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A GOHBERG-SEMENCUL INVERSION FORMULA FOR ADMISSIBLE QUASI-TOEPLITZ MATRICES
AND ITS GENERATION BY LEVINSON ALGORITHMS f

Yuval Bistritz
Department of Electronic Systems
Tel-Aviv University, Tel-Aviv 69978, ISRAEL

Abstract. The inverse of certain close to Tocplitz matrices known as Quasi-Toeplitz
(QT) matrices is totally defined by four vectors (two for symmetric matrices) and can
be expressed as the sum of two lower-upper triangular matrix products known for
Toeplitz matrices as the Gohberg-Semencul (G-S) inversion formula. Here we consider
an important subclass of admissible QT matrices that arise in modeling signal
propagation in lossless layered media when the assumption of "perfect reflection” at
the surface (that leads to a Toeplitz matrix) is replaced by a more realistic assumption
of partial reflectance. We derive a G-S type inversion formula for admissible QT
matrices and show that their generating vectors are given by a Levinson algorithm for
such matrices in just 3n2 (1.5n2) arithmetic operations for an (n+1) sized non-
Hermitian (Hermitian, resp.,) matrix. The new results may become useful in
applications that employ such models (e.g., Speech, Seismology) and where low
storage or fast computation is important.

1. Introduction

A non-Hermitian quasi-Toeplitz (QT) matrix is a matrix that can be written in the
form

R, =L(0)L'(u)-L(¥)L(V) (1)

where L (a,) denotes the lower triangular Toeplitz matrix with first column a,. The
matrix R, = (r;, ;) (say with rgg = 1), is defined by four generating vectors

1 1 0 0
it u V v
o= Zl » U= 11 3 V= :1 y Y= :1 (2)
U, ﬁn

ity Va
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The Toeplitz matrix is a special case of this structure for the choice u, =v, and
i =¥, to yield

To=lei;1 v co=1 5 ex=v , c4=% , k>0 3
A matrix R, is calledQT if its displacement A{R, } defined below [1], is of rank two,
A[R,) = Rn_Zanzri =du - vy ]

Here, Z is the shift matrix with 1’s on the main sub-diagonal and zeros elsewhere.
Even when a matrix is known to be QT from the modeling or mathematical context its
displacement matrix helps to obtain its generating vectors. Relation (4) also clarifies
why there is no loss of generality (beyond the scaling to R, with rg4 = 1) in assuming
the form (2),(i.e. with ¥, = vg = 0) for the generating vectors.

Another characterization of a QT matrix that we shall use is that R, isclose to a
“hidden” Toeplitz matrix T, through the similarity relation (2],

R, =L(ho, )T, L'(hy, ) : Moy =8-V , hy, =u-v (5)
This relation extends the congruency between a Hermitian QT class and a Toeplitz
matrix via a lower triangular Toeplitz matrix [1-5].

The QT matrix R, is said to be admissible, extending the term from Hermitian
matrices [3], if

uz)=1l1+ogw(z) , f@z)=1+ Bov(z) . (6a,b)

Here and throughout we associate vectors a, with polynomials a,(z) by the
convention

] .
8y ={@nos@n1s " L Aum) , au@)=[l,z, --- 2™, =Y a, 2
i=0
Admissible QT matrices form a subclass of QT matrices by imposing a relation
between the generating vectors (2) of R, as in Figure 1. The Toeplitz matrix is a

member in this subclass that corresponds to the choice o= = 1.

Some additional conventions of notation that we shall subsequently need are as
follows. Let J be a square matrix with 1’s on the anti-diagonal and zeros elsewhere
and with size determined by context. Then ®, = Ja, denotes the reverse of the vector
a, and &,(z) is the revered polynomial associated with #,, that is &,(z) = z"a,(z).
For a matrix M, reversion is defined as ﬁ,, =JM,J. We also use la, :==Za, o
denote down-shift of the vector a,,.

