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IMMITANCE-TYPE THREE-TERM SCHUR AND LEVINSON
RECURSIONS FOR QUASI-TOEPLITZ COMPLEX
HERMITIAN MATRICES*

Y. BISTRITZ+f, H. LEV-ARI{, anp T. KAILATHYt

Abstract. A comprehensive analysis is made of Schur- and Levinson-type algorithms for Toeplitz and
quasi-Toeplitz matrices that have half the number of multiplications and the same number of additions as the
classical algorithms. Several results of this type have appeared in the literature under the label ““split algorithms.”
In this approach the reduction in computation is obtained by a two-step procedure: (i) the first step is a variable
{or “recursion-type™) transformation from the classical {i.e., ‘scattering”) variables to a new (so-called, “im-
mitance™) set of variables, which by itself reduces the number of multiplications at the cost of increasing the
number of additions; (ii} the second step achieves control of the number of additions by converting the two-
term recursions into the lesser known (for discrete orthogonal polynomials) three-term recursions. In the Toeplitz
case the new variables turn out to be the odd and even parts of the classical variables, leading to the terminology
of split algorithms, but this feature is lost in the quasi-Toeplitz case. Nevertheless, the network-theoretic inter-
pretation of a transformation from scattering to immittance variables can still be maintained, Certain judicious
choices of free parameters have to be made in each case in order to achieve the maximum computational
reduction. It is shown how these results yield efficient procedures for determining the inertia of a quasi-Toeplitz
matrix and the location of reots of its “predictor” polynomials from the immittance-type three-term recursions.
In particular, connections with the Bistritz stability test, which was the motivation for our study of the Levinson
and Schur algorithms in this paper, are noted.

Key words. Levinson aigorithm, Schur algorithm, Toeplitz matrices, fast immittance-type recursions
AMS(MOS) subject classifications. primary 65F03, 65F30; secondary 15A06

1. Introduction. Several recent papers have introduced computationally efficient
(three-term) versions of the well-known Levinson algorithm and the somewhat less well
known Schur algorithm. Bistritz has obtained several tests [1]-[4] for the root distribution
of polynomials with respect to the unit circle that involve only the even (or odd) parts
of the polynomials, and needed only half the number of muiltiplications {and the same
number of additions) as the well-known Schur-Cohn test [5]. Since the Schur—Cohn
test is essentially a reverse (degree-reducing ) form of the Levinson algorithm, as well as
a particular case of the Schur algorithm, it was reasonable to expect that similar reductions
in computational complexity could also be obtained for both the Levinson and the Schur
algorithrns. Indeed, Delsarte and Genin derived one such computationally improved
version for both of these algorithms: in [6] and [7] they presented the so-called “split
Levinson™ and “split Schur” algorithms for symmetric Toeplitz matrices with rea/ entries.
The adjective “split” arises from the ability to work with the odd and even (or symmetric
and skew-symmetric ) parts of the polynomials involved in the usual Levinson algorithm.
Such improved algorithms were also obtained, in a slightly different context, by Bube
and Burridge [23]. In our previous work [8}, [9] we proved that: (i) the same approach
applies not only to Toeplitz but also to certain guasi-Toeplitz (or Bezoutian ) matrices,
where the polynomials in the improved Levinson algorithm are not symmetric or skew-
symmetric and cannot be viewed as an even/odd split of the polynomials in the usual
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Levinson algorithm, and (ii) there are three computationally efficient and different-in-
form versions of the Levinson algorithm. Finally, we note that the extension of the
Bistritz stability test to the complex case (i.e., to polynomials with complex coefficients)
was derived independently by Deisarte, Genin, and Kamp [10] and by Bistritz [2] and
that Krishna and Morgera [11], [12] were perhaps the first to publish complex versions
of the split Levinson algorithm.

This paper explores in detail the possibility of reducing the computational complexity
of both the Levinson and the Schur algorithms by studying the effects of variable or
recursion-type transformations and of introducing three-term recursions. We believe that
the comparison of alternative computational procedures should not be carried out solely
in terms of their computational requirements: other attributes, such as numerical ro-
bustness or suitability for parallel implementation, may be more significant in certain
applications. Therefore, we consider in this paper af/ O(N?) alternatives to the conven-
tional (scattering-type, two-term) recursions. Having established an explicit character-
ization of all efficient alternatives of the Schur and Levinson algorithms, we are in a
position to prove that one so-called balanced immittance-type three-term version of the
recursions (coinciding with the recursion in [11] and [12] in the Toeplitz case) has the
lowest computational requirements. This advantage of the balanced version over all
other alternatives has not been established in previcus publications (i.e., in [6], [7],
[11],[12], [20]), because no comparison to other alternatives was available. Moreover,
we also prove that all efficient three-term equivalents of the Schur{ Levinson recursions
are related to each other by scaling.

We present our results in the somewhat generalized context of quasi-Toeplitz matrices
with complex entries, We do so not only for the sake of extending results otherwise
known for Toeplitz matrices, but mainly to establish the fact that the structural form of
the recursions and the reduction in computational requirements depend not upon the
special (persymmetry} property of Toeplitz matrices, but instead upon their so-called
displacement structure. In contrast, the approaches used in previous publications rely
heavily on the persymmetry property.

Before proceeding to a more specific outline of the background and the contributions
of this paper we may suggest that the reader might also find it useful to scan the remarks
in the concluding section of the paper.

1.1. The Levinson algorithm for quasi-Toeplitz matrices. The Levinson algorithm
is a fast method that recursively solves, for v = 1, - - - | N, the set of linear equations

(1a) (dun* *@us 1Ry =RS[0---0 1]

for the unknowns {a,;, R5}, where Rg, is the (7 + 1) X (7 + 1) leading submatrix of
Ry.x. The system matrix Ry, is either a square Hermitian Toeplitz matrix, say

(1b) Ton=1{c_;0=i,jSN},
or a square Hermitian guasi- Toeplitz matrix, i.e., one of the form
(IC) RO:NzHTO:NH*s

where H is a lower-triangular Toeplitz matrix of size (N + 1) X (& + 1), and the asterisk
(*) denotes Hermitian transpose (complex conjugate for scalars). An alternative char-
acterization of quasi-Toeplitz matrices is that they have displacement inertia (1, 1), as
defined in [13], viz., Ra.x is such that the displacement matrix Rg.y — ZRg.nZ* has one
positive eigenvalue and one negative eigenvalue (and N + 1 — 2 zero eigenvalues ), where
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7 is a matrix with unity elements on the first subdiagonal and zeros elsewhere. This
means that

(1d) Ro.n— ZRo v Z* = ugug — vovy

for some column vectors up, vo. For notational simplicity in further analysis we shall
scale the matrix Ro.y = {r; ;;0 =/, j = N} so that its top-left element is

(13) Too = 1.

Therefore, in particular, Toeplitz matrices must satisfy ¢, = 1 and, consequently, the
lower-triangular Toeplitz matrix H in ( l¢) must have unity diagonal elements. We may
note that for certain choices of {uy, vo} the matrix Rg.» becomes a so-called unit-circle
Bezoutian, familiar from stahility theory (see the discussion at the end of § 5).
Following [14], we say that Ry, is admissible if there exists a scalar p such that

(1) w—pvo=[1 0---0]7%.

