on the end entries of the immittance Levinson vectors the
following pattern:

Fom =Y — Upnbons foo= — Ym0k, +v,a,, (4.37a)
SR S8 T S Bpo0= — Yok, — Vo, {(4.37b)
Brm = Vs Ykms  Emo= — UnBofm + Vo, (4.37¢)
Yo =V T ¥k ps Vo 0= — UuBobm — ¥y (4.37d}

The above relations can be used to verify the following procedure for the
reconstruction of the scattering Levinson variables.

W) e e @)
(5) = g ()~ (), (4.38)
b e (), s
B = g (809 1 (2)), (4.354)

where p,(o0) is taken to denote p,,, the coefficient of z", in a polynomial
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p,(z) in the variable z. It is noted that, since we only used the fundamental
constraints in the derivation, the above procedure applies for all versions of
the Levinson algorithms.

We emphasize that the recovery and reconstruction of polynomials dis-
cussed in this subsection are usually assumed to be carried out only once after
n steps of recursions of the immittance algorithm. Therefore, such steps
contribute a negligible order-n count to the total order-n® number of arith-
metic operations of the fast algorithms considered.

4.5. Toeplitz Matrices

Toeplitz matrices have some distinctive features in the class of QT
matrices. They are simpler than ali other (nontrivial} matrices in the class,
and therefore one might expect algorithms of lower complexity. We showed
in [6] that for Toeplitz matrices the variables in the Levinson algorithm (1.6)
satisty the following relations:

- <

Baz)=d,(z), B,.(2)=a,(z). (4.39)

Therefore, it is sufficient to use one two-term recursion

é.(z) 1~k [z 0][d,_1(2) .
o = o . do(z)=1, by(z)=1,
ba(z)| |-&. 1 |0 1B i(2) ’ ’

(4.40)

where (1.6¢,d) still apply, that is, there are still two inner products per
recursion. This is a slightly misleading “anomalous” situation of a single
two-term recursion in the realm of non-Hermitian QT matrices, which are
always characterized by pairs of recursions, transmission lines, etc. But it is
not too surprising once it is properly put in perspective, as we discussed in
[6]. It has the effect of reducing the computation count to (O(2n?), compared
to O(3n®) had the redundancy (4.39) not been utilized (see Table 2).

Now, we wan{ to show that the immittance Levinson algorithm has a
comparable simplification for Toeplitz matrices (which justifies the lower
count we put in the Toeplitz entry in Table 1). Indeed, it is not difficult to
prove that the relations (4.39) admit the dropping of one of the recursions in
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the balanced pair. Thus, choosing to keep, say, the first recursion results in
the following Levinson algorithm:

fil+1(z)=(8n]z+§"I)ﬁl(z)_z:‘"71(z)’ (4'418')
and the two coefficients can still be computed as follows:

2 ~

T = [1=u01""’u0,m]fm’ Tn = [1’5011"‘1a0,17x]fm (441b)

m

(4.41c)

The recovery process for é (z) and b (z) will be

A

,\ 2£.(1) | A
(z—1)¢n(Z)=ﬁﬂ(l)ﬁul(Z)“(Hl)ﬂ(Z), (4.42a)
L h(@)(2)
an(Z)—Wﬁ(w)+$n(w), (4.42b)
5 () ful2) = ¢.(z) (4.4%0)

T £(0) - ,(0)

4.6. Computation Counts

The number of arithmetic operations for all immittance algorithms is
summarized in Table 1. It includes the counts for the non-Hermitian algo-
rithms developed in this paper side by side with the counts of computation
for Hermitian matrices, based on [8] and assuming the balanced recursions
there. The counts for the extended QT algorithm, not mentioned in [8], are
found, as always by adding up the counts for the Schur algorithm, the
convolution algorithm, and the “filter inversion” step (4.25¢), needed twice
for non-Hermitian and once for Hermitian matrices. We have included the
extended QT algorithm counts even for the cases where the Levinson
algorithm is applicable, although there is no reason to use it in those cases.
We also reproduce Table 2 from [6] with the counts for the scattering
algorithms. The counts in Table 1 refer to multiplications only. The number
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of additions in the immittance algorithms is always the same as for the
corresponding scattering algorithm. The counts are of real and complex
multiplications and additions for real and complex recursions, respectively.
For complex cases, the equivalences (1 complex multiplication) =(4 real
multiplications) + (2 real additions) and (1 complex addition) = (2 real addi-
tions) are assurned.

