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Stability Test for 2-D LSI Systems
Via a Unit Circle Test for Complex Polynomials

Yuval Bistritz

Abstract— A new algebraic test for two-dimensional digital
filters is developed based on the author’s stability test for
one-dimensional discrete system polynomials with complex
coefficients. The new method consists of an array of polyno-
mials and an accompanying set of necessary and sufficient
conditions for stability. Programming the construction of
the array is simple and the execution involves a lower count
of computation then reported for previous tests. Testing
the stability conditions needs just a single “positivity test”
of the last polynomial in the array plus standard 1-D sta-
bility conditions. A larger set of conditions necessary for
stability that may be useful in other modes of application is
also provided.

I. INTRODUCTION
A two-dimensional (2-D, bivariate) polynomial

ny n2

D(z1,20) = szi,kZ'iZS (1
i=0 k=0
is said to be stable if
D(z1,29) #£0, for (z1,22) €V xV (2)
where
T={z:]|z|=1}, U={z:]z] <1}, V={z:|z]>1},

are used to denote the unit circle, its interior, and its exte-
rior, respectively, and the bar denotes closure, V = VUT.

The problem under consideration is to determine whether
a given D(zy, z2) is stable. This problem is the key for the
stability determination of 2-D linear shift-invariant systems
and filters.

This paper develops a 2-D stability test that is based
on the 1-D unit circle test for polynomials with complex
coefficients in [3]. The proposed test is algebraic namely,
it determines whether D(z1, 2;) is stable or not in a finite
number of arithmetic operation. The test consists of a se-
quence of matrices - the “2-D table” - that is obtained by a
three-term recursion of 2-D polynomials, and a set of sta-
bility conditions posed on it that has to be examined. This
set of stability conditions is reduced to one 1-D test and
one test for positivity of a polynomial on T'. A simplifica-
tion of this type was introduced by Siljak who showed in (8]
that for determining positive definiteness of a the Schur-
Cohn polynomial matrix over the unit circle it suffices to
determine definitness at a point and the positivity of the
determinant polynomial on the unit circle. In a tabular
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test it was adopted to 2-D stability using the Jury-Marden
table {6] The initial form of the 2-D table is simplified by
removing from it common factors that are shown to be
redundant. Combination of the simplified table form and
stability conditions achieves an overall cost of computation
reduced from an initial exponential order typical to earlier
2-D table tests [7] to an order n® (say n = n; = ny).

II. BACKGROUND THEORY AND NOTATION
Consider a 2-D polynomial P(s,z) = > 1" Y0 _ o pi ks'2F.
The matrix of coefficients of P(s, z) will be denoted by
P = (pix). Similarly p will denote the vector of coeffi-
cients of a 1-D polynomials p(z). In correspondence to the
polynomial variables z, z will denote a vector whose en-
tries are powers in ascending degrees of the this variables,
z = [1,2,...,2%,...]' , (of length determined by context).
The notation admits several ways of reference to the above
2-D polynomial, including

P(s,z) = Zpk(s)zk = [pO(S)‘vpl(s)» s 7pn(s)]z =s'Pz
k=0

Here py, is the k+ 1-th column of P, and pi(s) = s'pk, k =
0,...,n, are the coefficient polynomials of P(s, z) regarded
as a 1-D polynomial in the second variable z.

A standard approach to testing 2-D stability is to regard
the 2-D polynomial D(zq, z2) as a polynomial in 2z, with
coefficients that are polynomials in the variable z; and then
use an 1-D stability test in conjunction with one of several
stability condition that relax the condition (2) by a search
of (z1,z2) over T x V (plus a 1-D tests).

Lemma 1. D(z1, z3) is stable if and only if

(i) D(z,a) #0  forall 2z € Vandsomea eV

(i) D(s,z) #0  forall (s,z2)eTxV

This result was obtained by Strintzis [9]. It is often called
Huang’s theorem who obtained it first in [5] for a = co. A
list of several such simplifying conditions may be found
in [6] and in [4] where the latter also contains alternative
proofs and further extensions. Note that part (a) is a sim-
ple 1-D polynomial stability test. Thus the task of an al-
gebraic 2-D stability test concerns essentially an efficient
way for testing the condition (ii).

Given a polynomial P(s, z) it will be actually more useful
to think of the coefficient matrix P as related to a different
function as follows.

n
P(5,2) = sT™2P(s,2) =y pi(3)2F = 5Pz
k=0
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where § = [s7™/2 s~ (m=1/2 | o(m=1)/2 sm/2t and §
as a function argument represent power series in {s71,s)
(in the context of this paper m will be an even integer) of
equal length as shown. We shall refer to such polynomials
as “balanced polynomials”.