If Ry, is admissible, then it is always possible to choose vo(z) so that the corresponding
pis real and nonnegative. We should also emphasize that by varying H in (1c), we obtain
a family of quasi-Toeplitz matrices Ry, all sharing the same reflection coefficients { k, } .
Some of these quasi-Toeplitz matrices are admissible and can be completely characterized
by specifying the scalar coefficient p = 0; others are nonadmissible and require a speci-
fication of N + 1 additional coefficients {sce [14]).

Equation (1a) can be solved via the (generalized Levinson) recursions [14]

' an(2)\ _ ay-1(2) A z
(22) ) B M S G B
where’

(Zb) a,,(z):: S an,izn_is

: i=0

b,(z) is an auxiliary polynomial with coefficients b,,;, viz.,

(2¢) bo(z):= 2 byi2',
i=0

and

(2d) ap{z}=1, *~hy(z}=p.

If Ry.» is not admissible, then its Levinson recursion is a further generalization of (2),
which we shall not discuss in this paper, but which is indicated in [14]. For Toeplitz
matrices, p = | and the recursions (2) become the well-known Levinson-Szeg recursions
for the orthogonal polynomials a,(z) [15], with b,(z) = al(z) := z"[a.(z27*)]*, the
conjugate reverse polynomial of a,(z). The reflection coefficients k, are computed by
certain inner-preduct formulas, which we discuss in further detail in § 4. We also recall
here the readily verified fact that, by stacking the solutions of (1a)fori =0, 1, - -+, N,
we can get the unique upper-diagonal-lower (UDL) triangular factorization of the inverse
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of Row, Rgly = AXvDavAg.n, where Doy = diag { Rf; 0 =7 = N} and Aq. is a lower-
triangular matrix whose nth row contains the coefhicients of a,{z), viz.,

1
aLy 1
Agn= :
(3) o:N : : .
ayn Gyn-1c -1

1.2. The Schur algorithm for quasi-Toeplitz matrices. The Schur algorithm is an
alternative (and more direct) method for computing the reflection coefficients, which at
the same time also determines the unique lower-diagonal-upper (LDU) triangular fac-
torization of the matrix Ry, itself, rather than its inverse [16]. It involves a recursion
that we can rearrange (sce Appendix B in {9]) in a form that is identical to the Levinson
recursion {2a), viz.,

. (2) Uy - -(2))
=L, N
(4) (f),,(z)) (z)(vn_ 1(2)
where u,(z)}, v,(z) are power-series in z, Viz.,
N N )
(4b) u,,(Z)z Z un,izi’ UH(Z)= z vn,iz‘»
i=0 i=0

and 7,(z) denotes conjugation of coefficients alone in the power series u,(z), i.e.,
(4¢c) da(z):= [un (%))

Admissibility is not involved at all in the Schur recursion (4), which can be applied to
every quasi-Toeplitz matrix.

The recursion starts with uo{ z), vo{ 2). The coeflicients w4y ;, v ; of these polynomials
are the elements of the column vectors Wy, ¥ in the displacement representation (1d)
for Ro.v. The representation ( 1d) of Roy is nonunique, as we can replace, for instance,
the two-column matrix [up vo] by [uo va]O(k), where

1 { -k

In particular, we can always select up, Vo such that the first element of v, vanishes, i.e.,

1 0
o1 | Poa
(5 up:= l:] s ¥oi= . »
Up N Yo N

where we use the convention ( le) that 7o = 1. In particular, for a Toeplitz matrix,

N
(6) u(z)= > az', ve{z)=up(z)— 1,
i=0 :

which satisfies the constraint (5) with ug; = vo; for £ > 0. Moreover, the recursion (4a)
imposes the same constraint upon all subsequent v,{(z), i.e., Uy, = 0 for all n. Note that,
in addition, the first n coefficients of both u,(z) and v,(z) always equal zero.
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The LDU factorization of Ry is obtained as follows: the nth diagonal element of
the diagonal matrix Do,y in Ro.y = Lo.xDo. v Lis » is

(7) d,,:Mn,,,:Rﬁ:H(l—]k;lz), RS=1$

i=1

and Lo.x is a lower triangular matrix that has the coefficients of u,(z)/d, as the elements
in the nth column. The last equality in (7) is well known for Toeplitz matrices (sce, e.g.,
[15]). In fact, it holds also for quasi-Toeplitz matrices because the { RS} corresponding
to the quasi-Toeplitz matrix Ry of (1a), (1¢) are independent of the matrix H and
coincide with the { R} } that would appear in equations ( Ic) with the Toeplitz matrix
To.v. This is so because the lower-triangular matrix H must have unity diagonal elements
in order to conform with the scaling convention ( le).

The computational costs of the Schur and Levinson algorithms are similar (see
Table 2 for a summary of operation counts), The Schur algorithm is, however, more
advantageous for parallel computation because it does not involve inner products (see,
¢.g., [16]). We shall now see how further computational reductions can be achieved for
both algorithms.

1.3. Variable transformations and three-term recursions. Qur approach to the
problem of reducing computational requirements is different from that of Delsarte and
Genin [6], [7] and that of Krishna and Morgera [11], [12], and it follows the method
used in {8] and [9]": first we make a suitable variable transformation and then we
convert the resulting two-term recursion into a three-term form. Thus consider first a
linear transformation of the recursions, viz.,

Jul2) a,(z) Xu(2) ,(2)

8 =T, > =T, B
(82) (gn(z)) (bnm) (yn(z)) (ﬁ,,(z))
which results in a modified set of two-term recursions. Namely,

(8b) (ﬁ'(z))—TnLn(z)T,:J](ﬁ"'(z))
&.(2) & 1(2)

and similarly for the Schur recursion. Note that the effect of the (nonsingular) matrices
T, is to transform the degree one polynomial matrices 7, (z) into another set of matrices
of the same nature. Thus, the modified recursions (8b) require O(N?) operations Jor
every choice of the transformation marrices { T,; 0 = n = N},

An alternative form of the recursions is obtained by climinating g,(z) altogether
from (8b). This results in a three-term recursion, i.e., f,( z) is determined from Lio1(2)
and f, _»{z}, rather than from f,. (z) and g, _(z). The three-term version of the recursion
may, in general, involve polynomial division, which significantly raises the computational
requirements. We show in § 2 that the only way to avoid this additional computation is
to choose

(U g, O
o ne(i )G )

! It might be noted that the work in [6],[7]. [L1], and [12] deals only with the Toeplitz case, for which
the reduction is obtained by working with the symmetric {or skew-symmelric ) parts of the polynomial a,(z),
lending to the name “split Levinson,” introduced in [6]. However, in the quasi-Toeplitz case this symmetry is
not available, though equivalent computational reductions can still be obtained.
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where {y,, v, } are complex scalars, and the ratio

(9b) 1= Vel ¥n
is constrained by the recursion

N1+ kn

(9¢} _ T =1

Since this recursion completely determines 7, in terms of the reflection coeflicients
{k;; 1 =i = n} andsince f,(z) = yala.(z) + 1abu(2)], it follows that all efficient three-
term equivalents of the Schur/Levinson recursions are related to each other by scaling
(note that the #; all have unit modulus). A suitable choice of the scaling coefficients { ¢, }
may reduce the number of nontrivial coefficients in the recursion. As will be seen in
§ 2, the most efficient version involves a single complex multiplication? per recursion
step, per coefficient. This unique, computationally efficient, version has the form

(10) Fi(2)=az+ 1) fH(2)—2f5-1(2).