If R, is QT then R, is also QT. This follows from the algebraic identity (1],
rank (M, ~ZM, Z'} = rank {M]1-Z'M'Z) . 0
Generally the inverse of a QT R, is not in itself QT. However, the inverse of a

Toeplitz matrix is in itself QT due to its pery-symmetry, i.¢ the property 'i',, =T}, that
holds for a Toeplitz matrix.
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T, =

! {L(B’n WH(E, y~ L4, )L (b, )} (8)

obtained by Gohberg and Semencul (G-S) [6]. The generating vectors in (8) are the
solution of the normal equations

biR, = [0..00,]1 . R,a, = [0,.00,] , (9a.b)

with R, = T,. An efficient way to derive these solutions is by the following Levinson
algorithm for non-Hermitian Toeplitz matrices.

B (2) [1 &, ] [0 —1(2) fyz) = 1

y & (10a)
b (2) ba@)| 7 By@y=1
and two inner products
TR | W (F1, ... B )b,y
k= v Ep = (10b,c)
" Dm-l ” Dm-l
Dp =1 ~-8pkn)D,,.1 , Dy=1 (10d)

This Levinson algorithm was obtained in [2). It is closely related to several other
recursive explicit derivation of the inverse T, 1 [7-11]. The recursion (10) can be
traced in these references but they miss the inner product formulae that complements
the recursions 10 an executable Levinson type algorithm. It reduces to the classical
Levinson algorithm for Hermitian Toeplitz matrices when b,(z)=8,(z) and
Em = k We note that the G-S formula (8) was derived criginally for non-Hermitian
Toeplitz matrices.

Admissible QT matrices represent a relatively simple deviation from Toeplitz
matrices that deserves special attention due to its significant physical interpretation. In
modeling a layered media (see [5] and [2) for Figures and details), the Toeplitz matrix
correspond to an ideal lossless media while the admissible QT matrix incorporates into
the model allowance for partial surface reflection without, as shown, a substantial
increase in complexity of the associated inversion formulae and computational
procedures. Modeling problems of this type often involve matrices of large sizes
where fast Levinson-like algorithms and inversion formulae with low storage
requirements like the G-S formula are desirable or even necessary.

An extension of the Levinson algorithm to solve efficiently the normal equations
(9) for admissible QT matrices was obtained in [2] and is given as follows. The
recursions become

a,(z) 1 4, | (z o ap1(2) agiz)=1
[a,.,(z)] ) [%m 1 ] b o) - e o
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bn@ ] 1, [z 0] Pret® byt = 1 11b
Ba@) = | 1| 0 1) [Bay@] * Bote) =By (11b)

The reflection coefficients are to be calculated by twe inner products

Vi, ...,V la, _ vy, ...,9,0b _
k,,,=[1 = ;n]ml , €m= 1 = ;n 'm-1 (l]c,d)
m-— m—
D, =(1- §,,,km)D,,,_1 , Dp=1 (l1e)

II. Main Result

The existence of a G-S formula for the revered inverse of a QT matrix is evident
from its being a QT matrix. OQur subsequent theorem manifests the existence of a G-§
formula for admissible QT with generating vectors that can be derived efficiently by
the above (11) Levinson algorithm,

Theorem. Let R, bc the the (m+1)x(m+1) upper left sub-mamix of a n
admissible QT matrix R,,. Then, for all m=1,....x,

) : Hl-{m,,,)L'(S’,,.) -L(lﬁi,,.)L'aE"m)} (12)

where a,,, @, , b, and B, are the vectors at step m of the algorithm (11).

In other words, the inverse of R,, is given by

R, = DL{L*(wm (B, ) - L:(18,, LB, )} (13)

where the four generating vectors are reverse of the vectors at the m—th step in the
Levinson algorithm (11).

The particularization of this result for the Hermitian admissible QT case is also
considered to be new. if R, is Hermitian, (12b) and (12d) are redundant conjugate
replica of (12a) and (12¢c) yielding the admissible Hermitian QT algorithm [4] for
which we have (with # denoting conjugate transpose)

R, = #{L@mm"@m) - L(lﬁm)L”(lﬁm)} (14)

IIL. Alternative Algorithms

Another procedure to derive generating vectors for non-admissible QT matrix
using a so called extended QT factorization algorithm was developed in [2]. It
involves a recursive convolution algorithm procedure that combines the Schur and
Levinson algorithms. It is not limited to admissible QT matrices and involves 7n2 (or
3n2 ) for obtaining generating vectors for the G-S inversion formula of a non-
Hermitian (Hermitian, resp.) QT matrix, whether or not admissible. That is apparently
the most efficient algorithm for a general QT matrix but since it does not exploit the
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admissibility constraints it involves more computation then the current result in the
case of admissibility when it also involves more lines of programming then with the
current Levinson algorithm. We also note that the generating vectors that the recursive
convolution in [2] produces for the GS inversion formula there are not fully identical
1o the four vectors in {(12). Due to space limitations in this conference paper we shall
discuss the differences elsewhere.

