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Abstract

A new algebraic test for determining whether all zeros
of a two-variable (‘two- dimensional’, 2-D) polynomial re-
side in the interior of a unit bi-circle is developed. The
method provides a stability test for 2-D digital fillers and
systems. It is based on ¢ modified unit circle zero location
test by the author for one variable polynomials with com-
plezx coefficienis. The test comprises a ‘2-D table’ in the
form of a sequence of centro-symmetric matrices and an
accompanying sel of necessary and sufficient conditions
posed on 1t. The sequence is construcied by a three-term
recursion of matrices or two vartable polynomials. The set
of necessary and sufficient conditions, at ils minimal set-
ting, consists of only one “positivity test” plus a standard
1-D stability test. Additional useful stability conditions
that 2-D stability implies bul that need not be checked to
prove 2-D stability are also brought.

1. Introduction

A 2-D (two-dimensional, two-variable) polynomial

ny no

D(z1,29) = Z Z d;,kzizé‘

i=0 k=0

(1)

is said to be stable if

D(z1,23)#0, for (z;,22) €V xV (2)
where
T={z:lz| =1}, U={z:]z| < 1},V = {z: || > 1},
are used to denote the unit circle, its interior, and its

exterior, respectively, and the bar denotes closure, V =
VuT.

The problem under consideration is to determine
whether a given D(zy, z5) is stable. This problem is the
key for the stability determination of 2-D linear shift-
invariant(LSI, digital) systems and filters [1]. Introduc-
tion and background for 2-D stability is well served by
the textbooks [2] [3] and the survey [4].

The paper proposes a new algebraic method, based on
the 1-D test in [5], to determine, in a finite number of
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arithmetic operation, whether or not D(zy, z2) is stable.
The test comprises a sequence of matrices - referred as the
“2-D table” - that is obtained by a three-term recursion
of 2-D polynomials, and a set of associated algebraic type
(finite computation) conditions that have to be examined.
The set of stability conditions at its minimal setting in-
volves one 1-D test and one test for positivity of a poly-
nomial on 7'. The single positivity test is reminiscent of
a contribution introduced to this field of 2-D stability by
Siljak [6] in a context of Schur-Cohn polynomial matrix.
However, in difference from the approach implied in [7, 8],
in the current method the single positivity test property
emerges from direct and inherent considerations with no
reference to the Schur minors or other extraneous results.

The paper is organized as follows. The next section
introduces notation and cites the Huang-Strintzis simpli-
fication to condition (2) which is the starting point of
most reported methods for testing condition (2). In sec-
tion 3 we modify slightly the stability test in i5] to make
it more suitable for the current generalization. Section
4 introduces a first form of the 2-D stability table, the
“F-table”, and first associates to it an anticipated set of
conditions necessary and sufficient for stability. After-
wards, a smaller set of stability conditions with a single
positivity test is obtained for this table. Section 5 is de-
voted to a more efficient 2-D stability test that comprises
areduced size table, the “E-table” | and its stability condi-
tions. It begins by revealing and removing redundancy in
the size of the F-table, proceeds with obtaining stability
conditions for the resulting E-table and ends by compar-
ing E-table test to the F-table test and with a numerical
illustration. All theorems are stated without proofs that
will become available in a forthcoming full journal version
of the paper [9].

2. Background Theory and Notations

A standard approach to testing 2-D stability is to re-
gard the 2-D polynomial D(z;,22) as a polynomial in z;
with coefficients that are polynomials in the variable z
(the role of the two variables may be interchanged) and
then use a 1-D stability test in conjunction with one of
several stability conditions that relax the condition (2) by
allowing a search of (z1,z2) over only T x V (plus a 1-D



tests).