For real covariances, 8, = 8,F, and this recursion reduces to the so called balanced recursion
of [8] and [9]. Previous publications pointed out that scaling the f,(z) polynomials
produces O N?) equivalents of the balanced recursion, but did not show that every three-
term immittance-type equivalent of the balanced recursion is produced in this manner.

It turns out that, in addition to the balanced recursion, there are only four distinct
versions of the recursion with wo nontrivial coefficients. They consist of two pairs: the
monic/comonic pair and the dual-codual pair. The monic/comonic recursions have
the form

(1la) fi‘{’+|(2)=(z )fM(Z) Az fili(2),

(11b) 5&’1(2)=(n;_12_+l)fnCM(Z)—?\J“Z “¥(2),

n
and reduce, for real covariances, to the monic recursion of [8] and [9]. The duai/ codual
recursions have the form

(12a) )\,,+,ff+l(z)=(z+nn—")ff(z)—szl(z),
n—1

(12b) n+1fn+1(2)=(ﬂ:?_] ‘H)fCD(Z) 2f521(2)

n

and reduce, for real covariances, to the dual recursion of [8] and [9]. Though more
computationally expensive than (10), we introduce (11)-(12) for completeness and
because they may have other applications (e.g., (10)-(12) may have different degrees
of numerical robustness).

? More precisely, the equivalent of a single complex multiplication, i.e., a total of four real multiplications.
We remark also that in the real case we have three distinct versions of the recursion with a single nontrivial
coefficient.
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Of course, the recursions { 10)-( 12) also hold for x,(z) in the Schur algorithm, For
instance, the balanced recursion for x,(z) is

Xnei(2)= Bz 4 87 )x0(2) —zx7_ 1 (2),

and similarly for the other four versions.

The analysis in this paper extends the results of [8] and [9], including the useful
transmission line interpretation. The ratio v,(z)/u#,(z) in the Schur algorithm is bounded
by unity (for |z| < 1)and can be interpreted as the scattering function of a transmission
line consisting of a cascade of (uniform) sections with different characteristic impedances.
On the other hand, the ratio x,(z)/y,(z) is positive-real (for |z| < 1) and can be inter-
preted as the impedance (or admittance) function of a related transmission line. For this
reason we shall say that the recursions (2), (4) are of the scatiering type, whereas the
transformed recursions (i.e., those for (f,,, g,) or for (x,,, y,.)) are of the immittance type .
Indeed, if we denote s5,(z) := B,(z)/#.{z), then ¢,(z2) := y,.(2)/x,(2) is given by

cu(z)= [1 _1]‘,,5,,(2)]/[ 1+ T?nSn(Z)],

which we recognize as the well-known Cayley transform, mapping bounded functions
into positive-real functions and vice versa.

The derivation of the three-term immittance-type recursions ( 10)—(12) is carried
out in § 2. In order to propagate these recursions, beginning with the given covariance
Ry.~, we must also have formulas for computing the coefficients { A, &}, similar to those
used in the scattering-type formulation of the Levinson and the Schur algorithms to
compute the reflection coefficients { k; } ; these calculations, which require the same num-
ber of multiplications as in the scattering-type recursions, are derived in §§ 3 and 4. We
also present, in § 4, the relations required to reconstruct {g,{(z)} from the three-term
recursion for { f,(z)}; this makes it possible to reconstruct the predictor polynomials
{a,{z)} when necessary. Finally, § 5 briefly considers the relation between the immittance-
type parameters {6, } and the irertia (i.e., the number of positive, null, and negative
eigenvalues) of quasi-Toeplitz matrices. In particular, we show that any quasi-Toeplitz
matrix Rg.x is congruent to a tridiagonal {Jacobi) matrix Vy whose nentrivial elements
are the parameters {4, } (see (49)). Consequently, both matrices have the same inertia.
This congruence relationship also appears in recent work of Delsarte and Genin (see,
e.g., [20]). We present, in § 5, an efficient computational procedure for determining the
inertia of V. We also show how to apply this procedure to locate the roots of the poly-
nomial ay(z) of (2a) with respect to the unit circle,

2. Transformed recursions and three-term forms. We introduced in [8] and [9]
the general linear transformation (8a), viz.,

nlZ a,(z
(13) (f( ))::Tn( ( ))’
&n(2) ba(z)
where T, is any constant nonsingular 2 X 2 matrix, This results in a transformed two-
term recursion for f;(z), g,(z), namely,

(ﬁ,(Z))_(an(Z) BH(Z))(L—;(Z))
(14a) = ,
gn(z) 'Yn(z) 5,,(2) gn—l(z)

? Bode coined the term immittance to denote both impedance and admittance [17].
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where

oz,,(z) ﬁn(z) — z _kn 1
(14b) (vn(z) Mz))' T"(—k;:z I)T""’

from which we can obtain a three-term recursion for f,{z). The same transformation
can be applied to the Schur recursions (4). The corresponding transformed Schur recur-
sions are obtained by replacing here {and in the remainder of § 2) ¢,(z}, b,(2) by #,(2),
D.(z) and, similarly, f,(z2), g:.(2) by x.(2), ya(2).

Since the three-term recursion for f,(z) does not involve g, (), it should not depend
upon the elements in the second row of the transformation matrix T,,. We may, therefore,
assume any particular form for the second row of T, for instance,

1 1 w 0
(15a) T,,:=(1 _1)(% Vn), Y, #F0#w, J
without affecting at all the three-term recursion for f,{z). Thus,
(15b) ' J(2) = ¥nlan(z) + m,bu(2)],
where
(15¢) = o/ Yu.

When the underlying covariances are real-valued, the choice 5, = 1 leads to the simplest
recursions, which we have already analyzed in [9].

Following the general technique for converting two-term recursions into three-term
recursions (see [9]) we obtain

(162) ﬁm(z)—[a,,ﬂ(z)ﬂ"—*;;j‘)z#}ﬁ(z)—%?mﬁ-.(z),
where

(16b) A2)i= D)D)= 1 2)a(2) =5 P (1= [y 2.
Also,

o) ooy VD)~ Dol ()

Ba(2)

Since o, (2), 8,(2), y¥.(2), 8,(2) are all polynomials of degree one (see explicit expressions
in Appendix A), it follows that the three-term recursion involves rational coefficients,
which significantly complicates the computation. Thus a simplified three-term recursion
for f,(z) is possible if and only if these toefficients become polynomials in z of degree
one, or less. We show in Appendix A that the rational coefficient 8, + 1(z}/3,(z) becomes
a constant if and only if

7?I1+]7kn+l _

(17a) =
L=y 1kn

H>

which can also be written as an ascending recursion in 1, viz.,

nn+kn+1

17b = ,
( ) Mn+1 1+T]nk:+|

170:=l.