Superscript  will denote (conjugate) reversion, defined
for a matrix and a vector by
Pt=JP*J  pt=UJp* |
where J denotes the reversion matrix with 1’s on the main
anti-diagonal and zeros and * denotes complex conjuga-

tion.

Polynomial multiplication corresponds to convolution of
their coefficient vectors. Convolution will be denoted by *
thus

h=fxpi — h(s) = f(s)pi(s)

Convolution of a vector by a matrix will mean column by
column convolution, i.e.,

G=f*xP=[fxpo,f*p1, .-, f*pn] = (90,91 gn]
— G(s,z) = f(s)P(s, 2)

The converse operation of columnwise deconvolution (with
no reminder) will be denoted by

P:f\G: [POvpl“'vpn]M

Plo,5) = 22 — (s m(o), -

and it will represent extraction of a factor common to all
the polynomial coefficients.

We shall form for the tested polynomial a sequences of bi-
variate polynomials of the form {F,,(3, z)}, where F,,,(s, 2)
will be of degree £¢(m) in s and of degree n—m in z. Equiv-
alently it may be said that we form for the tested polyno-
mial a sequence of real matrices {F,,, 0,...,n} (that will
also be called the 2-D ‘table’). The matrices F,,, will all
be centro-symmetric, namely Fr‘i1 = F,,. The sequential
index m of the matrix F,,, when referring to its columns
(and rows), will be set in brackets and precede the other
indices. For example we may write

,pn(s)]z

Fm(g)z) = [f[m] O(g) ) f[m] 1(5) PRI ~»f[m] n—m(g)]z =
8 fpmi o Simp 1+ --os fim) nomlz
where fi) & is the k + 1-th column of F,,,
Fim) & = Uimiok » Sk s - Fomjesmy k)t

ITI. DIVISION-FREE 1-D STABILITY TEST
A univariate polynomial P,(z) is said to be stable if it has
all its zeros in U. This stability condition may be written
in a form closer to (2),

P,(2)#0 for zeV (3)

We present next a modification for the stability testing
procedure in [3] that avoids the arithmetic operation of
division. Assume

n

Po(z) =) piz* , Pa(l) #Oisreal. (4)
+=0

Algorithm 1 : Division-Free 1-D Complex Array
Consider the polynomial P,(z) (4) and form for it a se-
quence {F,(z), m=0,1,...,n} as follows:

(i) Initiation.

Pn(2) — Pi(2)
(z-1)

(ii) Body. For m =0, ...,n — 2 obtain Fp49(2):

Fo(z) = Po(z) + PX(z2), Fi(z) =

2Fmi0(2) = (fmofmer0 + fr0fm+1,02) Finia(2)

—fm+1,0f:z+1,0Fm(z)

The algorithm is considered normalif all f,, o # 0. Nor-
mal conditions are necessary conditions for stability. When
they hold, each F,(z), m = 0,1,...n, is a conjugate-
symmetric polynomial of degree n — m viz.,

Fn(2) = ) fmiz', Fi(2) = F(2)  (Fmnem—i = f)
1=0

It also follows then that all F,,(1) are real.

Theorem 1. (Stability Criterion for Algorithm 1.)
Assume P,(z) (4) and that Algorithm 2 is applied to it.
Pp(z) ts stable if and only if

Sgn{Fn(1)} = Sgn{P(1)} m=0,1,...,n .

Proof. Comparison of the recursions in Algorithm 1
with the recursion for the sequence {T1,(2)} in [3] reveals
that the relation between the sequences {F,,(z)} and {T}n(z)}
is

Fm(z) = djme(z)Where 11’0 =1, "1[}1 =1
1/)m = lfm—l,012¢’m—2 = Itmv1,0|2w3nfl'¢'m‘2 , m2> 2

The proof now follows from the stability theorem in [3]
because all the 1, are positive. O

_ Suppose we tried to test condition (ii) in Lemma 1 by
applying to it the 1-D test in [3] viewing D(s, z) as a poly-
nomial in z that has coefficients that are polynomials in s
(assume for a moment for the sake of this argument that
D(s,1) is real for all s € T as needed in this 1-D test). It
becomes apparent that this approach would involve a ma-
nipulation of a sequence of polynomials in z with rational-
function coeflicient. In difference a similar extension of the
above modified 1-D test, will circumvent the treatment of
rational function coefficients. A subsequent need to test-
ing positivity conditions (over s € T') will also be simplified
as it will be posed on polynomials rather than on rational
functions.
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IV. A Basic 2-D TEsT
The polynomial D(s, 2) is not directly suitable for Algo-
rithm 1 because D(s, z) at z = 1 is not real for all s € T.
Following the suggestion in [3] we therefore form first an
auxiliary bivariate function