Lemma 1. D(zy,z2) is stable if and only if

(a) D(z,a)#0
(b) D(s,z) #0

This result was introduced to the field of 2-D stabil-
ity tests by Huang for a = oo [10] and its above form
by Strintzis [11]. Several other such simplifying stability
conditions are also known [4, 2, 3]. Note that part (a) of
the Lemma 1 is a standard 1-D polynomial stability test.
So essentially the task of an algebraic 2-D stability test is
to handle efficiently condition (b). Condition (a) may be
handled by the well known Schur-Cohn test and Marden-
Jury tables. The most efficient 1-D tests available are the
tests in [12, 13, 5]. Note that choosing a real value for
a offers the advantage of staying within real polynomials
for a real D. We shall not repeat this plurality further
on and will in all theorems a = 1, a value that integrates
nicely with the role that z = 1 plays in the underlying
1-D stability tests.

For a 2-D polynomial P(s,z) = Y vy S b_opixs'zF
we shall use P = (p; ;) to denote the matrix of its coeffi-
cients. Similarly p will denote the vector of coefficients of
a 1-D polynomials p(z). In correspondence to the polyno-
mial variables z, z will denote a vector whose entries are
powers in ascending degrees of the respective variables,
z = [1,2,...,2%,...]" (of length determined by contex-
t). The notation admits several ways of reference to the
above 2-D polynomial, including

forall z; € Vandsomea € V (3)
forall (s,2)eT x V. (4)

P(s,z) =Y pi(s)z* = [po(s), .-, Pa(s)]z = s'Pz
k=0

Here py is the k + 1-th column of P and px(s) = s'px,
k = 0,...,n, are the polynomial coefficients of P(s,z)
regarded as a 1-D polynomial in the second variable z.
This notation does not show explicitly the row indices
of the entries of P = (p; ). Row indices may be added
when needed, pr = [pok,P1 k- - Pm,k)’. However, most
of the time it will be convenient to discard them because
we shall manipulate mostly vectors and act on matrices
by columns.

Superscript ! will denote (conjugate) reversion, defined
for a matrix and a vector, respectively, by

Pl=gpJ p=Jp |

where J denotes the reversion matrix with 1’s on the main
anti-diagonal and zeros and * denotes complex conjuga-
tion.

Polynomial multiplication corresponds to convolution
of their coefficient vectors. Convolution will be denoted
by *, e.g.,

h = f * P —— h(S) = f(S)pk(S)

Convolution of a vector by a matrix will mean column by
column convolution, i.e.,

G=f+*P=(f*po,...,f*xpa] =[90,91,.-,9xn]
— G(s,2) = f(s)P(s,2z) = [go(5), ..., 9n(8)]z
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The converse operation of columnwise deconvolution
(with no reminder) will be denoted by

P=f\G=Ipo,p1-..,pn] —
Po2) = S = (), 19,

and it will represent extraction of a factor common to all
the polynomials gi(s).

Given a polynomial P(s, z) it will become more useful
to think of the coefficient matrix P as related to a different
function as follows.

P(3,2) = s"™?P(s,2) = Y _ pi(5)7* = §' Pz
k=0

where § := [s~™/2 s=(m=1)/2 s(m=1)/2 sm/2]t and §
as a function argument denotes power series in the pair
of variables (s=1,s) or (s71/2 s1/?) to equal extent as
shown. A polynomial in § like py(3) is called a “balanced
polynomials”.

The tested polynomial D(z;, z5) will be associated with
sequences of 2-D polynomials of the form {F},(3,z) m =
~1,0,...,n}, where Fy,(s,z) will of degree n — m in =
and of degree some degree £;(m) in s to be determined
later. Equivalently, it may {)e said that D is associat-
ed with a sequence of matrices {Fm, m=—1,0,...,n}
(also to be called the ‘2-D stability table’). The matri-

ces Fy, will all be centro-symmetric, namely Fl = Fp,.
When referring to columns (and rows) of F},,, the sequen-
tial index m will be distinguished by being set in brackets
and precede the other indices. For example we may write
Fm(gyz) = [.f[m] 0(5) 3 f[m] 1(5) yeer gy f[m] n—-m(g)]z =
St[f[m] 0> f[m] 15 - af[m] n—m]z where f[m] k =[f[m]0,k )
frmn .,.,f[m][!(m))k]t is the k + 1-th column of F,.
3. The Underlying 1-D Stability Test