IMMITANCE-TYPE ALGORITHMS 505

Our choice of the initial condition 5y = 1 is motivated by the observation that for real
reflection coeflicients {k,}, 'b{lis choice leads to %, = 1 for all n, while for complex
reflection coefficients it still yields

(17¢} |77n|:1-

With the ratio #, = »,/y, being constrained as in {17), the three-term recursion
simplifies to (see Appendix A for derivation)

n+ n+ _kn n— 7
(18a) oo r(zy=taen — “[(" 'z+1)ﬁ,(z)— Y (1= k)21 (2)
\bn M kn ] 1}"n*l
and the auxiliary expression for g,{z) becomes
(18b)  (z—1)gu(z)=($pz+ {7V 0(2)— L (L =mk )t E5)2 S0 1(2),
H—1
where
Ak
(18C) fn'_l_n"k:‘

These expressions reduce, for 5, = 1 (for real k,,), to (16a), (16b) in [8] and [9].
To initialize the three-term recursion for { f,(z)}, one needs to'know both f3(z)
and f1(z). The definition {(8), combined with the two-term recursion {2), implies that

(19) Jo(z)=yo{ao(z) + bo(2)}, H(z)=¥(m—k){za(z)+ bo(2)},

but it will be more convenient to have the initial conditions on f_,(z) and fu(z). Both
(18a) and ( 18b) imply that

Yo

Tkolz{(l +aortkoz)ao(z) +n-{nz+ko)bo(2)}.

zf1(2)=

These initial conditions involve the undefined quantities ¥y, ¥-.,, 7.1, and k;. We show
in Appendix B that a consistent choice for these quantities is

(20) w():(l_ko)_ls \b*l:1+kﬂa 'l]‘_[=l,
where kg is not subject to any constraints. In particular, if we choose &y = —1, then
(213.) ¢0=%; 1p“l:Os TT—1=1,

which results in
(21b) 2zf (z)=(1—z}{a(z)~bo(2)}, 2fo(z}=ae(z) + bo(z).

This choice is motivated by the observatioh that the Levinson recursions for Toeplitz
matrices are initialized with a¢(z) = 1 = by(z), which reduces (21b) to z f_,(z) = 0 and
Jo(z) = 1.

A further reduction in complexity can be achieved by appropriately choosing the
scaling factors ,,. There i3 a single choice that leads to recursions with ore nontrivial
coefficient, and four choices that lead to recursions with fwo nontrivial coefficients:

(1) Balanced recursion, obtained by choosing ¥, to satisfy the constraints

(22a) V'/;+l"?n+i n+l(1*|k| y=1, nz=0
n—1 M= n
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and

(22b) (¥i)* =y 8, nz0,

resulting in

(23) SR () =8,z 4 85V E(2)~2f2_ \(2), n=0,

The special form of the multiplier of f5(z) with
\b£+ 1(Mns _kn+l)’?n— t
HbB( Ny k)

is established in Appendix B. As a consequence of the initialization (20), & =
(1 = |kol®)™"(¥_1/¥0)* = 1. The remaining {8, } are related to each other by a recursion
derived from the constraint on %, viz.,

(24a) 0u0,— 1A= 1, nzl, do=1,

0, =

where (note that n, = 5, by {17¢))
(24b) }\n::("?nfl-l_kn)(nn—l_kn—l)*s nzl.

The reason for the name “balanced” for (23} is that the recursions for ascending and
descending indices are, essentially, identical.

Note that the balanced recursions involve only four real multiplications (i.c., the
equivalent of one compiex multiplication ) per recursion step, per coefficient. In fact, the
balanced recursion can be carried out as two interlacing three-term recursions that involve
only real arithmetic {2]. Decomposing f,(z) into two real polynomials, viz.,

(25} F(2)=8a(2) + jAn(2)

and separating the real and imaginary parts of (23), we obtain

(26a) Si+1(2) =84z + 1)Si(2) + 65 (z— 1) A(2) — 28k _ 1 (2),
(26b) Ak 1(2)=8[(z+ 1AL 2) = 85 (2= 1) Si(2) — 24k (2),

where 6f and & denote the real and imaginary parts of §,, respectively, The recursions
(26) involve four real multiplications and eight real additions per recursion step, per
polynomial coeflicient. In the Toeplitz case, S,(z) and A4,( z) are, respectively, symmetric
and skew-symmetric, and only half of their coefficients need to be computed.

(2) Monic recursion, obtained by choosing ¥, to satisfy the constraint

(27) vr(l—n.k¥)=1, nz0

resulting in
(28) fﬂ‘+|(2)=(z )f"”(Z) Mzfali(z),  nz0.

Note that as a consequence of the initialization (20}, Ao = ¥o(1 — |ke|?)/(n_1_1) = 1
also. This recursion involves two complex multiplications per recursion step, per coefficient,
and is therefore, in general, inferior to the balanced recursion. The reason for the name
*monic” for (28) is that, with the appropriate initialization, { /% (z)} in the Levinson
recursion are monic polynomials.

(3) Comonic recursion, obtained by choosing ¥, to satisfy the constraint

(29) vl —k)=1,  nz0
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resulting in the comonic recursion (11b), which has the same computational complexity
as the monic recursion (28). The reason for the name “comonic™ is that the f$¥(z) in
the Levinson recursion for Toeplitz matrices are comonic polynomials. However, the
same property does not hold for other (quasi-Toeplitz) matrices.

(4) Dual recursion, obtained by choosing ¥, to satisfy the constraint

,(30) . nn'nbf(lmlknfz):ﬂnfﬂr’/ffls nz0
resulting in

(31) x,,+1f£+1(z)=(z+ﬂ~

n—1

)ff(z)—zf,?-.(z), nzo.

This recursion also involves two complex multiplications per recursion step, per coefficient.
(5) Codual recursion, obtained by choosing ¥, to satisfy the constraint

(32) vit(1— k) =y52,, nz0

resulting in the codual recursion (12b), which has the same computational complexity
as the dual recursion (31).

