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Generalized Bezoutians and Families of
Efficient Zero-Location Procedures
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Abstract —The procedures of Routh~Hurwitz and Schur-Cohn for
determining the zero-distribution of polynomials with respect to the
imaginary axis and the unit circle, respectively, serve, at the same time,
to efficiently evaluate the inertia of certain so-called Bezoutian matrices.
These well-known procedures require O(n?) operations to determine the
inertia of an n X n Bezoutian, in contrast to the O(n?) operations that
would be required to determine the inertia of an arbitrary (Hermitian)
matrix of the same size.

We introduce generalized Bezoutians whose inertia specifies the zero-
distribution with respect to arbitrary circles and straight lines in the
complex plane. We recognize these Bezoutians as members in the family
of matrices with (generalized) displacement structure, for which we have
recently developed efficient O(n°) procedures for triangular factoriza-
tion and, hence, inertia determination. Moreover, our formulation dis-
plays a large variety of O(n?) procedures that can be associated with a
single (generalized) Bezoutian matrix. For Bezoutians on the imaginary
axis and the unit circle, our formulation leads to (among other possibili-
ties) the Routh—Hurwitz and Schur-Cohn tests.

1. INTRODUCTION

PROBLEM that has been of interest for over a century

is that of determining whether a given system is stable.
Linear time-invariant systems with a rational transfer func-
tion are stable when their poles (i.e., the zeros of their
denominator polynomial) are constrained to some domain of
the complex plane. For continuous-time systems this domain
is the left-half plane, while for discrete-time systems it is the
inside of the unit circle.

An obvious extension of the stability problem is to deter-
mine the distribution of the zeros of a given polynomial with
respect to some given simple curve € in the complex plane
that partitions the complex plane into two disjoint domains
whose common boundary is (). The problem is to find how
many of the zeros of a given polynomial lie on the curve, and
how many lie in each of the two domains defined by the
curve. It is interesting to notice that while it is impossible to
obtain a closed from algebraic expression for the zeros of a
polynomial of degree higher than 4, the distribution of these
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zeros with respect to many simple curves can be determined
with a finite number of algebraic operations.

Hermite [1] was the first to present a comprehensive
solution of this problem for the real line R. He constructed a
Hermitian matrix, which we shall denote by By, whose
inertia (i.e., the number of positive, zero, and negative eigen-
values) determines the distribution with respect to the real
line of the zeros of a given polynomial p(z). The relation
between the coefficients of the polynomial in question and
the elements of the matrix Bg is most conveniently de-
scribed in terms of the generating function Bg(z,w), which is
a bivariate polynomial of degree n —1, viz.,

Bp(z,w)=[1 z z* 2"

‘Be[l w w2 - wrTl

(1)

where n denotes the size of the square matrix Bpg, which is
equal to the degree of the polynomial p(z), and the asterisk
(%) denotes Hermitian transpose (complex conjugate for
scalars). Hermite’s matrix has a generating function of the
form

p(2)p*(w)— p*(z*) p(w*)
J(z=w*)

where p*(z) denotes conjugation of both the coefficients

and the variable, viz.,

p*(2)=[p(2)]* (2b)

Hermite showed that, if p(z) has n zeros that either lie on
the real line, or are arranged in pairs symmetric to it, then
rank Bz = n — 7. Moreover, if 7 of the remaining zeros lie in
the upper-half plane and v of them lie in the lower-half
plane, then In Bg={m,n,v}. The functional-analytic inter-
pretation enabled by the generating function formula (2) has
been the basis for the work of many early contributors and,
in particular, that of Cayley [2] and Darboux [3].

Hermite’s rank result indicates that the rank deficiency of
B, is associated with the zeros of p(z) that are shared by
p*(z*). This suggests that if p*(z*) is replaced in (2a) by an
arbitrary polynomial g(z) of the same degree as p(z), viz., if
we define

Bp(z,w)= (2a)

p(z)q(w*) = q(z)p(w*)
Balz) = i(z=w)

then the rank of By should decrease by the number of zeros
shared by p(z) and ¢(z), namely,

rank B = n —deg ged { p(z),q(z)}

(3)

(4a)
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where
n:=deg p(z)=degq(z) (4b)

and ged{p(z),q(z)} denotes the greatest common divisor of
the polynomials p(z),q(z). This result was first discovered
by Sylvester [4], who independently obtained some of
Hermite’s zero-location results, though only for real polyno-
mials. Sylvester coined the term Bezoutian' for the matrix
By in honor of the French mathematician E. Bezout. As
noted by Wimmer [29], Cayley [2] was apparently the first to
introduce the generating function description (2) of the Be-
zoutian matrix. We shall call this matrix, and also its corre-
sponding generating function, an R-Bezoutian, to emphasize
its association with the real line R.

The dual problem of zero-location with respect to the unit
circle T has received much less attention, no doubt because
of the late (c. 1950) interest in discrete-time systems. Even
though it was already known to Hermite (see [5]) that the
solution to this problem could be obtained by a transforma-
tion of variables in the generating function Bg(z,w), the first
efficient procedure for unit circle zero-location was obtained
only 60 years later by Cohn [6], extending the earlier work of
Schur {7). The T-Bezoutian of Schur and Cohn has the
generating function

_ 2@t W)= p* () [p*(W)]"

Br(z,w) 1-zw*

(5a)

where p*(z) denotes a reversal in the order of coefficients,
ie.,

P*(2) =25 p(1/2)]" (sb)

It should be noted that the Schur-Cohn Bezoutian was
obtained independently, and not via a transformation of
previously known real-line results. Fujiwara was the first to
point out the similarities between unit-circle and real-line
results and to suggest a (partly) unified framework for their
analysis [8]. In particular he observed that the numerators of
Bg(z,w) in (2) and of By(z,w) in (5) have the same form
once we adopt the notational convention that p¥(z)=
p*(z*) for the real line R.

Hermite and Sylvester were not concerned with the effi-
ciency of the computational procedures for evaluating the
inertia of the R-Bezoutian Bj. This problem was first ad-
dressed by Routh [9], and, independently, by Hurwitz [10],
who derived an efficient procedure for determining root-dis-
tribution of polynomials with respect to the real line? with-
out actual calculation of the roots (and thus, in effect, also
for evaluating the inertia of By without explicitly evaluating
its elements); both these authors were influenced by earlier
work of Sturm [11]. The Routh—-Hurwitz test is to this day
the method of choice for zero-location with respect to the
imaginary (and real) line. Similarly, the Schur—Cohn test,
which was subsequently modified by Marden [12] and Jury
[13], is the standard (efficient) technique for zero-location
with respect to the unit circle. However, the Schur—Cohn
test is not an exact analog of the Routh~Hurwitz test, and
the relation between these tests has never been very clear.

1Sylvester preferred the spelling Bezoutiant.

Actually, Routh and Hurwitz were concerned with zero-location with
respect to the imaginary axis. Nevertheless, this problem differs only in
minor details from the real-line problem considered by Hermite and
Sylvester.
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We note that both these rather different appearing proce-
dures must be computing the inertia of the corresponding
Bezoutians in a fast (i.e., O(n?)) way. This observation
aroused our interest in this issue because we recognized the
Hermite—-Sylvester and the Schur—-Cohn Bezoutians as being
members of a class of matrices possessing what we have
called displacement structure [17], [18]. Displacement struc-
ture enables fast algorithms for matrix factorization, and
hence for inertia computation (see Section IT). When applied
to the Bezoutian Bj, our procedure leads us very directly to
the Routh—Hurwitz test and, in fact, first to a different but
completely equivalent test. For the Bezoutian By, it leads us
to a slight variation of the Jury-Marden test; in fact, our
approach actually gives the original Schur—Cohn procedure
[6], which has some interesting differences from the
Jury—Marden procedure (see Example 2.2).

One feature of our approach, besides the unified form of
derivation, is that it shows the classical tests as only some
possibilities among a host of efficient algorithms, including
the tests recently introduced by Bistritz [14], [35], Lepschy
et al. [30], Reddy and Rajan [32), Schussler [33], and Steffen
[34], which can all be systematically generated and com-
pared. Moreover, it turns out that our discussion can be
presented for zero-distribution with respect to arbitrary cir-
cles and straight lines in the complex plane, and not just for
the unit circle and the real (or imaginary) axes. We develop a
Bezoutian for such curves and recognize it as also having
displacement structure.