There also exist alternative ways to derive the vectors for (12). For example,
using the technique of moving from two-term to three-term recursions algorithms one
could replace the (11) with the scheme

Ikm+l Ikml+l '
8y (z) =z - . )3, (2) — (1 = §pkp)za, (2) (152)
bpa)=0¢ - EE'Ll)bm(?-) - §g+1 (1 = &pkp)2by_1(z) (15b)
e Voms}B Vot - - -+ Pomerlbn
kpy1 = Yo I)VOM| L v Emn = o Dvo'm-ﬂl (15¢)
D, =( - kn)Dpy . Dg=1 (15d)

The algorithm is initiated by

a(z)=by@)=0 , ag)=bgz)=1 , k0=é . §0=-61;

To obtain the generating vectors for (12) the recursions (15a-d) are carried out for
m=0.1,...,m—1, then for once the suppressed two other variables are recovered using

(15e)

o, () = kl[ 6, + (1= Epky) Bpa(2) ] (159)
B (z) = El_[ b, (2)+ (1 = k) By ] (15g)

These variation requests the same amount of computation as (11).

Another option is to replace (11) by its immittance version as shown in [12-14].
There using a physically meaningful change from the current variables that describe
moving forward and scattered backward waves to variables that rather present their
volume-velocity and pressure in conjunction with the above technique of moving to
three-term recursions new Levinson algorithms for admissible QT matrices that request
3n? for non-Hermitian and (just) a2 for Hermitian matrices were obtained. They too
can be used to produce the generating vectors for the G-S formula in (12). Full details
are found in {14].

Appendix - Proof of Theorem

A QT matrix R, shares with the Toeplitz matrix T, to which it is related by the
"congruency” relation (5) its "reflection coefficients” &, , k,,, and hence also D, for
all m = 1,...n [2]. The solutions to the normal equations (9}, a,, and b,, for R, and
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i,, and b, for T,, must be related by

L(hﬂ:m)am = ﬁm ’ L(BO:m)bm = Em (A.1)
This follows from reading the first column and row after taking the inverse on both
sides of (5).

Next, invert and reverse the two sides of (5) and substitute for T,,‘,1 the G-§
formula (8) to obtain

DR =Ln,, L@, ,L'(‘B’,,, W (R ) — L7 (g, )L (4, LY (44, )L (g, )

=L@,)L' () — L7 (hg,m )L (B, )L (16, )L7 () (A2)
where we first used the fact that for Toeplitz matrices (including the L (a,,) type terms)
reversion is equal to ransposition and then we applied (A.1).

Up to this point the derivation was not specific to admissible QT matrices. For an
admissible matrix the normal solutions a,, and b, can be derived by the algorithm
(11). It follows from a comrarison of (A.2) with (12) that it remains to prove that the
following relations also hold.

L(hoy)(48,) =B, , Lig,){B,) =4, . (A3a,b)

For this we first write the recursions (11a,b) in reversed polynomials as

[ 7 ¢ .
o4 () [ 1 _g 1 A -—1(2) _

" = m | [z 0 " By(z) = o

D) | :k,,, 1 ) [0 1] Z,0@) | 7 W) =1 (A.da)
ol (1 g ] s

@] B 10U B @) bey=1 A4

Then we write the first row of polynomial equation in (A.4a) in vectorial form and
pre-mutiply its both sides by L (hy,,, ) to obtain

m-1
L (hg.p)0,p —;.[g ] [L(hM_l)& _1] (A.58)

where we already used (A.Ia) and where we defined the scalar x,, :=h{,a,_; . Now
we want to compare the above update with the second row of the Toeplitz recursion

(11) which in vectorial form and after reversion is equivalent to

)