Remark. Note that, in view of (15b), f3(z), f¥(z2), f$™(2), f2(2), f$P(z) are
all proportional to a,(z) + n,b,(z) and, therefore, 10 each other. The coefficients of
proportionality can be determined by comparing the leading coefficients in these poly-
nomials. Since f7/(z) is monic, it follows, for instance, that f2(z)/f¥(z) = [I7-¢ 5,
We show in Appendix B that

(33a) ) =t,_1182), fSM(z2)=E£F . f82),
(33b) fAz)=8,"'f8(2), fP(2y=E*f3(2),
where

(33¢) £i= TT 67"

The same proportionality coefficients also relate the various versions of x,(z) in the
immittance-type Schur algorithm,

The recursions just described are incomplete because we have not given methods
for computing the coefficients A,, 8, in them from the given matrix Ro.». There are two
generic methods of doing this—what we call the Schur-type, where these coefficients are
computed as certain ratios, and the Levinson-type, where their computation involves
certain inner products. Besides the fact that Schur-type algorithms are better adapted to
parallel computation, we also note that the functions propagated in the Schur-type re-
cursions yield the Cholesky factors of Ry.y, while those in the Levinson-type recursion
yield the factors of Rg Y. We could also use the Schur recursions to compute the coefficients
and then, under the assumption of admissibility, use the coefficients to compute the
polynomials in the Levinson recursions,

3. Immittance-type Schur algorithms. We first review the Schur method for com-
puting the scattering-type reflection coefficients {k,}. From (4) we note that since
[z7"v,(2)]).-0 = 0, it follows that k, is the ratio of two known coefficients, viz.,

_ vn—l(z)l _ Yy
n- = .
Zun71(2)|z=0 Un~1,n—1

(34)
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TaBLE 1
Immittance-type three-term Schur recursions for real covariances.

Balanced Monic Dual

zx-4(2) = ${1 — 2){uo(2) — o(2)]
Xol2) = $ua(z) + vo{2)]
fo=1=X
forr=0,1,2,--- ,N—1do

A= XM A L) 2 (D) :=(z+ xEz)
b= 122 (VBN 2o bz a2l -o 2P (o)
M, ()= (z+ Auer =[R2, ()],
D=t D@ axt) | ATEIORD g | T T
Xne {2y = Mri 1 Xn+ (2)

) Skip this step for a = 0.

A similar approach can be used for the three-term immittance-type Schur recursion and
it yields, for instance, the expression 8,7 = [zxZ_,(2)/xE(2)};-0. Combining such
expressions with the recursions and initial conditions (21)-(32), we obtain a family of
complete Schur algorithms, which we summarize below.

3.1. Real covariances. The analysis of § 2 yields three computationally efficient sets
of recursions, which are summarized in Table 1. Note that all three versions begin with
the same initial conditions x_;(z), xo(z). Also, all three versions require a single real
multiplication and two real additions per recursion per each coefficient of x, ,,(z), as
compared to two real multiplications and two real additions for the scattering-type Schur
algorithm (4) for real quasi-Toeplitz covariances.

3.2. Complex covariances. The analysis of § 2 yields a single computationally ef-

ficient recursion (the balanced version), viz., )
(35a) xB ((2)=(Baz+83)x5(2)—zx7-(2), nZ20,
where
(35b)  xf(2)=i{M(2)+D(2)},  zxEi(2):=3(1—2){i(2)—Do(2)}
and, with the notation x8(z) = ¥4 x&;z,
zxZ_(2) xE
35 B i=—Tp =t
(33¢) xi(z) |, xE.

We emphasize again that even though (35a) seems to involve two nontrivial coeflicients,
namely, 8, and §%, it can be carried out by two real three-term recursions, similar to
(26), and requires, in fact, only four real muitiplications and eight real additions per
recursion step per each coefficient of x2, ,(z). This is half the number of multiplications
and the same number of additions as compared to the scattering-type Schur algorithm
(4) for complex covariances. The relative efficiency of the immittance-type algorithm
over the scattering-type one is, therefore, the same for both real and complex covariances
and for all quasi-Toeplitz matrices (see Table 2}.
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TABLE 2
Computation counts.
Scattering Immittance
Mult. Add. Mult. Add.

Schur

Real ) O(NY OWN% O(0.5N%) ON?%

Complex O(4ND) O(4N?) O02NY O{4N?)
Levinson: quasi-Toeplitz

Real O(1.5N% O(1.5N%) O(N9 O(1.5N%)

Complex O(6N?) O(6N?) O(4ND) O(6N?)
Levinson: Toeplitz

Real O(N?) O(NY O(0.5N?Y) O(N%

Complex O(4N?Y O(4ND O(2N?) OdN?)

We use the notation m = ((aN?) to mean that m is a polynomial of degree p in N, viz., m = aN? +
NPT 4 oo

4. Immittance-type Levinson algorithms. The scattering-type Levinson recursions
(2) involve the reflection coefficients { k, }, which are usually computed via an inner-
product formula*

1
(36) k,,=e—a,,_|[c|---c,,]r,
n—1
where a, | :=[@y—1.-1"""@s—1, 1]isarow vector consisting of the coefficients of the
polynomial a,_,(z), and R} is updated by
(37) RE=(1— |ka|®)RE Ri=c=1.

Similarly, the immittance-type Levinson recursions ( 10)-( 12)involve the recursion coef-
ficients {8,}, { A}, which can also be computed via suitable inner-product formulas, as
we presently show.,

Let Ry be the quasi-Toeplitz covariance associated with the pair ug, vo via (5). If
this covariance is admissible, i.e., if #y(z) = 1 + pvy(z) for some scalar p, then, as we
have shown in Appendix B of [9] (seec also [22]),

(38a) a [l o1 o)’ =0,
(38b) bu[l o ton]” =pR5

for all n = 1, where a,,, b, are row vectors cofisisting of the coefficients of a,(z), b,(2),
respectively. Consequently,

(39a) Tnz'ﬁl’nnnpRsh nzl,
where
(39b) 7= [l oyt tton]”

4 This expression for k, has to be slightly modified for quasi-Toeplitz matrices (see {91).
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and f, is the row vector consisting of the coefficients of the polynomial f(2). We may
extend (39a) to n = 0 and define 7o as

(39¢) 70:= p¥onoRo =

[N =)

Tt turns out that the recursion coefficients {85}, { M} can always be computed as
ratios of subsequent 7. For instance, the coefficients of the balanced recursion (23) are
given by (see Appendix B)

‘l/n+lﬂn+l_kn+lﬁ_n:_l= Va1 Mn—1
' nn_kn Nn Yl - |knl2),

which, by comparison with (3%a), implies that

0,:=

Tf:;—l
(40) 8n= , nzl.

2

Combining such expressions with the recursions and initial conditions (21 }-(32) we
obtain a family of complete Levinson algorithms, which we summarize below.

4.1. Real covariances. The analysis of § 2 yields three computationally efficient sets
of recursions, which are summarized in Table 3. Note that all three versions begin with
the same initial conditions zf_,(z} = 1L =z}l — p)s fo(z) = (1 + p), which are
the initial conditions presented in [9] (but differ from those in [8] in also allowing p =
0). All three recursions require a single real multiplication and two real additions per
recursion per each coefficient of for1(2), as compared to fwo real multiplications and
two real additions for the scattering-type Levinson algorithm for real quasi-Toeplitz co-
variances. The computation of the recursion coefficients via (39b) requires one inner-
product and one difision per recursion, which is the same as in the scattering-type Lev-
inson algorithm. In the Toeplitz case the (conjugate) symmetry of the polynomial f,(z)
results in a further reduction of the computational requirements (see Table 2).

TABLE 3
Immittance-type three-term Levinson recursions for real covariances.