To be more specific about the above remarks, let us note
that we can characterize circles and lines in the complex
plane by a sesquilinear bivariate polynomial, i.e., a polynomial
of degree 1 in z and in w*, viz.,

do(z,w)=a+ Bz +(Bw)*+ szw*, IBI* — ad > 0.
(6a)
The inequality
do(z,2)>0 (6b)

defines a domain that we shall denote by Q.. When 8 = 0,
this domain is a half plane, while for § <0 (respectively,
6> 0) it is the inside (respectively, outside) of a circle. The
boundary curve of this domain, which is a circle or a straight
line, will be denoted by Q and the remaining part of the
complex plane by Q_. The imaginary axis is obtained with
the choices @ = 0 = § and B = 1, the unit circle with a =1 =
—dand B=0.

We define the Q-Bezoutian corresponding to two polyno-
mials p(z),q(z) of equal degree® via the generating function

#(w)]* - # *

(7a)

The choice dg(z,w):= j(z —w*) and p*(z):= p*(z*) yields
the Hermite-Sylvester Bezoutian (3), while the Schur—Cohn
Bezoutian (5) corresponds to dp(z,w)=1-2w*, g(z)=
p*(z), and p*(z) as defined by (5b). In general, the polyno-
mial reflection p(z) —» p*(z) is defined in terms of the coeffi-
cients «, 8,7y, 8 of the bivariate polynomial do(z,w), in such
a way that the zeros of the transformed polynomial p*(z)

*When deg p(z) # deg q(z) we can equalize their degrees by multiply-
ing the polynomial with the smaller degree by a suitable power of z.
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are the point-reflections with respect to ) of the zeros of
p(z). This means that if { is a zero of the polynomial p(z)
then the corresponding zero of p*(z) is the (unique) solu-
tion ¢{® of the equation

d(¢,¢%) =0

which provides an implicit definition of point reflection.
Explicit expressions for point- and polynomial-reflection are
given in Section ITI. Here it will suffice to mention two
important properties of polynomial reflection, viz.,

{p(2)a(2)}* = p*(2)a*(2) (8a)
Ip*(2)|=1p(2)l, (8b)

We shall show in Section III that B§9(z,w) is a bivariate
polynomial of degree n—1 in z and in w* where n:=
deg p(z) = deg q(z). Then we show that the square matrix
Bg&“, which consists of the coefficients of the generating
function B%%(z,w), satisfies the following fundamental the-
orem.

(7o)

for all z € .

Theorern 1 (Bezoutian Rank and Inertia):
i) The rank of B5 9 is n —  where n is the degree of p(z)
(and g(z)), and

7 :=deg ged { p(2),q(z2)}.

i) If g(z) = p*(z); the Bezoutian matrix Bg?" is Hermi-
tian and its inertia specifies the location of the zeros of p(z),
with respect to the curve (2, as follows: if

InBR?" ={m,n,v}

then p(z) shares 1 zeros with p#(z) while m of the remain-
ing zeros lie in Q_ and » of them lie in {2 ,. n

Incidentally, we may note that in addition to generalizing
the previously known real-line and unit-circle results for
zero-location, our Theorem 1 also demonstrates the fact that
évaluation of greatest common divisors can be done via Bf9
on arbitrary circles and lines in the complex plane, whereas
all previous schemes seemed to have focused on the particu-
lar choice dg(z,w) = j(z — w*).

Next we recall that the definition (7) of B 9(z,w) implies
that the Q-Bezoutian matrix Bf? has what we have called

displacement structure [17], [18]. An infinite matrix
R={r, ;0<i,j<w}

(%a)

is said to have displacement structure if its generating func-
tion R(z,w), viz.,

R(z,w):={1 z z2 ---1R[1 w w? ---]* (9b)
can be expressed in the form
. G(z)JH*(w)
R(Z,W) ——W (103)

where the displacement kernel d(z,w) is a bivariate Hermi-
tian power series, i.e.,

d(z,wy= Y d,;z'(w*)’,  d,;j=d}

1Y) 15i
i,j=0

(10b)

the constant matrix J is Hermitian and nonsingular, i.e.,

J=J*  detJ#0 (10c)

and G(z), H(z) are (vector) power series, i.e.,
G(z)= Y &2
i=0

H(z)= Y h;Z' (10d)
i=0

where g;,h; are row vectors. Thus the Bezoutian character-
ization (7) is a particular case of the displacement character-
ization (10a) with d(z,w)=d(z,w), J=djag{l, —1} and
G(z)=[p(z) q()],H()=[g*(z) p*(2)l

We have recently derived fast algorithms for LDL* factor-
ization of matrices that have a displacement structure with a
displacement kerriel d(z,w) that satisfies the additional con-
straint [18]

d(z,w) =dy(2)djf(w) - dy(2)dF(w).  (10e)

Since this constraint is satisfied, in particular, by the
sesquilinear function do(z,w)=a + Bz +(Bw)* + szw* (see
Appendix A), our factorization procedure can also be used
to efficiently evaluate the rank and inertia* of Q-Bezoutians.
The following theorem summarizes the specialization of this
procedure to (2-Bezoutians.

Theorem 2 (Efficient Evaluation of Bezoutian Inertia;l):

The inertia of a strongly regular Bezoutian B{?  coin-
cides with the inertia of the diagonal matrix diag{d;0 <i <
n —1}, where d;= B,({;,{;), and the extraction points {; can
be chosen anywhere in the complex plane (they need not be
distinct). Here B{z,w) is a sequence of (2-Bezoutians, viz.,

B Gi(2)JG*(w)
Bi(z’w)_—___dn(z,w) (11a)
where
J:=T"'diag{1,-1}T"* (11b)

T is an arbitrary nonsingular matrix, and G/(z) is a row
vector polynomial of degree n —i. The vector polynomials
G(z) are propagated by a two-term recursion:
(z-$)Gi(2) =G(2)0,(2), fori=0,1,2,---n—1
(11¢)
where Go(z)=[p(z) p*(2IT, ©z) is the 2X2 matrix
function

0,(z) = [1 - ’\i(z)JGi*(gi)di—lGi({z)]Ui (11d)
with
do(z,7;)
A(z)= ———_—dﬂ(zvgi)dn(fiaTi) . (11e)
Here {r;} are arbitrary points on the curve ), i.e.,
do(7;,7) =0 (11f)
and the (nonsingular) matrices U; are J-unitary, i.e.,
UJU* = J. (11g)

The vector function G,(z) is a polynomial of degree n—i,
even though ©,z) itself is a rational matrix function of
degree 1. Moreover, the flexibility in selecting U; can be used

4By a famous law of Sylvester the matrices D and LDL* have the
same inertia.
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to ensure that for all i,

G(z)=[p(z) p¥(2)|T, degp(z)<degpy(z)—i.
(11h)
]

The undetermined parameters in ©(z) can be used to
obtain further simplification in the recursions (11), which will
be described in Section II. The most significant undeter-
mined parameters in (11) are the extraction points {;} and
the matrix 7, which determines the fype of the recursion.
For the unit-circle problem (ie., d(z,w)=1-zw*) it is
customary to choose all {; =0, and a scattering-type formula-
tion (i.e., T = I), which reduces (11) to a recursion identical
to the one originally published by Cohn [6] (see Example 2.2
for more details). For the imaginary-axis problem (i.e.,
d(z,w)= z + w*) the same choice for {; combined with an

immittance-type formulation G.e., T =(i v:)) reduces (11)

to a slightly modified but computationally equivalent form of
the Routh (~Hurwitz) recursions (see Example 2.1 for more
details). This terminology is justified by the observation that
when po(z) = p(z) has no roots within the unit circle then a
scattering-type recursion propagates G{z)=[p(z) p,#(z)]
and the ratio pf(z)/pSz) is a scattering function (i.e., it is
analytic and bounded by unity within the unit circle). Slml-
larly, an immittance-type recursion propagates G{z)=
[p(2)+ p#(z) plz)— p#(2)), and the ratio [p(z)—

p¥(DN/Ip2)+ p#(z)] is an immittance function (i.e., it is

analytic and has a positive real part within the unit circle).
The only other computationally reasonable choices for {; are
+1, because we have to evaluate the polynomials p/(z) and

p#(2) (or p(z)+ p#(2)) at these points. Recently, Reddy
and Rajan [32] and subsequently Lepschy et al. [30] pre-
sented an alternative to the Routh procedure that is based
on the choice {; = 1. We shall describe in Section II how our
formulation leads to a procedure that is equivalent (and
almost identical) to these algorithms. We shall also present
an alternative to the Schur—Cohn procedure that is based on
the same choice (i.e., {; =1). This new procedure turns out
to be equivalent (in a sense defined in [36]) to the bilinear
Routh tests of [33]-[35] although no bilinear transformation
is involved in our derivation.