A 1-D (one-variable) polynomial P,(z) is said to be
stable if it has all its zeros in U. This is the familiar
condition for stability of LSI systems and filters where
P, (z) forms the system characteristic polynomial or the
Z-transfer function denominator. The stability condition
may be rephrased into a form closer to (2) by writing it

as _
P(z)#0 for zeV . (5)

The current 2-D stability test is based on the 1-D sta-
bility test in [5] which modifies the initial conditions of
the test for 1-D complex polynomial in [12, 13] to a form
that admits a more efficient generalization to 2-D stabil-
ity. In principle it is possible to obtain a stability test
for D(zy,z;) by using the 1-D stability test directly in
its form in [5] to test condition (b) in Lemma 1, view-
ing D(s,z) as a 1-D polynomial in z that has coefficients
that are polynomials in s. However this approach would
involve the manipulation of a sequence of polynomials
in z with rational-function dependent on s coefficients.
Rational functions are more difficult to manipulate than
polynomials both at first phase of the construction of a
generalized stability ‘table’ as well as at the next phase
that raises requirements to test such functions for posi-
tivity over T. Inspection on the 1-D test in [5] reveals
that such rational function are caused by the division op-
eration involved in the creation of the multipliers 6,, in
there. Therefore our first step toward our goal is to devise
a division free variant for this test.



Consider a polynomial,

P,,(Z) = Zpizi ) Re{Pﬂ«(l)} 36 0 (6)
i=0

Algorithm 1 : Division-Free 1-D Table.
Construct for P,(z) a sequence of polynomials
{Fn(2),m =~1,0,1,...,n} as follows:

(i) Initiation. F_;(z) = (z — 1)(Pa(z) — Pi(2))

Fo(z) = Pa(z) + Pi(2)
(ii) Body. Form=0,...,n—1: 2Fpn41(2) =
(fm—l,Of:z,o‘i'f;;—1,0fm,0Z)Fm(z)_fm,ofr’r(;,OFm—1(2) (8)

The algorithm is referred normal if all f,o # 0.
Normal conditions are necessary conditions for stabili-
ty. When they hold, each F,(z), m = 0,1,...n, is a
conjugate-symmetric polynomial of degree n — m viz.,
Fm(z) = 2?=0m fm,izl) fm,n—m-i = f;,i

It also follows then that all Fi,(1) are real.

Theorem 1. (Stability Conditions for Algorithm
1.) Assume Algorithm 1 is applied to Pa(z) (6). - Pa(2)
is stable if, and only if,

Sgn{Fn(1)} = Sgn{Re{P.(1)}}, m=0,...,n. (9)

Remark 1. The ‘normal conditions’ in [5] that are neces-
sary conditions for stability transform here to the condi-
tion that all f, ¢ # 0. Here too fy 0 = 0 implies instabil-
ity but in difference it does not interrupt the recursion.
Instability implied by the occurrence of a fro = 0 is
detected by causing (9) not to hold.

4. 2-D Stability Test - First Form

Our goal is essentially to determine an efficient way
to test condition (b) of Lemma 1. It is easily real-
ized that condition (b) of Lemma 1 holds if and only
if D(3,2) # 0V¥(s,z) € T x V. This permits applying
the 1-D test to D(3,#) rather then to D(s,z). The gain
is that complex conjugation of balanced polynomials for
values s € T retains the length of their coefficient vectors
whereas for D(s, z) it would double the row sizes of the
two initial matrices.

2-D Table Construction

The initial form of our 2-D stability algorithm is ob-
tained by the application of Algorithm 1 to D(5,z) re-
garding 1t as a 1-D polynomial in 2 with coefficients de-
pendent on s € T'.
Algorithm 2: First 2-D table (F-table).
Given the polynomial D(z;,2;) to be tested, form a se-
quence {Fiy(5,2) =50 ™ fr(3)zF ,m=-1,0,1...,n(=
n2) } by the following recursion.
(i) Initiation. F_;(5,2) = (z — 1)(D(5,z) — DY(3,2)),

(7

Fo(3,z) = D(3,2) + D(3,2) (10)
(ii) Body. Form=0,1,...,n—1:
hm(g) = f[m-l] O(E)fgm] 0(5)
rm(3) = fim) 0(8)ffny o(3)
2Fmy1(5,2) = (11)

(hm(3) + kb (3) 2 ) Fin(3,2) — rm(8)Fn-1(5,2)
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This algorithm may be stated in an equivalent matrix
presentation and the notation convention introduced in
section 2 may ease the translation. This will be illustrated
later for the final form of the test.