It is seen that the first m of its m+1 rows are not affected by the difference in the last
row due to the scalar x,, (A.5a) that is missing in (A.6a). So that an induction step
m—1—m may be invoked to prove (A.3a). A dual and similar induction step to verify
(A.3b)starts with the first row in (A.4b) rewritten in vectorial form and pre-multiplied
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B — 0 _ byt

using (A.1b) and defining a second scalar y,, = = k{.,,b,_; . The comparison of this
update with the one that follows from the first row of (10a),

0 bm—l
8, = [ﬁm_l ]-k,,, ro ] (A.6b)

shows that if (A.3b) holds till {m—1) then, since the first m entries in (A.5b) and
(A.6b) are not affected by the existence or the missing of the scalar y,, in the last
entry, therefore (A.3b) holds for m as well.

by L (g, ) to give

Since (A.3a,b) holds trivialy for m = 0, this completes the proof for the main
theorem. We note that, using several identities derived in ([2], section 3), it is possible
to obtain the following expressions for the the scalars x,,, and y,,,

Xy =kpog - 1Dy, Y = E.-m(BD =DDpy

As expected they become zero for all m if and only if oy = By = 1, namely for the
Toeplitz case.

REFERENCES

[1] T. Kailath, S. Kung and M. Morf "Displacement rank of matrices and linear equations™ J, Math,
Anal. Appl. “vol. 68, 395407, 1979.

[2] Y. Bistritz and T. Kailath, "Inversion and Faclorization of non-Hermitian Quasi-Toeplitz
matrices” Linear Algebra and its Applications, vol 98, pp. 77-121, 1988,

(31 Ph. Delsarte, Y, Genin and Y. Kamp, "On the class of positive_definite matrices equivalent to
Toeplitz matrices™ in Proc. Int. Mg Mathematical Theory of Networks and Systems, Santa
Monica, CA, Aug. 5-7, 1981, pp. .

[4] H. Lev-Ari and T. Kailath, "Lattice filter etrization of non-stationary processes” IEEE
Trans. Inform. Theory vol. 1-30, pp 2-16, 19&.

{51 T. Kailath, A. Bruckstein and D, Morgan "Fast matrix factorizations via discrete transmission
lines" Linear Algebra Appl. vol. 75, pp 1-25, 1986.

[6] LC. Gohberg and 1.A. Fel'dman, Convolution Equations and Projection Mecthods for their
solutions Trans. Math, Monographs, vol 41, Amer. Math. Soc., Providence, R.I, 1974

[73 E. H. Bareiss, "Numerical solution to linear equation with Toeplitz and vector Toeplitz matrices”
Numer. Math. vol. 13, 1969, pp. 404424,

[8] J. Rissanen, "Algorithm for triangular factorization of block Hankel and Toeplitz matrices with
applications to factoring positive mairix polynomials,” Math. Compui., vol. 27, 147-154, 1973 .

31 W.F. Trench, "An algon'thm for the inversion of finite Toeplitz matrices,” SIAM J. Appl. Math,
vol. 12, 1964, pp 515-322.

{10] S. Zohar, "Toeplitz. matrix inversion: The algorithm of W. F. Trench” J. assoc. Comput. Mach.
vol. 16, 1969, 591-601.

[11] L. Marple Ir., Digital Spectral Analysis with Applications, Prentice Hall, 1987.

[12] Y. Bistritz, H. Lev-Ari and T. Kailath "Immittance domain Levinson Algorithms™ IEEE Trans.
Information Theory, vol. 35, pp, 674-682, May 1989, Also in Proc. of the 1986 Im. Conference
on Acoustics, Speech, and Signal Processing, pp. 253-256, Tokyo, Japan, April 1986.

(13] Y. Bisuitz, H. Lev-Ari and T. Kailath, "Immittance domain three-term Levinson and Schur
recursions for quasi-Toeplitz complex Hermitian Mairices,” to appear in S/AM J. on Marrix
Analysis and Application,

{14] Y. Bismitz, H, Lev-Ari and T, Kailath "Immittance versus Scauering_ domains fast algorithms for
non-Hermitian Toegéilz and Quasi-Toepliz matrices” Linear Algebra and its Applications, vol.
122-124, pp. 847-888, 1989,