We also remark that the efficient procedure (11) can be
extended also to structured non-Hermitian matrices with
generating functions of the form

G(z)JH*(w)

R(zw) = d(z,w)

and therefore, in particular, to the non-Hermitian }-Bezout-
ian B 9(z,w). This makes it possible to evaluate the ged of
two polynomials in a variety of ways, corresponding to vari-
ous choices of the curve ().

It should be noted that here we consider only the so-called
strongly regular cases, where all the leading minors of the
Bezoutian are nonzero. The singular cases need somewhat
more complex algorithms, as already known, for example, for
the Routh-Hurwitz test. Generalizations of the fast factor-
ization procedures for nonregular Bezoutians have been
recently developed, and will be discussed separately (see,
e.g., Pal and Kailath [19], [20].

To close this introduction, we note that there is a close
relationship with the Lyapunov equation approach to the
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zero-location problem. We show in Appendix C that the
generating function expression (7) can be manipulated into a
Lyapunov-type equation, which relates the inertia of a cer-
tain matrix B to the location of eigenvalues of a given matrix
A. A similar result has been obtained by Gutman and Jury
[21]. Moreover, their results hold for a broader class of
curves  than the one discussed in our paper. Thus the
zero-distribution of p(z) can, in principle, be determined by
choosing A4 as a companion matrix associated with the poly-
nomial p(2), solving the corresponding Lyapunov equation
for B, and finally determining the inertia of B (see also [22].
However, this requires 0O(n?) operations (for a polynomial of
degree n), in contrast to the fast algorlthms that we pre-
sented in Theorem 2, which requ1re only O(n?) operations to
evaluate the inertia of B§ .P* Moreover, our fast algorithms
do not involve an explicit evaluation of the elements of the
Bezoutian matrix. For this reason we shall not consider
Lyapunov-type equations in further detail in this paper.

In the same context, we should also mention the extensive
studies of Ptdk and Young (see, e.g., [23], [24D on
Lyapunov-type equations and generalized Bezoutian matri-
ces. While these authors provide explicit expressions for
their generalized Bezoutian matrices, they do not present
O(n?) procedures for determining their inertia.

11. EFFICIENT ALGORITHMS FOR INERTIA
COMPUTATION

One way to determine the inertia of a Hermitian matrix R
is to compute its triangular factorization R = LDL* where L
is lower triangular with unity diagonal elements, and D is
diagonal. By Sylvester’s law that congruence preserves iner-
tia, we see that the inertia of R is given by the signs of the
diagonal elements of the matrxx D. By observing that the
Hermitian Q-Bezoutian BP” of (7) has a (generalized)
displacement structure in the sense of [18], we know that its
inertia can be determined via the efficient factorization
procedure of [18] in O(n?) operations and without explicitly
evaluating the elements of the Bezoutian matrix.

We now present a brief summary of the derivation of the
factorization procedure. First, we notice that the conven-
tional LDU factorization procedure can be expressed in the
form

Ri+l - R d; ltlt ’
where {I;;i =0,1,2, - - - } denote the columns of the matrix L

and {d;;i=0,1,2,-- -} denote the diagonal elements of the
matrix D. Also,

Ry,=R

d;==eR;e}
l;=Riefd;!
where ¢; is the unit vector

e;=[0 -~ 010 ]
—
l

This recursion can be compactly expressed in terms of gener-
ating functions by defining

(zw*)'R(z,w)=[1 z 2* R w w2 1
and

2U(z)=[1 z2% ---]I;
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which results in

(2w*)R; (2,w) =Ri(z,w) - Ri(z7O)Ri‘](07O)Ri(va)'
(12a)

The components of the triangular factorization of R are
obtained via the expressions

d;= R;(0,0)
1{z)=Ry(z,0)d . (12b)

This formulation of the factorization procedure assumes that
the matrix R is strongly regular, i.e., that all its leading
principal minors are nonsingular; it cannot be applied to
matrices with singular minors. Singularities may, of course,
arise in practical applications; the extensions necessary to
factor imaginary-axis and unit-circle Bezoutians with arbi-
trary rank profiles are described elsewhere [19], [20] (see also
[14], [27D.

When the recursion (12) is applied to matrices with a
displacement structure (see (10)), i.e., if we assume that for
0O<i<gn

G, (2)JGx*
Ri(z,w)=%()7‘:% (13a)
we find that
d(z,w) .
G,,(Z){]* WVV_)JMnJ}G" (W)
ZW*Rn+1(Z,W): d(Z W)

where
M, =G¥(0)R,1(0,0)G,(0).
If we can find a matrix function ©,z) that satisfies, for all i,
the identity
d(z,w
( ) IM,J

0(2)I0r (W) =T = G oy ™M

(13b)

then, in particular,
Gn+](z)‘IGn*+ l(w)
d(z,w)

which proves, by induction, that (13a) holds for all ;. Thus we
need only to proceed with the recursion

2G;11(2) = Gi(2)0,(2).

Moreover, both /,(z) and d; can be determined directly from
G(z) without the need to explicitly evaluate Ri(z,w), viz,,

Rn+l(z7w) =

Y G(2)JG*(z)
d,-lel_r)no d(z,z)
G(2)JG*(0)

l,v(z)=W -

Since G{(z) have O(n) coefficients, as compared to the
O(n?) coefficients of R(z,w) (see Lemma 1 below), it is
clear how we can get a reduction in computational effort by
propagating G{(z) instead of R,(z,w).

We have shown in [18], [28] that the fundamental equation
(13b) has a solution if, and only if, the displacement kernel
d(z,w) satisfies the constraint (10e), which is always satisfied

by the sesquilinear kernels do(z,w)=a+ Bz +(Bw)*+
dzw* (see Appendix A). An explicit form for ®,z) can be
deduced from the following two observations:

(i) The solution is nonunique: if ©(z) satisfies (13b), so
does O(z)U, where U is any J-unitary matrix, i.e.,
uju* =J.

(ii) The matrix ®(r) is J-unitary for every 7 € Q.

Consequently, if ©(z) satisfies (13b) so does O(z)0 ~!(7) for
every 7€ (). In other words, (13b) always has a specific
solution @(z) with the property ®(r)=I. Therefore, by
setting w =17 in (13b) we obtain the explicit expressions
(11d-g).

The foregoing discussion establishes Theorem 2 with the
exception of (11h). To derive this we first establish the
polynomial nature of G,(z) (see Appendix B for proof).

Lemma 1 (Gi(z) is Polynomial): When G(z)=[p(z)
p*(2)IT, where p(z) is a polynomial of degree n, then the
vector function G,(z) that is propagated by the recursion
(11) is a polynomial of degree n — i (or less), viz.,

G(z2)= [Pi(z) qi(z)]T!
max {deg p;(z),degq(z)} <n—i. ]

The lemma implies that a single step of the procedure (11)
requires O(n) operations. Thus the complete procedure re-
quires O(n?) operations, in contrast to conventional tech-
niques for evaluating inertia of matrices without displace-
ment structure (such as LDU decomposition), which require
O(n?) operations. More specifically, the exact number of
computations required by our procedure is always of the
form agn®+ an+ a, with the coefficients a,a,,a, deter-
mined by the particular choice of T, ¢;,7;,U; in the factoriza-
tion procedure (11). Clever choices of the free parameters
may, of course, reduce the actual computational counts.
Finally, the proof of Theorem 2 will be complete when we
show that the polynomial ¢,(z) of Lemma 1 is, in fact, equal
to p#(z). However, before turning to do so it will be instruc-
tive to consider in some detail the specific choices for
{¢i,7,U} involved in the classical Routh—Hurwitz and
Schur-Cohn tests. We also decide, for the sake of concrete-
ness and simplicity, that we shall consider in the sequel only
the scattering-type formulation of the recursions (11), i.e., we

set
T=1I, J =diag{1, —1}.

Other recursion types (including conversion to three-term
recursions) can be obtained by a systematic transformation,
as described in [15], [16], and [31].

Example 2.1: Tests of the Routh— Hurwitz Type

The Bezoutian with respect to the imaginary axis is ob-
tained from (7) by setting

do(z,w) =z +w*

for which p*(z)=[p(— z*)]*. For simplicity we shall only
consider the problem of determining the root distribution of
a polynomial with real coefficients, so that

p*(z)=p(-2).

In addition, since we begin with T = I, we have the classical
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form

_p(2)p*(w) - p(=2)[p(-w)]*

z+w*

By(z,w)
For definiteness let us also begin with the simple choice
{; = 0. Then the fundamental recursion (11) becomes
2G; . (2) =G(2)0,(z)

where
1 1
0.(z)= [1— (— + —*)JM,}U,-.
PR &

We see that the choice 7; = joo (recall that 7; must be on the
jw-axis) results in a further simplification of ©,(z).