Stability Conditions

Define two auxiliary sequences of polynomials:

Som(s') m=
vo(3)’

Remark 2. It can be shown that all ¢,,(5) are actually
polynomials. In other words, @o(3) is a factor of all ¢, (3)
and @m(5) is the result of dividing out this factor. It is
also noted that (all ¢, (3) and therefore) all ¢m(5) are
(conjugate-) symmetric balanced polynomials, ¢}, = @pm.
A particular outcome of this symmetry is that all ¢, (3)
arereal Vs € T.

Theorem 2. (Stability Conditions for F - Table.)
Assume Algorithm 2 is applied to D(z1,z2) and $p(3) are
formed as in (12). D(z1,22) is stable if, and only if, the
Jollowing conditions (a) and (b) hold.

éa; D(z,1)#0 forallze V.

b) pn(8) >0, m=1,...,n forallseT.

Remark 3. 1t is possible to replace in the above theorem
the condition (b) by the pair of conditions (i) ¢m(5) # 0
,m=1,...,ntfor all s € T and (ii) D(1,z) is a stable
1-D polynomial. Since the latter condition is necessary
for stability, and is simple to check it adds a dividend
that whenever D(1, z) is determined to be not stable, the
remaining 2-D test that contains the major portion of the
computation burden may be skipped.

m(3):=Fn(5,1), om(5):= 0,...,n (12)

Remark 4. Condition (b) originates from the condition:
(b’) Sgn{pm(5)} = Sgn{po(3)} Vs €T, m=1,...,n,
and is equivalent to it. However (b’) is much less con-
venient to use than (b) because ¢o(5) may have up to n
zeros on T that are necessarily zeros of also all subsequent
©m(8). Zeros on T are not uncommon (for odd n @o($)
has to have at least one zero at s = —1). As a conse-
quence checking (b’) would require numerical determina-
tion of the zeros of ¢u(3) on T and careful evaluation of
the sign variations in segments of T' partitioned by these
zeros. In difference, condition (b) may be examined also
by simple algebraic tests. In addition, the normalization
(12 lowers the degrees of the polynomials to be tested that
by itself affect positively the robustness and the cost of
their testing.

Sharper Stability Conditions
The degree of each ¢m(3) = Fiu(3,1) is equal to the
row size of F,,(8, z), denoted by £;(m). An expression for
£;(m) may be obtained by solving the difference equation
that it is seen from (12) to satisfy,

l,(m+2) - 2€f(m+ 1) —Kf(m_) = 0,

for the initial conditions £;(—1) = £;(0) = n;. The solu-
tion is a linear combination of two modes A, 5 = 1+5/2.

Its A™ with A = 1% /5(~ 2.118) part causes the solu-
tion to increase exponentially with m. Consequently the
positivity tests for ¢,,(8) # 0 involves an amount of com-
putation that increases rapidly with m. The next theorem
facilitate this difficulty by establishing that one positivity
test, that of ¢,(3) > 0, is enough.

(13)



Theorem 3. (Sharper Stability Conditions for F-
Table) D(z1, 22) is stable if, and only if, the three follow-
ing conditions: (i), (it) and (iii) or (ii1’) hold.

(i) D(z,1) £ 0 forallz€V
(i) D(1,2) #0 forallz€V
(iii) ¢n(3)#0 foralseT
(i) @a(3)> 0 foralls€T

5. Refined 2-D Stability Test
It turns out that recursion (12) generates a sequence
of matrices {F,,} that have row sizes higher than neces-
sary. We first expose and characterize this phenomenon.
Afterwards we devise another recursion that is free from
this problem. Finally we shall obtain stability conditions
for the reduced size table.