Balanced Monic Dual

zf(z)= {1 - 201 - »)
fd2)=1(1+9)
To=jps h=1=h
forn=0,1,2, --- ,N—1do

ff+ (2 fﬁﬂ i(2) ff+ i(2)

= bz + 12D —zfn-(2) =(z+ D ¥(2) - Mzl 7 1(2) i=(z+ Df3(2) - 2 8- 1(2)
T i =1 A2) > fHeh=1E) T fhe =120

i i i
8= Z Fra ™ = Zfﬁ“o,i“) Ansr1 =207 E TR it
By TE o frat Aa= M0 o= Mo fE (2

=) Skip this step for n = 0.
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4.2. Complex covariances. The analysis of § 2 yields a single computationally ef-
ficient recursion (the balanced version), viz.,

(41a) FBoD)= Bz 48V M —2f8 1(2), nZ0,
where
(41b) FEBG)=1(1+p),  zfER(D)=3(1-2)(1-p),
and '

Th
(41c) =Tt nzl,

where 7, is computed via the inner-product (39b), viz.,
(41d) mwi= B[l tou - -toalT, nzl, To=1=.

We emphasize that (41a) can be carried out by (26} and requires, like the corresponding
Schur algorithm, only four real multiplications and eight real additions per recursion
step per each coefficient of f%, ,(z). This is half the number of multiplications and the
same number of additions as compared to the scattering-type Levinson recursion for
quasi-Toeplitz complex covariances. If the covariance matrix is not Toeplitz, the inner
product formula has the same efficiency as in the scattering-type formulation for both
the complex and real cases. Consequently, the relative efficiency of the immittance-type
Levinson algorithms is the same for both real and complex quasi-Toeplitz covariances
(a factor of 1.5, see Table 2) and is less than the (factor of two) relative efficiency of the
corresponding Schur algorithms.

In the Toeplitz case, however, the symmetry in f,(z) can be exploited to simplify
the computation of +,,, viz.,

(@2) Ta=[too+ ton Yoa+Uon—1 " Uon21F Yo tine 13211 [Smo Swr* Sz}’

+jltioo=ton Yoy —Hon—1i* Uo 21~ Hotn+ 13211 [Ano  Ani-* Anga)]”,
where S,{(z) and A4,(z) are the real polynomials obtained from the real and imaginary
parts of the coefficients of f,(z) (see (26)), and [x] denotes the integer part of a real
number x. If the Toeplitz covariance matrix is real, all 4,(z) vanish, and the simplified
formula (42) can be used for the three efficient versions of the Levinson algorithm for
real Toeplitz matrices, as already mentioned in [8] and [9]. In summary, since both the
inner-product formula (42) and the recursions (41a) have half the complexity of the
corresponding scattering-type equivalents, the relative efficiency of the immittance-type
algorithm is the same (i.¢., a factor of 2) for both real and complex Toeplitz covariances,
and is comparable to the corresponding efficiencies of the Schur algorithms (see Ta-
ble 2}. .

4.3. Recovery of the orthogonal polynomials. The orthogonal polynomial a,(z)
can always be recovered from f,(z) and g,(z) by inverting the recursion-type transfor-
mation (8), viz.,

an(2)= () " H{ fl2) + 8(2) },
which suggests the more convenient expression
Sn(2) + 84(2)
Saoo)+gn(c0)’
where f, (o0 ) indicates the leading coefficient of the polynomial f,(z).

(43) a,(z)=
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In order to recover g,(z) from { fi(z); 0 = i = n}, we observe that the balanced
version of (18b) is

(44a) (z-1)g8(2)=(Laz+ GV E(2) = 2uazf - 1(2),
where

) It
(44b) [T 2,

This is so because

8
Mn¥n ¥n 1—mkq
b (1- - - 12
ﬂn—l&n—l —ll k
and combining this with the identity (A.5b) simplifies the coefficient of zfZ_,(z) in
(18b) to

gy =¥

= 1k,1%),

: 2 _1tg
(M) §7) = s ™

An alternative expression for g,(z} can be obtained by using the balanced recursion (41a)
to eliminate z /5 () from (44a). This results in :

n 1

(45a) (z=1)gi(2)=2paf 7+ 1 (2)—(2+ 1) [3(2),
which also implies that the coefficient x, can be computed directly via the expression
f2(1)
(45b) Bn=TF -
SRe(1)

Note that the coefficient u, is real, even though both {, and 4, are, in general,
complex. This follows from comparing (A.5a) with (B.3). As a consequence, the eval-
vation of (z — 1)gZ(z) via (45) involves a single multiplication of a complex-valued
vector by a real scalar. In comparison, using (44) for the same purpose involves an
additional multiplication of a complex-valued vector by a complex scalar. Furthermore,
using (44) requires us to also compute {, itself, in addition to gu,. It follows from (45)
and the balanced recursion (23) that

26,

(46) Tre o'

25R Mo — 1

which provides the real multiplier in the right-hand side of (44) and also, since §, is
known, gives {, itself for (44).

5. Inertia and stability. As is well known, a Hermitian Toeplitz matrix is positive
definite if and only if the magnitude of i its reflection coefficients is strictly less than one.
More generally, the inertia of a Hermitian Toeplitz matrix coincides with the inertia of
the diagonal mairix Dy = diag {R5; 0 = r = N} and can therefore be conveniently
determined from the reflection coefficients via the relation (7). The same holds for quasi-
Toeplitz matrices because all matrices congruent to a common Toeplitz matrix (as in
(10)) share the same inertia [14].

The real coefficients {u,} that were introduced in (44)-(46) contain the same
information as the { R§}, because (see Appendix B for proof)

(47) B2 IT 18121 = [Kel).

Ma i=1
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In other words, the matrices Ro.v, diag {R3; 0 = n = N}, and o' diag {p,; 0 = n = N}
are all congruent to each other and, consequently, have the same inertia. Therefore, in
particular, a quasi-Toeplitz matrix is positive definite if and only if the ratios { ./ pe}
are all strictly positive. Notice that this result is independent of the choice of initial
conditions.

The most convenient way to compute the {u,} coefficients is via the recursion
(46), viz., :

(48) ! =208 =,

which is the immittance-type “analogue” of the recursive relation RS = R5_ (1 ~ |k,|?).
This relation also implies that there is yet another matrix with the same inertia as Ro.v.
Indeed, (48) implies that

1 | 1y,
o _ I Y
w1 ue B 1 -
. . Hy )
. . . < Hy-1
My-1 1 b 1
(49) '-'ual 1 B
1 2Reé, 1
1
= =V,
1
L 1 2R66N_

which proves that (with pg > 0) the tridiagonal matrix V is congruent to diag {r'; 0=
n = N} and hence to Ryy.
We note that the principal minors of Vy are given by {o,; 0 < n = N} where

(50) g_1:=1, ap=2, 0, =288, _ | —0n_2, n=1,--- N,
and by comparison with (48),

(51) Bn=0Op-f0p.