We can now prove by induction on the index i that the
matrix U; can be chosen in such a way that G/(z) always has
the form G{z)=[p(z) p,(— z)]. Assuming this to be true
for 1,2,--+,i (it certainly has this form for i = 0) we obtain

Gi(0)=p(0)[1 1]
d;= lim B,(z,2) =2p,(0)p;(0)

and
1 1
Mi=pi(1 1)
pi(0)
p;i = ; .
2p{(0)
Therefore,
1— =1 —1
o= "7 Ty,
‘Piz_l 1+Pi2_1

where U; can be any J-unitary matrix. The simple choice
U, = J = diag{1, — 1} results in

Gii(z)= [1’,‘+1(Z) Piv(— Z)]’

which establishes (11h) for all i, so that the recursion can be
continued. The fundamental recursion (11) becomes

ZPi+1(2)=Pi(2)_Pi2¥][Pt(Z)‘P1(_Z)] (14a)

2 q(—2) =Pi2_1[Pi(Z)_Pi(_Z)] —p{(—2z). (14b)

Notice that the second recursion in the pair can be obtained
from the first one by replacing z with — z, which confirms
our claim about the form of G,(z). The inertia of B, is
determined by the signs of {d;} which are the same as the
signs of the coefficients {p,}, since d,p; =|p,(0)*.

This seemingly new recursion is (slightly) different in form
from but completely equivalent in the amount of computa-
tion to the well-known Routh recursion, which utilizes the
even and odd parts of a given polynomial. In fact, the Routh
test can be obtained from this recursion by adding and
subtracting (14a) and (14b), which produces the so-called
immittance-type form of the Bezoutian. Alternatively, it can

be directly obtained by starting with T = (; _:) Either way,
the immittance-type recursions are

fisi(2) = 8:(2)
2231+1(Z) =fi(z)—2p;8,(2)
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where
fi(z)=pi(2) + pi(-2)
zgi(z) = pi(z) - p( - 2).
This can be rewritten in a three-term form, viz.,
sziﬂ(z) =fi—i(z) —2p;_1fi(2)

which is precisely the well-known Routh algorithm [9].

(15)

Example 2.2: Tests of the Schur —Cohn Type

The Bezoutian with respect to the unit circle is obtained
from (7) by setting

do(z,w)=1-zw*
for which p*(z)= z9%€P()] p(1/z*)]*, the conjugate reversal
of the polynomial coefficients. Since we begin with T = I, we
have the classical form
_ p(2)p*(w) - p*(2)[ p*(W)]”
1- zw* )

By(z,w)
Furthermore, let us again start with the simple choice {; = 0.
The fundamental recursion (11) becomes

2G;,(2) =Gi(2)0,(2)
where
0,(z)=[I-(1~zr*)] M;]U..

The choice 7; =1 (recall that 7, must be on the unit circle)
results in a further simplification of ©,z).

We can now prove by induction on the index i that the
matrix U; can be chosen in such a way that G(z) always has
the form G(z)=[p(z) p#(2)]. Assuming this to be true
for 1,2, - -,i (it certainly has this form for i = 0) we obtain,
in particular, G(0) =[p,(0) pZ(0)]. To continue, we need to
distinguish between the two cases® €, = + 1 where

e =sen{G(0)JG (0)} = sen{| p(0)I” — | P (0) 1%}
Thus for €; =1 we observe that
G(0)=p,(0)[1 k]
d,=1p0)*(1- k)
where k, == p#(0)/ p,(0). It follows that

o 1 1k
M, =G*(0)d['G,(0) = ——
i i ( ) i 1( ) 1*|k,—'2 k* ’k,'lz

and therefore the choice

R 1 —k
Ui"‘—/—_m —kr 1

which satisfies the requirement U,JU;* =J, simplifies the
matrix ©,(z) to the form

0
o) -uf; 9).
This makes it possible to establish that
Gi+l(z)=[p1+l(z) piﬁ-l(z)]y

The case €, =0 is excluded by the assumption that the Bezoutian is
strongly regular.
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which establishes (11h) for all i. The fundamental recursion
(11) becomes

piai(2) = (1= 162 [ pi(2) - kipt (7))

pt(2) = (1= 1k ) [ p#(2) - kipi(2)]

namely, a normalized form of the well-known Schur algo-
rithm. The conventional (i.e., unnormalized) form is ob-
tained by scaling p(z) so as to eliminate the square-root
term (1 — |k;|*)~!/2. This amounts to rescaling the Bezoutian
B(z,w) by a positive constant, which leaves the inertia of
the Bezoutian unaltered. For simplicity, we denote the
rescaled version of the polynomial p(z) also by p(z). It
satisfies the recursion

Pii(2) = [ pi(2) = kpf(2)]
pl(2) = [Pi#(z) - kipi(z)]'

Notice that the second recursion in the pair can be obtained
from the first one by a conjugate reversal. Also, since p,-#(z)
is easily obtained from p,(z), only one of these recursions
has to be propagated.

When €; = —1 we choose k; ==[p,(0)/pF(0)]* (notice that
|| <1 again) and the same form for U; as before. Since now

G(0) = pZ(0)[ k7 1]
d; =pF(O)*(Ik;* - 1)
it follows that

2
M= Gi*(o)di_lGi(O) = Ikil ki)

k1> -1 ( kF o1

and therefore
_ 1 0
0,(z)= U,»( 0 2 ) .

Again it follows, by induction, that G{z)=[p{z) p#(2)],
resulting in the recursion

pii(2) = (1= 1k2) [ p(2) = k#pt (2)]

pEi(z2) = (1-1kP) [ p2(2) - kip(2)].

This recursion can also be rescaled to eliminate the square-
root term.
In summary, the combined recursion is

pii(z), =1
pi(z) = kFpf(2) = 16a
(=) pi4(z), =-1 (162)

where ¢; is as defined above and
#
p7(0)/p(0), i=

k,-=={ 0)/ i) . (16b)

[Pi(o)/Pi (0)] » =-1L

The recursion for p#(z) can be obtained by a conjugate
reversal of (16a). The inertia of By is determined by ¢;, the
signs of d;. The knowledgeable reader will recognize that our
formulation has led us to a recursion that is slightly different
from the one introduced by Marden [12] and Jury [13]; the
latter uses only the €, =1 part of (16), but allows the magni-
tude of k; to exceed unity. Consequently, their method for
determining the inertia of the Bezoutian matrix is different

from ours. In contrast, Cohn’s original formulation [6] of the
Schur-Cohn test is identical to our (16). The Cohn test has
the feature that whenever €; = — 1, we can say that there is a
root inside the unit circle; in the Jury—Marden test, we have
to keep track of the variation of signs of a certain sequence.

|

As promised earlier, we now turn to establishing the
property (11h) (with T =1) for all dy(z,w). In view of
Lemma 1, we only need to show that g,(z)= p#(z). We
know from (11) that

(z _fi)[PiH(Z) qi+1(z)] = [Pi(z) qi(z)]®i(z)

which can also be rearranged (via polynomial reflection) in
the equivalent form

(z-8)[at(2) pr(2)]=[a(2) pF(2)][0(D]}

where [0,(z)], denotes the parareflection of the matrix
function ©,(z), viz.,

[0(2)],=[0(z%)]"

and the superscript h denotes transposition with respect to
the antidiagonal, viz.,

(17a)

A= [47]. (17b)

Here the superscript 7 denotes ordinary (nonconjugqted)
transposition with respect to the main diagonal, and [ de-
notes the matrix with unity elements along the antidiagonal
and zeros elsewhere, viz.,

0 1

~
fl

1 0
Thus (11h) can be established by induction (recall that it
holds for i = 0) if we can ensure that for all / and for all z,

[0,(2)]F=b,(2)[0(2)], (182)
where
. Z—SV,-
bi(z) G (18b)

is a (scalar) generalized Blaschke factor (see Section III for
further discussion of its properties). In order to establish (18)
we first summarize in Lemma 2 the symmetry properties of
the constant matrix U; (see Appendix B for proof).

Lemma 2 (J-Unitary Matrices): Every J-unitary matrix U
(where J := diag(1, —1}) can be decomposed in the form

U=o0Vv
where
@ =diag{¢,¢*}, Iol=1
1
®:=ﬁ—lz—(_lk* “1’<), k<1
and
¥ := either diag{1, ¢} or diag {¢,1}, lr] =1.