M(s71,s,2) := D(s7},1)D(s, z) = M(3,2) = 5'Mz (5)

Now, M(5,1) is real and positive for s € T and we may
check whether condition (ii) of Lemma 1 holds by the fol-
lowing equivalent condition

M(,2z)#0forseT,ze V. (6)

A. Array Construction for M(35,z)

The initial 2-D stability table is obtained by applying
Algorithm 2 to M(5, z) regarding it as a polynomial of
degree n = my in z with balanced polynomial coefficients
dependent on §

Algorithm 2: Array for M(5,z). Form for M(3,2) a
sequence {F.(5,2) = Y0 fe(3)zF, m = 0,1, ..
follows.

(i) Initiation.

.,n}, as

M(3,2) + M!(5, 2)

z—1

Fo(3,2) = M(3, 2)+ M*(5,2), Fy (3, 2) =

(ii) Body. For m = 0,1,...,n — 2 obtain F,,, (g, z) by:

hm(g) = f[m] O(E)f[l1rn+1} 0(§)

Tm41(5) = fim+1) 0(8) fime1) o(3)*
ZFm+2(§, Z) =
= (hm(3) + h5(5) 2 )Fin11(5, 2) = 41 (8) F (5, 2)

Note that for s € T complex conjugation correspond to
reversion of the coefficient polynomials, e.g.,

Jim) £(8) = fim) k(571 8) ¥ fimj & =

Fiml 6(s71 ) = fim 1(3,87Y) = 8 fimy & = Fly

The (conjugate-) symmetry of the 1-D polynomials in Algo-
rithm 1 transforms currently into centro-symmetry, F,, =
JF,J = F},, of the matrix of coefficients in the sequence
produced by Algorithm 2. This symmetry can be exploited
to actually compute only half of the entries of each F,.

B. Stability Criteria

2-D Stability conditions for Algorithm 3 can be deduced
at once from Theorem 1 and Lemma 1.

Theorem 2. (Stability conditions for Algorithm
2.) Necessary and sufficient conditions for D(z1, z9) to be
stable are

(i) D(z,1) #0  for zeV
(%) D(1,2)#0 for 2V
{#) om(5) #0 for seT,m=20,1,...,n

-3
O

where {F,(3, 2)}§ is the array produced by Algorithm 2 for
M(3, 2) and pm(3) := Fu(3,1).

C. Refined 2-D Stability Conditions

A less expected result than the Theorem 2 is that it
suffices to examine a single “positivity test” in using Algo-
rithm 2. An appropriate proof for the next assertion will
become available in a forthcoming publication.

Theorem 3. (Sharper stability conditions for Al-
gorithm 2.) Necessary and sufficient condition for D(z1, z9)
to be stable are

(i) D(z,1)#0 for eV
(1) D(1,2) £ 0 for zeV
(%) pn(8) #0 for seT

where ¢ (8) = Fn(3,1) = fin) o(35).

V. A REDUCED TESTING PROCEDURE

As a matter of fact Algorithm 2 generates 2-D polyno-
mials with multiple § polynomial factors. We first char-
acterize this feature and then devise a refined algorithm
that is freed from these factors. Afterwards necessary and
sufficient conditions for stability using the reduced array
obtained and show that the eliminated factors are indeed
redundant. The removal of these redundant factors con-
tributes most significantly to the efficiency of the final al-
gorithm. It can be shown to reduce overall cost from an
arithmetic count that increases exponentially with the de-
gree n (say n; = np = n) of the tested polynomial to
a count of order n®. The results of this section (as well
as the previous theorem) are stated without proof due to
space limitations. Adequate proofs will be made available
in forthcoming publications.

A. Redundant Factors

The next Lemma spots common 3 factors in the sequence
{Fm(3,2)} and characterizes the way they build up.

Lemma 2. Consider the sequence {Fy,(3,2)}5 produced

by the Algorithm 2.

(a) If f(8) ts a factor of F,,,(3,2) m > O then it is a factor

of all subsequent Frpy:(8,2) 7 > 1.

(b) For any adjacent two polynomials Go(5, ), G((§, z) of

degrees k and k — 1 in z, respectively (3 < k < n), let

G3(8,2), G3(8,z) be the two consecutive polynomials gen-

erated by Algorithm 2. Then gpj o(8)gj1) o(371) 4s a factor

of G3(3,z). Namely, this balanced symmetric polynomial

divides with no reminder gpg) ;(3) foralli =0,1,...,k-3.
Lemma 2 and the structure of the recursion in Algorithm

2 admit a change in the algorithm such that a sequence,

{Em(3, z)},that is clean from these factors will be obtained

directly by a modified recursion.