Therefore, the inertia of R,y can be determined from the signs of the g, computed by
. (48) or from the sign changes in the ¢, sequence computed by (50). In conclusion, the
matrix Ro.y is strongly regular if and only if all ¢, # 0 (equivalent to all |k,| # 1); in
such a case the number of its negative and positive eigenvalues is vy and N — vy where

(52') VN=n—{F'N:.-'sul}=var{aNa"laaﬁ}!

where n_ and Var stand, respectively, for the number of negative terms and the number
of sign variations in the indicated sequences.

‘The magnitudes of the reflection coefficients {k,} of a Toeplitz matrix To,y also
provide information about the location of the roots of the corresponding orthogonal
polynomials {a,{z)} with respect to the unit circle. As is well known (see, e.g.,, [19]),
an(z) has all its roots strictly inside the unit circle if and only if To.y is positive definite,
which by the foregoing discussion is equivalent to Vy > 0. When T,y is indefinite, the
magnitudes of { k,} determine the number of roots of ay{z) inside and outside the unit
circle.
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To be more specific, assume that we wish to locate the roots of p(z), a given poly-
nomial of degree N, with respect to the unit circle, and that p(z) and p*(z) do not have
a common divisor, where p*(z) := z"[p(z*)]* denotes the conjugate reverse polynomial
of p(z). Then the Schur-Cohn test amounts to carrying out Levinson’s recursion for
Toeplitz matrices in reverse order, viz.,

an(z) + kpafi(2) a,(0)

. _ e Al B o Sl f, =L

(53a) za,-1(2) VA a*(0)
with the initialization an{z) = p(z). This determines the reflection coefficients &y,
kn_1, -+, ki; the classical result of Cohn is that the number of roots of p(z) inside

(respectively, outside) the unit circle equals the number of positive (respectively, negative)
P,, 1 =n=N,where

N
(53b) Po=T1 (11Kl

If we use the balanced immittance-type recursions (10), then we shall have the
coefficients {#,} or, equivalently, {u,} instead of the reflection coefficients {k.}. The
identity {47) implies that

(54a) sgn P,,=sgnb forn=N,N-1,---,1

KN
and consequently, the number of roots of p(z) inside (respectively, outside) the unit
circle equals the number of positive (respectively, negative) elements in the sequence

(54b) [M,M, ,ﬂ}_
BN MK KN

In particular, p(z) is a stable polynomial (i.e., it has all its roots within the unit circle )
if and only if all g, are positive (which will happen if and only if V is positive definite}.

The balanced polynomials fZ(z) are related to the orthogonal polynomials a,(z}
of the Schur—Cohn test via the Toeplitz version of (15b), viz.,

FE(z)=y¢Elan(z) + n.ak(2)],

where 7, and ¥ have to satisfy the constraints (17) angi (22), respectively. These con-
straints leave the parameters ny, ¥%, and y&_ partially undetermined. Nevertheless,
observe that { u,} are determined via (45b), viz.,

= Sa()
"Ry’
and that ( 54a)-(54c) hold regardiess of the freedom in selecting the initialization.

The symmetric polynomials f2(z) are determined by propagating the balanced
recursion ( 10) in reversed order, viz.,

(54c) n=N,N—1,---,0

(55a) z2f B (2Y= 0z +87) E(2) SR 1 (2), 1£n=N-1,
where
f5+:(0))*
b=l ——1 .
(35b) ( 72(0)

This recursion is initialized by f%(z) and f%.,(z) which, in turn, are determined by
the parameters y, Y%, and ¢%_,. Note that these three parameters determine all 5, for
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n < N (via (17a)), as well as all $2 for n < N — 1 (via (22a)). The only constraint
imposed on our initialization is (22b), i.e., ($5)* = n ¢ 8, and (YE_ Y = av_ W E 1.
A particular choice that is consistent with this constraint is sy = |, ¢¥ = 1, which re-
sults in

(56a) I 2)=p(2)+p*(z},

where we used the fact.that for Toeplitz matrices, h,(z) = a®(z), and where we set
an(z) = p(z), as in the Schur-Cohn procedure. Furthermore, we still maintain the prop-
erty |n,| = 1; in particular, 5, = 1 for matrices with real-valued elements.

Further simplification of the initial conditions for (55) may be achieved by a judicious
choice of ¢ % _ |, leading to a simplified expression for f% ,{z). An even simpler approach
is to initialize (55) with n = N rather than with # = N — 1, This requires us 1o introduce
the polynomial f%,,(z), which depends, via (55), on f5(z), f%_,(z), and the com-
pletely unconstrained parameter éy. The flexibility in selecting /% ;(z) and §y makes
it possible to obtain a relatively simple expression for /%, ,(z). Indeed, letting

-

1 — |ky|? 1+ky
B = —_— = ——
\[/N—l 2v lﬁkN s BN yl*k;-i-xs
where A, v are arbitrary positive constants, we find that .
(56b) Nio(2)=q(2)+g"(2),  g(zy=[Mz+ 1) +e(z- 1)]p(2).

Morcover, these choices result in uy = (22)7! > 0, so that (54b) can be replaced by
the sequence

(57a) fun— 1 N2, " M0}

The number of negative elements in this sequence (i.e., the number of roots outside the
unit circle) is also given by the number of sign changes in the sequence

(37b) R SR (1), - fE(D) ],

which is always real-valued because: (i} f4(1) = p(1) + p*(1) = 2 Re p(1} s real, {ii)

the rematning S #(1) are obtained via /2 (1) = u, ,fE(1), and (iii) u, are real.
Since px (respectively, f%,,(1)) does not appear in (57a) (respectively, (57b)),

we can allow the limiting case A = 0 {with » = 1). This results in g(z) = (z — 1)p(z)

5o that '

C_I(Z)—q#(z)_

S =p(2) 4 p" (D=

Nl
This is precisely the initialization that arises when the root-location procedure of Bistritz
[11, [2]1s applied to the augmented polynomial g( z), which has the same root-distribution
as p(z) and an additional zero at z = 1, According to [1] and [2], the number of roots
of g{ z) outside the unit circle equals the number of sign changes in the sequence

(FE (D), 730, - FB).

Since the initial f£.,,(1) = 0 accounts for the zero at z = 1, we conclude that the
remaining elements of this sequence determine the root-distribution of the polynomial
p(2). This coincides with our criterion (57b).

6. Concluding remarks. The Levinson and Schur algorithms showed how the
Toeplitz {and quasi-Toeplitz) structure of linear equations could be used to provide an
order of magnitude reduction in the amount of computation, from Q(N?) to O(N?).
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Normally we would not be too concerned with further reductions that do not affect the
order of magnitude; however, the work of Bistritz [1]-[4] showed an alternative structure
that achieves a reduction of exactly one-half in the number of multiplications. Such an
improvement cannot be accidental, and that has been the motivation for the studies
reported in this paper and our earlier paper [8], [9]. The first results of Bistritz (on
stability tests) and of Delsarte and Genin (on the split Levinson algorithm) obtained this
reduction in the amount of computation by carefully exploiting the persymmetry property
of Toeplitz matrices. We were not completely satisfied with this approach because our
earlier work on the Levinson algorithm showed that the algorithm could be generalized
to close-to-Toeplitz matrices, and that this generalization was very simple for the class
of (admissible) quasi-Toeplitz matrices, amounting essentially to a change in the initial
conditions (see {(2d)). Even though such non-Toeplitz matrices were not persymmetric
and do not yield immittance symmetric polynomials, we were able to obtain a corre-
sponding reduction in the number of multiplications, which seems to indicate that the
persymmetry property does not fully explain the improved efficiency ( this notwithstanding
the fact that, at least in retrospect, the Levinson recursions for admissible quasi-Toeplitz
matrices can be obtained from the usual Levinson algorithm by using the congruence
(1c) and some algebraic manipulation ).