Conversely, every matrix of this form is J-unitary. Moreover,
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the matrices @, 0, ¥ satisfy the symmetry relations

= p*
@ =0*
T = gy, =

We can now incorporate Lemma 2 into the characteriza-
tion of the recursions (11), viz.,

0,(z2)= [1 —A(z)J Mi]q)i(aiwi =0,0,A,(z)¥; (19a)
where

Ai(z):]_)‘i(l)]fi*di_lfi (19b)

and
&=G,({)®0,. (19¢)

With this expression we can finally turn to establish the
symmetry properties of ©,(z) (see Appendix B for proof).

Lemma 3 (Symmetry of 0,(z)): The matrix function 0,z)
of (19) satisfies the symmetry constraint

[0:()] =wib (7)b:(2)[€,(2)] - =
Thus the symmetry constraint (18) on ®,z) can be satisfied
by setting ¢; =[b*(r)]"!=br,) (notice that (7d) implies
that b,(7;) has unit modulus). This completes the proof of
(11h).

Once the extraction points {; have been selected, the
remaining undetermined parameters in the recursion are
{¢,,k;,7}. We now turn to derive some simplified forms,
similar to the Routh and the Schur—Cohn recursions, by
making suitable choices for these parameters.

Simplified Scattering-Type Recursions: The simplest (but
not necessarily most efficient) choice is ®;=7=0; and
W, = diag{1, y,}. This results in a recursion for p{z) with two
nontrivial coefficients, viz.,

(z=8)pivi(2) :Pi(z)—Pi/\i(z)[Pi(z)’ki*Pi#(z)]

(20a)
with py(z):= p(z), and
sgnd; =sgnp; (20b)
where
__ |Pi(§i)|2
P
pi#({i)
k= . 20
! Pi({i) ( C)

A similar recursion holds for p#(z); however, it is usually
simpler to determine p#(z) by applying a polynomial reflec-
tion directly to p(z).

It appears that when dg(¢;,{;)=0, the computational
complexity of this recursion cannot be significantly reduced
(except by changing the type of the recursion, which we shall
not consider here). In particular, if p;(z) has real coefficients
and if {; is real, then k;= +1 (under the assumption that
do({;,{;)=0) and there is only one nontrivial coefficient
(i.e., p;) in the recursion (20a), so that further improvement
is impossible.

On the other hand, when dq(¢;,{;)# 0 we can obtain a
single nontrivial coefficient in the recursion even for complex
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polynomials by choosing ®; = I, and

P} (&) /P&, € =1
k= 21
' {[Di(f;)/l’,#(f,)]*, g=—1 (21a)
where
er=sen{G,({)IGF (L)) =sen{Ip(&)I* ~ 17 (L)1)

(21b)
A direct calculation shows that in (19b)
{ diag {b,(2)b*(7;).1}, €=1
diag{lvbi(z)bi*(Ti)},

so that a suitably matched choice of W, eliminates the b*(r;)
term, resulting in

A(z)=
(2) o

@i(bi(oz) (11) (-1
0,(z) =
(C) ! 0 =-1
o b(z)] <=+
Finally, we can remove the square-root factor (1— |k |*)~1/2
from ©,, which establishes the unnormalized form
pi(z) = kip¥(z)
TR
Z=6
pisi(2)= (21¢)
" Pf(z)_ki*Pi#(Z)
S =1
z={;

with py(z) = p(2). Also, since d; = GL{)IGH()/ Ao, ()
it follows that

sgnd; =e;sgn{do(¢;, ¢} (21d)
Notice that the undetermined parameter 7; has been com-
pletely eliminated from the recursions. The recursion for
p¥(2) can be obtained (when necessary) by a polynomial
reflection of (21c¢).

We demonstrate the utility of these generalized recursions
by specializing them to obtain new procedures for zero-loca-
tion with respect to the unit circle and the imaginary axis.
First, we present a unit circle procedure that bears a much
closer resemblance to the Routh test than either the
Schur—Cohn or the Bistritz tests. It is equivalent (in a sense
defined in [36]) to the bilinear-Routh procedures presented
in [33]-[35].

Example 2.3 (A New Unit-Circle Algorithm)
This new algorithm is obtained from (20) by setting
do(z,w) =1-zw*
&i=1
7, =—1.

Consequently, p*(z) = 298P p(1/2z*)]*, which implies
that for polynomials with real coefficients

k;= P,‘#(I)/Pf(l) =1
so that (20) reduces to

1+z
(Z_l)pi+l(z)=pi(z)_pim[pi(z)—pi#(z)]'

(22a)
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A conjugate reversal produces the dual recursion

[p, (z)-pt(2)].
(22b)

(=0 = (D)= gy

As in Example 2.1 (the Routh algorithm) we may take
advantage of the fact that k; =1 to introduce immittance-type
variables, viz.,
fi(z)=p(z)+ p¥(z)
pi(z) - pf(2)
z—1 ’

8i(z)=

Notice that g/(z) is a polynomial (because p,(1)= p*(1)),
and that both f(z) and g,(z) are symmetric with respect to
polynomial reflection, namely,

fF(z)=f(z2)
g¥(2)=g,(z2).

We can now combine (22a and b) into a (two-term) recursion
for the immittance-type variables, viz.,

fivi(z)=2g(2)

1
(z-1)g(2) = fi(2) - 0, gi(z). (23a)
or, into a three-term recursion for f,(z), viz.,
5 z+1
(z=1)"fi(2) =fi-i(2) _pi—l—z_fi(z)
e
pi—] - fl(l) . (23b)

Finally, the inertia of the Bezoutian is determined by (20b),
viz.,

sgnd; =sgn p,. (23c)

While these recursions resemble very closely the Routh
algorithm, there are two important differences: i) they in-
volve a nontrivial division by (z —1)? at each step of the
recursion, and ii) the polynomials f,(z) are not “even” (i.c.,
none of their coefficients vanish). The division by (z —1)?
can be accomplished with 2(n — i) additions per recursion
step (and no multiplications) so that the entire procedure
still requires O(n?) multiplications and O(n?) additions.
Notice also that since f,(z) are symmetric polynomials, only
half of their coefficients need to be propagated.

The similarity to the Routh algorithm becomes even more
apparent if we choose to expand the polynomials fi(z) in the
form

f(2) = Z fi(z-1) (24a)

n—i ( +1 )—k+degf,(z)
The odd numbered coefficients in this expansion vanish, so
fi(z) can be considered an “even” polynomial. The corre-
sponding table form recursion is

fivtk—2=Ficie t 2021 ks k>2 (24b)

which is identical to the table form of the Routh algorithm
(here also only the even coefficients are propagated). How-
ever, while the computational complexity of (24a) is compa-
rable to that of (23b), the need to expand p(z) in the form

(24a) and to determine the expansion coefficients of fy(z)
and of f(z)=g,(z) makes the overall computational re-
quirements of (24) significantly higher than those associated
with propagating (23) in terms of the conventional expansion
of the polynomials f;(z). ]

Next we turn to present an imaginary axis procedure that
resembles the Schur~Cohn test and is equivalent to the tests
presented by Reddy and Rajan [32] and by Lepschy et al.
[30].

Example 2.4 (A New Imaginary-Axis Algorithm)
This new algorithm is obtained from (21) by setting
do(z,w)=z+w*
gi=1.

Consequently, p*(z)=[p(— z*)]*, (as in Example 2.1) so

that (21) reduces to

p(2) = kFpl(z2)

pivi(z)=— ltez

where k; is given by (21a). We can eliminate the minus sign
without affecting the validity of the procedure (this corre-
sponds to choosing ®; = — I instead of @, = I in the deriva-
tion of the simplified recursions (21)). Taking into considera-
tion the definition of p*(z), this results in

pi(z)_ki*[pi(_ Z*)]*

pioi(2) - Ty (25a)
where
ei=sgn{lp,(DF = 1p(~ 1)) (25b)
and
- pi{—1)/pi(1), € =1 (25¢)

o [e(D/p(-D]T, =1

The inertia of the associated Bezoutian is determined via
(21d), which simplifies to

(25d)

A necessary and sufficient condition for stability is that
€;=1 for all i.

This new procedure differs from the one presented by
Lepschy et al. [30] in the same manner that our version of
the Schur—Cohn procedure (Example 2.2) differs from the
Marden-Jury algorithm:

sgnd; =¢;.

) Our k; are always bounded by unity.

ii) We determine inertia via the signs of ¢; whereas
Marden~Jury and Lepschy et al. determme it via the
signs of the products IT¢_ (1~ |k; )

When used as a stability test our procedure is carried out
only so long as ¢;=1; in this case it completely coincides
with the test presented by Reddy and Rajan [32].