5. CONCLUDING REMARKS

This paper has presented a complete set of efficient Schur and Levinson
algorithms associated with non-Hermitian Toeplitz and quasi-Toeplitz matri-
ces, covering all the combinations of two- and three-term recursions in the
scattering and the immittance variables. It completes our previous systematic
studies on the effect of moving between the two type of recursions and
variables, and it contains several new algorithms for the non-Hermitian
matrix case. Earlier we found that the choices of transformation of the
scattering variables to some new variables that are favorable from the point of
view of efficiency also represent essentially the enly choices of alternative
variables that have no less physical significance than the original variables in
typical problems modeled by the fundamental sets of equations and the
transmission lines depicted in the figures. If the sets of equations with QT
matrix coefficients model wave propagation in layered media, the scattering
pairs of variables correspond to forward- and backward-moving waves (and
may be preferred when it is more intuitive to think of * particles” moving to
the “right” and to the “left”), whereas the immittance variables describe the
same phenomena in terms of wave variable pairs (voltage and current,
electric and magnetic fields, etc.—a description that may be used when a
description in terms of the volume velocity and pressure of the * particles™ is
found more appealing).

Previous studies of immittance algorithms always treated the Hermitian
case and repeatedly showed that transformation from scattering to immit-
tance variables followed by moving from two- to threeterm recursions
reduces (roughly by half) the amount of computation. In some of the
problems studied before, such as stability testing and the Levinson algorithm
for Hermitian Toeplitz matrices, the saving can be explained by the fact that
in these cases the immittance algorithms propagate symmetric (or antisym-
metric) polynomials formed by splitting the original polynomials into their
symmetric and antisymmetric components. However, we were not satisfied
with this explanation, because it does not point to the source of the surprising
new gain in the economy of computation. Furthermore, this factor two of
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computational saving has been observed also in cases like the extension of the
Levinson algorithms to quasi-Toeplitz matrices where the immittance vari-
ables no longer possess any internal symmetry (the transformation of the
Schur or prediction error to immittance variables does not have any particu-
lar structure even in the strictly Toeplitz case); nevertheless, the immittance
algorithms are more efficient (again roughly by a factor of two in the number
of multiplications).

This paper has associated the “mysterious” factor two of improved
efficiency with the Hermitian structure of the underlying matrice. The
constructive proof applied the technique of {7, 8] to show that the best
achievable choices of recursions by a transformation to new variables and /or
by moving from two- to three-term recursions of the non-Hermitian versions
of corresponding scattering algorithms (as suggested recently in [6]} can only
match, but not exceed, their scattering counterparts. The improved efficiency
of the immittance algorithms stems from their ability to exploit the symmetry
of the underlying matrix when there is such symmetry. The computation
counts in Tables 1 and 2 show the exact relation between the amount of
structure in the given matrix and the computation required for its inversion
or factorization. The anticipated trend of lower achievable counts for more
structure is clearly noticed in the computation of R ! and to less extent in
the factorization of R itself (the Schur algorithms do not distinguish
between Toeplitz, admissible QT, and QT matrices). The fact that all
algorithms are of order n? (rather than the order-n® counts expected for the
inversion of general matrices with n? arbitrary entries) can be attributed to
the QT structure and the fact that R is determined by order-n parameters
(the entries of the generating vectors). The leading coefficients of n® in more
precise counts are seen to vary in accordance with the “refined structure”
(more computation is required when the minimal number of parameters that
determine the matrix is higher).

The contribution of the immittance-domain algorithm is twofold. First, as
mentioned above, it has offered new variables of physical significance for
modeling various signal propagation phenomena. Second, it has revealed and
removed redundancy in the computation of classical algorithms like the Schur
and the Levinson algorithms and the Schur-Cohn stability test. The immit-
tance version of each algorithm requires, in the general non-Hermitian matrix
case, as much computation as its scattering counterpart. However, unlike
the scattering algorithms, the immittance algorithms can respond also to
the structure imposed by the symmetry of the matrix and produce in the
Hermitian cases algorithms of improved efficiency. The immittance approach
is expected to be effective alse in improving other recursive signal-processing
algorithms that are associated with symmetric matrices but do not use this
symmetry to advantage.
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