Algorithm 3: Reduced Array for M(§,z) Construct

for M (5, z) a sequence of polynomials

{Em(5,2) =35 ex(8)2*, m=0,...,n} defined by
Initiation.

M(5,2) + M3, 2)

z—1

Eg(8,2) = M(3,2)+M*(5,2), E1(3,2) =



Body. For m = 0,1,...,n — 2 obtain En, (5, z) by:
gm(§) = €(m] 0(§)e?m+1] 0(3)

Gm+1(8) = €mp1] o(8)efn 1) o)
zEm4+2(5,2) =
_ (gm(3) + g5 (9)2) Em11(5, 2) = gm41(5) Em (5, 2)
pm(8)
where po(8) = 1, pm(5) = gm(3) , m 21

B. Stability Criterta for the Reduced Table

The construction of the array {Fn, (3, 2)} is significantly
more efficient than {F,,,(5, z)} because, as it may be shown,
in the new array the row sizes increase only linearly with
m. The question is whether the use of this reduced array
does not increase the number or complicate the cost of
the stability conditions that need to be posed on them.
The next theorems state that stability conditions in form
identical to those accompanying Algorithm 3 remain valid
also for {Em(S,2)}. Of course, an identical number and
form of necessary and sufficient conditions, when posed on
{En (3, z)}, are examined at a lower cost of computation,
because the overall reduction in row sizes also means that
they are posed on lower degree polynomials.

Theorem 4. (Stability conditions for Algorithm 3.)
Necessary and sufficient conditions for D(z1, zq) to be sta-
ble are

(i) D(z,1) #0 for zeV
(i) D(1,2) #0 for zeV
(1%) em(3) # 0 for s€T,m=0,1,...,n

where {E (3, 2)}§ s the array produced by Algorithm 3 for
M(5, 2) and € (3) := En(5,1).

This is the parallel of Theorem 2. Sharper conditions
that parallel Theorem 3 also hold:

Theorem 5. (Sharper stability conditions for Algo-
rithm 3.)

Necessary and sufficient condition for D(z1, z2) to be stable
are

(¢) D(z,1) #0 for zeV
(it) D(1,2) #0 for zeV
(12) e, (8) # 0 for seT,

where €n(3) = En(8,1) = efmy o(8)-

VI. TESTING PROCEDURE SUMMARY

So far we used polynomial notation because it provides a
compact way to write the recursions etc., and we also find
it a constructive tool for the derivation of the procedure.
At the same time, the notation we introduced provides a
quick translation to alternative semi or full matricial nota-
tion. The matricial interpretation becomes the more use-
ful choice for the programming of the new test. The im-
plementation becomes in particular straightforward by an
array-oriented language like MATLAB. For this end note

for example that the main recursion step may also be writ-
ten in the next way,

[0, Brns2,0) = pm \ (Brnsr + EX ) — g1 ¥ Em)

where E,,, = gn_1 % [Ers, 0]. Similarly, in order to obtain
M from D as in (5), let the coefficient vector of D(s, 1) be
b=3"odi. Then, M = b* « D. (Convolution and decon-
volution are standard routines in MATLAB.) An outline
for testing whether D(z1, z3) is stable may be summarized
as the following:

step 1: Test whether D(z;,1) is stable. If stable go to
Step 2 else = D(z1, 22) is not stable (’exit’).

step 2: Test stability of D(1,2;). If stable go to Step 3
else = D(z1, z3) is not stable (’exit’).

step 3: Form M(s,z) and apply to it Algorithm 3. [Op-
tionally, test whether E,,(3,1) # O right after each
new Fn,(3, z) is formed. If not => D(z1, 22) is not
stable (’exit’).] Test whether €,(3) # 0. If true (after
passing steps 1 & 2) == D(zy, z9) is stable, else it is
not stable.

Testing 1-D stability may be done by Algorithm 1, but is
more efficiently done by the test in [2]. The latter reference
also provides the efficient means (see ‘Type I singularity’ in
there) to testing algebraically the condition e(8) # 0 on T
(valid iff €(s) has half of its zeros in V and their reciprocal
in U).

The option stated in step 4 suggests to add to the re-
cursion the checking the positivity of each ¢,,(5) that are
further necessary conditions for stability. This approach
may save computation in a long run for some application
by allowing exit from the construction of the rest of the
table with an early indication of instability.
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