III. PoLyNoMIAL REFLECTION AND
GENERALIZED BEZOUTIANS
The properties of an (-Bezoutian, as defined in the
introduction by (7) are determined by the polynomial pair
G(z)=[p(z) q(z)] and by the denominator function
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do(z,w) of (6). We shall first analyze some properties of
d(z,w) that are fundamental to the proof of Theorem 1.

As stated in the introduction, the inequality d(z,z)>0
characterizes a domain (), in the complex plane whose
boundary € is either a circle or a straight line. We summa-
rize in Appendix A several well-known facts from the so
called Hermitian theory of circles (see, e.g. Schwerdtfeger
[25D. The most important of these is the notion of point
reflection in a circle (or in a straight line). The point reflec-
tion of z, which we denote by zR, has been defined as the
solution to the equation

do(z,z%)=0.

Notice that point reflection is an involution, i.e., (zF)R =z,
and that z® =z if, and only if, z € Q. The explicit expres-
sion for z® follows from (26a), viz.,

R__[oTBZ .
2= (B*+62 '

(26a)
R)R

(26b)

Polynomial reflection, which we denote by a “sharp” (#), is
a transformation that maps the zeros of a polynomial p(z)
into their reflections, i.e., p*(z) is a polynomial of the same
degree as p(z) and

p(z) =0+ p*(zF)=0.

This characterization determines p*(z) uniquely up to a
scaling operation,

p*(2) ~ (B*+82)*" P p(2F)]*.

Therefore, we define the polynomial reflection p*(z) via the
following explicit expression.

B*+ 6z

X \/|B|2 —ad

where y is an arbitrary unit modulus constant, viz.,

deg p(z)
b (2) - ) o] @)

(27v)

For instance, the unit circle is characterized by d(z,w)=
1— zw* and the corresponding polynomial reflection is

pH(z) = 2 p(1/ 2]

which requires choosing y = —1 in (27a). On the other hand,
polynomial reflection with respect to the real line, which is
characterized by dg(z,w) = j(z — w¥), is given by

p*(2)=[p(z")]*
and requires choosing y = j in (27a).

The following properties of polynomial reflection follow
from the definition (27) and the identities (A.6) and (A.7):

[xl=1.

[p#(2)]* = p(2) (28a)
[ap(2)]* = a*p*(2) (28b)
[p(2)a()]* = p*(2)a*(2) (28¢)
[p*(2)l=p(2)l, forall ze Q. (28d)

Notice that z* # (zF)*; while z* is a polynomial of degree
1, the conjugated point-reflection (z®)* is a ratio of two
polynomials of degree 1. A polynomial p(z) is called (con-
jugate) symmetric if p(z)= p*(z). This can happen if, and
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only if, the set of its zeros (and their multiplicities) is

Jinvariant under point reflection. This implies that zeros are

either on the boundary Q or can be arranged in pairs that
are symmetric with respect to  (in the sense of point-reflec-
tion).

It follows from (28d) that the ratio p(z)/p*(z) has unit
modulus for all ze€ Q. For p(z)=z—{ this ratio is a
generalized Blaschke factor, viz.,

by(2) = ——
z)i=—.
¢ (z— {)#
When d(z,w)=1- zw* we recognize this function as the
conventional Blaschke factor with respect to the unit circle;
similarly, do(z,w) =z + w* produces the conventional
Blaschke factor with respect to the imaginary axis. Since the
Blaschke factor is a rational function of degree 1, it maps
circles into circles. More specifically, for £ € ) it maps (.
onto the inside of the unit circle, and Q_ onto the outside of
the unit circle, while the boundary Q is mapped onto the
unit circle itself.

This property of the Blaschke factor follows from the
fundamental identity

do(z,w)da({,8)

(29a)

da( Ddp(Gw) D ()
which implies, in particular, that
oy = a2 20D
ldo(z,4)I
Therefore, for every { € Q ,
|b{(z)|<l, ze,
b, (2)I =1, ze€Q (29¢)
b, (2)I>1, ze_

while the reverse inequalities hold for ¢ € Q_. The identity
(29b) is established by direct calculation using the intermedi-
ate (and directly verifiable) result

do(z,0)b(2) = —x*(z = O)VIBP —as.  (29d)

Also notice that when { € Q the rational function b,(z)
becomes independent of z. This is a direct consequence of
the fact that bg(z) is analytic for every z # (R, while on the
other hand |b,(z)| =1 for all z.

It follows from the definition of point- and polynomial-
reflection that the numerator of Bf?(z,w) of (7) vanishes

for w = zR. This is so because
deg p(2) *
) p(z)
and, therefore,

p(2)[a*(z®)]" ~a(2) [ p*(zD)]"
~p(2)q(z)—q(z)p(z) =0.
Since also dq(z,z®)=0 it follows that d(z,w) divides the
numerator of B 9(z,w) and, therefore, that B§9(z,w) is a
polynomial in z and in w*.
We now turn to exploring the role of the ged of p(z),q(z)

in (7). First we establish the notion of congruence for gener-
ating functions.

B*+6z%

#( RV * = pToz
[p( )] (Xm
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Lemma 4 (Congruence): Let R(z,w) be the generating
function corresponding to a (possibly infinite) matrix R, viz.,

R(z,w)=[1 z2> --]R[1ww? ---]*

and let f(z),g(z) be arbitrary power series, viz., f(z)=
Tioofiz', 8(2)=X7_yg;z". Then

f(R(z,w)g*(w)=[1 z 2% ---]

"L(f)RL*(g)[1 ww? ---]* (30a)
where L(f) denotes a lower-triangular Toeplitz matrix whose
first column is determined by the coefficients of f(z), viz.,

fo 0
i fo

LDO=1r 1 s (30b)

Proof: The result follows directly from the observation
that

[1z22 - JL(f)=f(D[1 z2* -]
and similarly for L(g). | |

The lemma implies that if p(z),g(z) have a common
divisor r(z), viz.,

p(z) =p(2)r(2)
a(z)=4(z)r(z)
then the corresponding Bezoutian Bj“ is congruent (in the

sense of Lemma 4) to the Bezoutian B5 9 of p(z),4(z). This
is so because

BE(z,w) =r(z)BEi(z,w)[r*(w)]”
which implies that
B&9=L(r)BEIL*(r*) (31a)
and therefore
rank B§'? = rank B§ 9 < deg p(z) =degd(z). (31b)

In order to establish part i) of Theorem 1 we need to
show that B9 indeed has full rank. To this end we first
establish an additive decomposition of B %(z,w) as follows.
Since p(z) and g(z) in (7) have the same degree n we can
factor each one into a product of n polynomials of degree 1,
say,

p(2)=p(2)py(2) - p(2),
a(z)=q,(2)a,(2) - - q,(2),

deg p(z)=1 (32a)
degg;(z)=1. (32b)

The following result establishes an additive decomposition of
Bg9(z,w) in terms of the elementary Bezoutians BE>%(z,w).

Lemma 5 (Additive Decomposition — Polynomial Form):
The Bezoutian B 9(z,w) satisfies the identity

BE(20) = L () BRI () (332)

where
¢n,i(z) =p(2)py(2) - pi1(2)qi1(2) - - q,(2) (33b)

Uni(2)=qf(2)qf(2) - a¥ (2)p}(2) -~ p¥(2).
(33¢)

Proof- The proof given in Appendix B is based on a
simple additive decomposition of the numerator of
BE“9(z,w). This approach is attributed to Liénard and
Chipart [26] (see also section III in [5]) and has also been
used by Ptik and Young to obtain an extension of the
Schur—Cohn test [23]. Its strength lies in the fact that it does
not involve at all the denominator function of Bg%(z,w),
and therefore applies to all curves for which the definition
(7) determines a finite Bezoutian matrix. | |

-We can now determine the rank of B9 by considering
the matrix form equivalent of Lemma 5 (see Appendix B for
proof).

Lemma 6 (Additive Decomposition — Matrix Form): The
Bezoutian matrix Bf? satisfies the identity

n
Bf? = Zkid’n,i i (34a)
i=1

where &, ; (resp. ¥, ;) is the column vector consisting of the
coefficients of the polynomial ¢, (z) (resp. ¢, (2)), which is
defined via (32) and (33). Also,

_ e[l
“ 40,0

where ¢ is the zero of p{z). Moreover, if ged{p(2),q(2)}=
1, then the vectors {d)n‘l»} are linearly independent and so are
the vectors {{s, ;}. |

(34b)

We are now ready for the proof of Theorem 1.