The key to reduction in computation is really the proper use of two additional
degrees of freedom that were always known but never fully exploited. These are:

(i) The possibility of linear transformations of the variables propagated in the
Levinson and Schur algorithms, and especially the transformations {well known in gircuit
theory ) between wave vartables and immittance (voltage, current) variables;

(i) The use of the three-term recursions (already noted in the classical work of
Geronimus [18], [19]}.

This is the approach developed in the present paper and in [8] and [9]. We may note
that besides enabling a simple extension for Toeplitz to quasi-Toeplitz systems, our ap-
proach has also served to delimit the whole set of efficient Levinson and Schur algorithms.

Returning to the complexity reduction, we may remark that for us the main interest
is not so much the reduction itself, which need not be significant in actual applications
(e.g., studies of robustness and stability still need to be made), but more the reasons for
the exact factor of two of reduction and the scope for its extension beyond the Toeplitz
case. The simplicity. of the two-step approach used in this paper showed that the same
reduction in complexity could also be achieved for Hermitian quasi-Toeplitz matrices.
How much further can they go? This is hard to say. However, our method of proof has
recently enabled us to show that the reduction does not extend to non-Hermitian Toeplitz
and quasi-Toeplitz matrices [21].

Appendix A. Derivation of general three-term recursions. It follows from
(14b) that

(A.12) a,,<z)=2—¢‘%[(1 fnnkﬁ)z+%},
(A.1b) Bulz) = 2::1 ] [(1 —nnk:)z%],
(A.lc) v,.(z)—zi”_l[(1+n,,k:)z—”;:_’f"},
(A.1d) 5n(z)=%[(l+n”kﬁ)z+n;:—_’?}.
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Consequently,
Bn+l(z):’¢'/n+l\{/n—17brfl . nn(l M+ Ik:‘+ 1)2_(7?n+ 1 _kn+])
Bu(z) ‘i’i"?n {1 _nnk:)zﬁ('ﬂn_kn)

This expression is independent of z if and only if

Tn'nfl(l_'f)‘nk:f)=
Un_kn

where u is a constant independent of #n. Therefore, {9, } are recursively determined via
the recursion
i — 1tk
A2 ==
(A-2) T Y K
which involves only two undetermined constants (g and 5o). To be consistent with the
real case, where 1, = 1 (see, e.g., [8], [9]), we choose o = 1, u = 1, which results in the
recursive relation (17). Note that we always get |5, = | with this choice of Mo, U
Incorporating the constraint (17) into the expressions { A.1) simplifies them to

(A3a) an(2) = 32— (1 ki) (2 1),

(Asb) Bn w nuk:)(Z* 1)
211/?1—1

(A30) @) = (L= k(62— ),
2'dlfn'fl

{A.3d) b{z)=r"" Ll (l*ﬂnkﬁ)(fnz"'i'n),
2"[”»%!

where

LR
(A4) g.n-_ 1 _nnk:-

The expressions ( 18a), (18b) for f,+1(z) and g,(z) are obtained by substituting (A.3)
into {16a), (16¢) and using the following easily established identities:

]+§-ﬂ‘ _b
(A-3a) N
(A.5b) L —ea 2 (8 ¥ 655) = 201 = Thal ).

Appendix B. Properties of recursion coefficients. The constraint (22a), which
characterizes the balanced recursion, implies that

B " v
g T B

where we have used (17) and the fact that |5,] = 1. Therefore, {22b) follows for all # if
we assume that it holds for » = —1, 0. Thus we must have

W) =n i, () =1

It will be convenient, though by no means necessary, to have the same initial conditions
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for all versions of the recursions. Taking this approach we conclude, via (27) and
(29), that

Yo=(1—lko) ' =(1—kg)",
so that &y, must be real and, consequently,
_1k
1= 1— ki
This also proves that y_; is real. In fact, (30) and (32) imply that
Yo =vol1 = [kol?) =1+ k.

In summary, we can initialize all versions of the recursions with the same set of initial
constants, viz.,

=1.

(B.1a) Vo=(1-ko) ',  yoi=l+k

and

(B.1b) Ho1=1=mnq, dp=1=2Ag.

The only undetermined parameter is &y, which can take any real value except unity. In
particular, the initial conditions (21) are obtained by choosing ky = —1, Other simple

choices of ky, such as ky = 0, are also feasible.
Returning to establish the form (23) of the balanced recursions we denote the coef-
ficient of z f,(z) in (18a) by &, and substitute into the latter (22a), (22b), viz.,

(B.2) 5 =‘P§+|(ﬂn+1“kn+1)nn—1= ll/f—lnn—l _ (Hbf—l)*
’ ) 'J/f(nn_kn)’?n ﬁ(l_ 'knlz)nn (‘&ﬁ)*(li |k)i'|2)’
so that the coefficient of f,(z) in (23) is, indeed, 8,z + §,;F. This also implics that
(B.3) br=—"b,
-1

and, consequently, that
(B.4) Ex=n"%

where £, := [17-, 67, as in (33c). Similarly,

X - - Mn—1Mn—-2 . -
An=(6nlan]—l)*= 6,1'5"1,',
M Mu-1

namely,
(B.5) Mf=—-+=
The relations (33a), (33b) are established by a comparison of the leading coeflticients

in the polynomials f2(z), f¥(z), etc. Since f;(z) is the same for all versions of the
recursion and since [#(z) is monic, it follows, for instance, that

B a—1
]{;{;Ei; = Hoai:fgia
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as well as

Sz _ e
fM(Z):HAII=H6i6i—l:£nl "l—l’
n i=1 i=1

which implies that
HOB
fi(z)
The rest of the relations in (33) can be obtained in a similar manner.

In order to establish (47), we observe from (18b) that u,_, = f2_,(1)/f5( 1)is
given by

£l

’J’E—l M-
\bﬁ(l g’?nkﬁ) d’f("?n - kn)

where the second equality invokes ( 17a). Consequently, we obtain, using (B.2),

Mn—1= :.\[’f—l

#rr—l:¢£—1_¢£+lnn—](nn+]_kn+l)
iy ‘l’g ‘l’ﬁnn(nn_kn)

=8,7(1— lknlz)'ﬁ"

and, therefore,

(B.6) B 1T 180201 K2y,

Ho i=m+1

This result does not depend on the choice of initialization,
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