Redundant Factors
The next Lemma shows that each F},,(5,2) m > 2 pro-
duced by the three-term recursion (12) contains separable
polynomial in § factors (i.e Fi(3,z) is divisible by such
factors with no reminder) that are inherited to subsequent
Fpnti(3,2) i > 0 and their degree increase rapidly.

Lemma 2. Consider the sequence {Fm(8,2)}§ produced
by the recursion (12).

(a) If £(3) 15 a factor of Fin(5,z) m > 0 then it is a factor
of all subsequent Fm+i(§,z) i> 1.

(b) For any given two polynomials Go(3,2), Gi1(3,z) of
degrees k and k — 1 in z, respectively (3 < k < n+
1), let Go(5,2), Gs(3,z) be the two consecutive polyno-
mials generated by the recursion (12) of Algorithm 2.

Then gy O(E)g[“l] o(8) is a factor of G3(3,z). Namely,
901 0(5).(]?1] o(3) divides, with no reminder, each gig) i(8)
1=0,1,...,k—

The conclusion from property (b) of Lemma 2 is that
any Fpi2(5,2), k=0,1,...1s divisible by each of the fac-

tors fpi) 0(§)f["i] o(3), 1= 0,...,k. By property (a), the
multiplicity of each such factor tends to increase as the
recursion goes on.

Construction

Lemma 2 provides sufficient details on the phenomenon
it features to eliminate it. Only a recursive algorithm is
capable to gain full advantage of the elimination of the
common factors and create a most efficient 2-D table.
Removing these factors by dividing them out after the F-
table is completed does have a positive impact on testing
stability conditions posed on the table, but it does not
exploit as fully the phenomenon revealed in Lemma 2.

The next algorithm provides a recursion that associates
D(zy,22) with a sequence {En,(3,z)m = —1,0,.. .,n}
such that each E, (5, z) corresponds to Fi,(3,z) stripped
from the aforementioned common factors.

Algorithm 3: Reduced 2-D table (E-table)
Construct for D(z;,22) a sequence of polynomials
{En(3,2) = 307" ex(5)2*, m = =1,0,...,n} as follows.

Initiation. E_y(5,2) = (z — 1)(D(5,2) — D}(3,2))
Eo(3,z) = D(3,2) + D'(3,2) (14)
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Body. For m=0,1,...,n — 1 compute:
gm(g) = €[m-1] 0(§)e¥m] 0(5) » ‘Im(g) = €[m] 0(§)€gm] 0(5)
and let ¢_1(8) := 1. 2Em41(5,2) =

9 (8) Em (8, 21494 (5)2Em (8, 2)~qm (5) B -1 (5, 2)

= 15
P (19
Stability Conditions
Define the auxiliary sequence of polynomials:
em(3)=Em(3 1), em(3)=2C) m =0, .n  (16)
€o(3)

They can be shown to hold properties similar to their
counterparts in Remark 2. B

The next stability theorem is the E-table parallel of
Theorem 2.

Theorem 4. (Stability Condition for E-Table)
Consider D(z1,22) and apply to it Algorithm 3 and ob-
tain &,(8)% of (16) . D(z1,22) is stable if, and only if,
the following conditions (a) and (b) hold.

(a) D(z,1)#0 forallze V.
(b) én(8)>0,m=1,2,...,nforallseT

Remark 5. Like in previous Remark 3, here too it is pos-
sible to replace in Theorem 4 condition (b) by the pair of
conditions (i) D(1,z) # 0 for all z € V, (ii)én(8) # 0,
m=1,...,nforallseT.

The next theorem crowns the E-table with the sharper
set of stability conditions obtained before for the F-table.
This proves at last that the factors dropped in the transi-
tion from the F-table to the E-table are truly redundant
and their discard benefits the efficiency of computation
without complicating the form of the stability conditions.

Theorem 5. (Sharp Stability Conditions for E-
Table.) D{z1,22) is stable if, and only if, the following
three conditions: (i), (i) and (iii) or (iii’) hold.