Proof of Theorem I1: Combining (31) with Lemma 6 we
conclude that

n-n
3= L) X b it L10)
i=1

where n:=max{deg p(z),deg g(2)}, r(z)= ged{p(2),q(2)},
and 7 = deg r(z). Since by Lemma 6 the column vectors ¢, ;
(resp. ¥, ;) are linearly independent, it follows that
rank Bf? = n — n, which establishes part i) of Theorem 1.

When ¢(z)= p*(z), the Bezoutian Bﬁ"’# is. Hermitian
and has real eigenvalues. Also

r*(z) = ged {p*(2),4%(2)} = ged { p*(2),p(2)} = r(2)
and ¢, (z)=4, (z). Consequently,

n-—n

Z Ki¢n,i¢:,i}l‘*(r)

i=1

ng - 10|

which proves thslt the number of positive and negative eigen-
values of Bf? is determined by the signs of the scalar
coefficients ;. Since (34b) reduces in this case to

la: (41
Ki=———C
' do(8i )
it follows that sgn x; = —sgn d ({;, {;), which gstablishes part
ii) of Theorem 1. [ |

An alternative proof of Theorem 1 can be based on the
following interesting property of the function dn(z,w) (see
Appendix B for proof).

1
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Lemma 7: Let {{y,¢,,"-",{,} be distinct points in the
complex plane that satisfy the constraint d({;,{;) # 0 for all
1<i,j<n. Then

1<i< n}

= Indiag{do({:,¢;), 1<i,j<n}.

] 1
§ { do(inL)’
(35)m

Part ii) of Theorem 1 can be easily deduced from Lemma 7,
as follows. Let p(z) be a polynomial whose zeros {; satisfy
the assumptions of Lemma 7, i.e., they are distinct and
do(£;,¢) # 0. As a consequence p*(¢) +# 0 and, therefore,

AP ()]
dQ({i’{j) '

Writing this in matrix form (for 1 < i, j < n) we obtain
(BB (4.4,

=VBE P v+

BEP (4 4;) = -
1<i,j<n}

1
=—D{———=,1<i,j<n}D*
where D :=diag{p*({,), 1<i<n}and V is a Vandermonde
matrix, viz.,

2 -1
& 1

1 ¢

1 ¢, & !

Since both D ayd V are nonsingular, it follows from Lemma
7 that InBE? = Indiag{d({;,¢),1<i<n}, which estab-
lishes part ii) of Theorem 1. Part i) can be established in a
similar manner. Also, this approach can be extended to the
case when the zeros of p(z) are not necessarily distinct. This
involves the notion of divided-difference operators, which is
beyond the scope of this paper (see, e.g., [17].

IV. ConcLuDpING REMARKS

We have presented in this paper a unified explicit expres-
sion for Bezoutians with respect to arbitrary circles and lines
in the complex plane, and we have established their rank and
inertia properties. We have also indicated that such general-
ized Bezoutian matrices satisfy a variety of Lyapunov-type
equations, including those studied by Gutman and Jury [21].

By recognizing generalized Bezoutians as a particular in-
stance of matrices with a displacement structure, we could
apply the efficient factorization procedure of [18] to deter-
mine the rank and inertia of generalized Bezoutians. Thus
the location of zeros of a given polynomial p(z) of degree n
with respect to a circle or a straight line  can be deter-
mined in O(n?) computations without explicitly evaluating the
elements of the Bezoutian matrix Bf?*

Our formulation yields, in fact, a large variety of O(n?)
procedures, one for each choice of certain unspecified pa-
rameters {T,{;,7;,U} in the factorization procedure (11).
Special choices can make various improvements in the exact
number of computations. The well-known classical proce-
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dures and several new variants thereof are also obtained by
making specific choices (see Examples 2.1-2.4).

As we mentioned in Section II, our formulation (11)
applies only to strongly regular Bezoutian matrices. Never-
theless, this formulation can be modified to accommodate
the possible occurrence of singular minors in the Bezoutian.
Generalizations of our fast factorization procedures for
non-strongly regular Bezoutians on the unit circle and imagi-
nary axis have been recently developed, and will be discussed
separately (see Pal and Kailath [19], [20]).

APPENDIX A
TrHE HErRMITIAN THEORY OF CIRCLES
We briefly review here some known mathematical results
(see, e.g., [25]) that are relatively unknown in engineering
circles.

The Partition {Q,,Q,Q_}

The equation dfz, z) > 0 determines a domain {}, whose
boundary € is either a circle (with nonzero radius) or a
straight line if, and only if, det J, <0, i.e.,

do(z,w)=[1 z]J[1 w}*
a pB*
"’=(ﬁ 6)
InJ,={1,1}. (A1)

Notice that since J, is Hermitian, its diagonal elements (i.e.,
« and &) must be real.

Assuming that (A.1) holds, we obtain a partitionirg of the
complex plane into three mutually exclusive domains
{Q,,0,0_}, with Q being the common boundary of Q.
and ) _. Notice that if J, determines a partition {Q,,Q,Q_},
then — J, determines the dual partition {Q_,Q,Q,}.

It will be helpful to rewrite d(z,w) in the form

(B*+6z2)(B*+ 6w)*— (181> — d)
)

do(z,w) = . (A2a)

Thus when 6 #0, the curve ) is a circle with center at

— B* /6 and radius y |BI> — a8 /|8|. The domain Q. is the
inside of this circle when 8 <0, but it is the outside of the
same circle when 6>0. When 8 =0, the curve ) is a
straight line that cuts the axes at the points

_a 0 d {0 _*
(_ZReB’) o (’2Imﬂ)'

The vector — jB* is orthogonal to the boundary line (), and
points toward the domain (2.
Since InJ,;={1,1} it follows that there exists a (nonunique)

nornsingular matrix T=(‘Z 5) such that Jd:T(é ,UI)T*-
This implies that
_ 1 0\ ,
do(z,w)=[1 2]T 0 -1 T*[1 w]

=(a+cz)(a+cw)*—(b+dz)(b+dw)*
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namely,

do(z,w) =d(2)dF(w) —dy(z)d5(w). (A2b)

In particular, when & > 0, it follows from (A.2a) that (A.2b)
can be satisfied with dy(z) = (Y|8]))~(B* + 82), d(2)
=y |BI> — & (and the other way around when 8§ < 0). When
8 =0 (but B+ 0) we can satisfy (A.2b) by choosing d(z)=
Bz +1/2a+1) and dx(z)=Bz +1/2(a —1).

Point Reflection

The point reflection of z with respect to a circle (or a
straight line) described by do(z,w) =a + Bz +{(Bw)* + szw*
is defined as (another) point z ¥ that satisfies the equation

do(z,zR%)=0. (A3)
The explicit solution to this equation is
a+ Bz
ZR:=_( Pz )« (A4)
6z + B*

which is a bilinear transformation followed by conjugation. It
maps (), into Q_ (and vice versa) and Q into itself. Notice
that point reflection is an involution, i.e.,
R
(zF)" =2 (A5)
For straight lines it becomes the usual reflection in a line.
The representation (A.2) implies two useful identities, as
follows. Combining (A.2) and (A.3) we find that

(B*+82)(B*+828)*=|BI* - as. (A.6)
When z € Q, this specializes to
IB*+8zl=VIBP—as, forzeq. (A7)

This identity is used in Section III in the scaling of the
polynomial reflection operation.

APPENDIX B
PrOOFs oF LEMMAS

Proof of Lemma 1

Substituting the expression (11d) for ®(z) in (13b), we
obtain a corresponding identity for the scalar function A (2),
viz.,

A(z)+ [/\i(z)]# - d(gi’{z)/\z(z)[Ai(z)]# =0. (B.1)
Now, it follows from (13b) that for all i and for all z
Gi(z)j[Gi(Z)]#=GO(Z)J[GO(Z)]#= 0

which implies that the denominator of the generating func-
tion
Gi(2)JGH*(w)
do(z,w)
divides the numerator. Consequently, if we assume that G(z)

is a polynomial of degree §; then it follows that B{(z,w)is a
(bivariate) polynomial of degree d; — 1. Moreover, since the

B{(z,w):=

recursion (11) for G,(z) can also be expressed in the form

do(z,7)
do(¢im)

it follows that, under the same assumption, G, (z) is a
polynomial of degree 8;,, <8, ~ 1. Since G((z) is, indeed, a
polynomial of degree §,=n it follows, by induction, that
G/(z) is a polynomial of degree n —i.

(z2-4)G(2) =|G(2) - Bi(2,6)G(&) U

Proof of Lemma 2

Denote the elements of U by a,b,c,d, viz.,

u=(2 %)

and observe that UJU* = J translates into

lal* = b1 =1
ld|* —le|* =1
ac* = bd*.