(i) D(z,1)# 0 forallzeV
(i) D(1,2) #0 forallzeV
(iil) é,(5) £ 0 foralls €T

(iii’) é,(5§)> 0 forallseT

Comparison between the E-table and the F-table

The E-table has much lower row dimensionality than
the F-table. For the F-table, £;(m), the degree in s of
F,,(s,2), is governed by (13) and increases exponentially
with m. Let £.(m) denote the degree in s of En(s,z)
(i.e. the row size of E,, is £,(m) + 1). Inspection on
the recursion (15) reveals that for m > 0 it satisfies the
equation £.(m + 2) — 28.(m + 1) + £(m) = 0. lts solu-
tion for the initial values £.,(0) = n. and £.(1) = 3na is
£,(m) = (2m + 1)ny. Since £e(m) increase only linear-
ly with m the E-table offers a substantial saving in the
cost of computation by comparison to the F-table and



this saving becomes more significant the higher are the
values ny and ny;. The fact that we were able to show
for the E-table stability conditions that look like those
for the F-table means that the stability conditions for the
E-table actually involve less computation because each
ém(8) is of lower degrees than ¢, (s). In particular, the
highest degree symmetric polynomial that has to be test-
ed €,(s) is of degree 2n1ny. This is according to Theorem
5 also the only polynomial that has to bested. The dif-
ference is remarkable already at low values of ny and n,.
For example consider ny = ny = n = 4. For the F-table
{€;(m)}8 = {4,12,48,68,164} and B, (s) is of degree 160.
While for the E-table {£.(m)}¢ = {4,12,20,28,36} and
én(s) is of degree 32.
Numerical Ezample

For illustration, consider the polynomial used as an ex-

ample in several papers, [10] [7], D(z1,22) =

0 0 0.2500 7 [ 1
[1 22 22][0 0.2500 0.5000 | | =}
0.2500 0.5000 1.0000 | | 22

D(z,1) = D(1,z) = [0.25000.75001.7500]z are easily
determined to be stable.

1.0000 ~—0.5000
E_; = | 0.5000 -—0.5000
0 —0.5000

o

E,

—0.5000 0.5000

—0.5000 0
—0.5000 1.0000

0.5000 0.5000 0.5000
0.5000 0.5000 1.0000

0.5000 0.5000
1.7500 1.5000
4.1250 3.7500
4.3750 4.3750
3.7500 4.1250
1.5000 1.7500
0.5000 0.5000

The next step demonstrates the elimination of a redun-
dant factor (since here n, = 2 this elimination occurs
for the first time at this last step). Taking the first
column of Ey, e o = [1.000, 0.500, 0.500]* we obtain
go = e[gj o * e![‘o] o = [0.5000 ., 0.7500 , 1.5000 , 0.7500
, 0.5000]s. This polynomial divides all the ny +1— 2 col-
umn polynomials of the numerator matrix in the r.h.s of
(15) which has in this example a single column that is giv-
en by: [0.2500,1.6875 , 7.3750 , 21.469 , 48.102 , 82.781
,115.02 , 127.27 ,115.02 , 82.781 , 48.102 , 21.469
, 7.3750 , 1.6875 , 0.2500]*. The result of the deconvolu-
tion by go is:

1.0000 - 0.5000 0.5000]

[ 0.5000 7
2.6250
9.3125
20.344
33.312
37.969
33.312
20.344
9.3125
2.6250
L 0.5000 |

E, =
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Next é(s) = Ejs/eo(s) is to be determined, where
€o(s) = FEy(s,1) = [2.000, 1.500, 2.000]s. The result
is éy(s) = [0.2500, 1.1250, 3.5625, 6.3750, 8.3125, 6.375,
3.5625, 1.1250, 0.2500]s. It remains to test the condition
é(s) # 0 Vs € T. An efficient way to do so is to use the
1-D zero location test for real polynomials in [12]. Find-
ing that this condition holds ends the 2-D stability test
with the conclusion that the examined D(z1, z2) is stable.
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