Since this implies that a # 0 and d # 0, we can introduce

which, in turn, implies that |p| <1 and that |a|=|d|=(1-
|p1*)~1/2. Thus the matrix U can be expressed in the form

o i el P

0 vy 1— |p|2 p* 1
where v, = a /|al and v, = d /|d|. This representation shows
that U is determined by four independent real parameters:
the real and imaginary parts of p and the phases of the unit
modulus coefficients v, and v,. The expression given in
Lemma 2, with ¥ = diag{1, ¢} now follows by letting ¢ = v,,
y=w,v, and k= p(v,v,)*. The dual expression, with ¥ =
diag{y, 1}, is similarly obtained by letting ¢ = v}, ¢ = v,,
and k :=pv,v,. The rest of the statements in the Lemma
follows by observation.

Proof of Lemma 3

Taking into account the decomposition (19) and the sym-
metry properties listed in Lemma 2, we observe that

[0(2) ] = ¥IAN( 2) O dF = y WAl 2)@*D*

where, for the sake of convenience, we have. omitted every-
where the subscript i. Also, observe that

[G(Z)]# = \I/*[A(z)]#®*<1>*
so that Lemma 3 will be established when we show that

N(z) =b*(1)b(2)[A(2)]4.

A direct calculation shows that J*= — J as well as

(B.2)

(£~ '¢) =grd "¢ — d(£,0)]
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where we used the fact that, from (19¢),
§J6*=G(£)IG*({) =d(4,{)d.
Therefore, from (19b),
N(2) = 1= Mz)(g%d €)'
=1+ M2)[erd e —d(2,0)I )T
=[1-A(2)d({,. )M+ M(z)éE*d7¢T.
On the other hand,
[A(D)]s = 1-[M2)]pe*d eI
=[1-A(2)d(¢, )]
A= a(2)d(5, D)1+ A(2)¢*d 7T}
=[1-M(2)d(£,0)] "N (2)

where we have used the expression (B.1) for [A(z)],. Finally,
by (29b),

1—A(2)d(Z,8) =b(2)b*(7)

which establishes (B.2) and, consequently, Lemma 3.

Proof of Lemma 5

First, observe that for p(z)=p(z)p,(z) and q(2)=
q,(z)q,(z) we have

BE(z,w) =ax(2) B " (z,w)[ p¥(w)]*

+py(2) BE(z,w) [af (w)]”

regardless of the degrees of p,(z),q,(z). In particular, this
establishes (33) for n = 2. Assume it holds for some fixed n,
and consider the Bezoutian BgP»+»99:+(z,w), where
p(z),q(z) are both of degree n and p,, (2),q,.z) are
both of degree 1. By our former observation we have

BEer -t (2,w) = 4,01(2) BE(2,w) [P (w)]”
+ p(2) B (z,w) % (w)]”

n

= X [¢ni(2)40(2)] BE 4 (2,w)

i=1
[u W) Pt ()]
+p(z) B9 (z,w)[a*(w)]"
Observe that
¢'n+1,i(z) = qsn,i(z)qrﬂ»l(z)
‘l’n+1,i(z) = llfn,i(z)pfﬂ(z)
and
d’n+l,n+l(z) =p(z)
dln+l,n+l(z) Zq#(z)

which establishes (33a) for n +1 and, therefore, establishes
the lemma by induction.

Proof of Lemma 6

The matrix identity (34a) is the coefficient-domain equiva-
lent of (33a). More specifically, in view of Lemma 4, we
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obtain from (33a) the matrix identity

n

BEY= Y L(¢, ) BE“L*(¢,)
i=1

where L(-) is as defined in (30b). Since deg B %(z,w) =0,
it follows that

BE%i(z,w) = k;
for all z,w and, therefore, that B9 is a matrix of the form
...]*[1 0 ]

Choosing z=w =¢;, a zero of p(z), we obtain (34b). Also
notice that

BB =x[1 0

L(¢, )1 0 - ]*=d,;

which establishes (34a).

To prove the linear independence of the vectors ¢,, ;, we
observe that La;®,; is the vector of coefficients of the
polynomial f(z)= La;$, (z). Therefore, we need to prove
that 7 &;é, (z)=0 cannot hold with nonzero «;. Since
we assume ged{p(z),q(z)}=1, it follows that g({;)+# 0 for
all i,j and, consequently, that ¢n,i(§j)=0 for j<i while
¢, () +#0for j>i.

We now consider the possibility that f(z)= 0. If this holds
identically for all z then, in particular,

0=f({) =19, 1(4) > a;=0.

Consequently, p(z) divides f(z), viz.,

&2‘ = Z aid)g)i(z)
pi(2) i=2 ’
where we define, for r < i,
¢£xr):(z) =p(2)p,+1(2) " “pi-2)qi(2) - qu(2).

Since p,(z) does not vanish identically we can have f(z)=0
only if f,(z)=0, which, in turn, implies that

0=fi({) = “24’5’2.)2({2) —a,=0.

In this manner we establish that

fi(z)=

f(z)=0—-a,;=0, for all i

which establishes the lemma.

Proof of Lemma 7

The inertia of every strongly regular Hermitian matrix
R:= {r,-’j, 1<i,j< n} can be recursively determined via the
transformation R — Ry={r{), 2<i,j<n} (see, e.g., [18]),
where,

rie=r = roriin for 2 <i,j<n.
Since the matrix R, is a Schur complement of the element

ry., in the matrix R, it follows that

11

InR=1 0
n—nORl.




In particular, if we apply the same transformation to
1

—_—1

do(8i8;)

where do(z,w)=a + Bz +(Bw)*+ 8zw*, then we conclude
that r; , =d~'({},¢) and R, =(IB)* — a8)D,A,., D, where

{i_gl
do(£i,¢1)

Since, by the assumptions of the lemma, |B8|° — a8 #0,
do({1,¢)# 0, and D, is nonsingular, it follows that

dQ((lvgl) 0
0 A2:n

R=A1m:={ <i,j<n}

D1:=diag{ ,2<i<n}.

InA,.,=1In (
which establishes the lemma (by iteration).

ArpeEnDIX C
LyapuNov EQUATIONS

Consider a matrix C in companion form, viz.,

0o --- 0 —ay,
c=|! (C.1a)
1 -a,,
and its associated monic polynomial
a(z)=ag+az+ - +a, 2" '+z" (C.1b)
and observe that
[1zz%-z"7YC=2[1 z 2%---2"1]
—a(2)[1 z z%---2"71].

This suggests that we should ignore terms containing multi-
ples of a(z) in calculations involving companion matrices,
viz.,

1z zz'”z”’l]C:z[l z zz---z"'l],
moda(z) (C.2a)
and, consequently, for all i > 0,

[t z2% 2" Ci =21 2 22+ 277 1],

moda(z). (C.2b)
Now introduce the linear displacement operator
d(4,B)R= Y d, AR(B*) (C.3)

ij=0

where A, B, R are arbitrary square matrices of the same size,
and the coefficients d ;,; come from the power series expan-
sion (10b) of d(z,w), viz.,

d(z,w)= Y d,-)jz"(w*)j.
i,j=0
It follows that

[1 z22---z"""|{d(C,C)R}[1 w w2 own I

=d(z,w)R(z,w), mod a(z),mod a*(w).
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Consequently, if we let d(z,w)=dy(z,w) and R = B§? then
[1 222 2" 1 {do(C,C)BEY[1 w w?--- w1 ]*

=p()[a* W] - a()[p*(W)]",
mod a(z),mod a*(w) (C.4)

where a(z) is an arbitrary monic polynomial of degree n,
and C is the companion matrix associated with a(z) via
(C.D). In particular, if a(z) is the monic equivalent of ¢(z) =
3q;z', ie., if

a(z)

n

a(z) =

then
[1 z2% -2 '{do(C,C)BE Y}
1w w2 owt T =u(z)v(w)

where u(z) (resp. v(2)) is the residue from the division of
p(z) (resp. g*(2)) by a(z). In matrix form, this becomes
do(C,C)BET = w* (C.5)

where u (resp. v) is the vector of coefficients of the polyno-
mial u(z) (resp. v(z)) of degree n—1.

Finally, the Lyapunov-type equation (C.5) can be trans-
formed into a variety of other forms via a suitable similarity
transformation. A direct calculation shows that

do(A, A)B = av* (C.6a)
where
A=TCT ', B:=TBST*
i:="Tu,p=Tv (C.6b)

Thus A4 can be any matrix similar to C, i.e., any matrix whose
characteristic polynomial is a(z). Observg that B has the
same inertia as the Bezoutian matrix B§?".
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