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A Modified Unit-Circle Zero Location Test

Yuval Bistritz

Abstract— A modification to an efficient procedure to determine zero
location with respect to the unit circle of polynomials with complex
coefficients is presented. This form is more snitable to determine zero
location constraints for polynomials with variable coefficients. It also
bears a more direct relation to the Schur-Cobn (Marden-Jury tabular)
test.

I. INTRODUCTION

An algebraic unit-circle zero location test aims to determine the
numbers, «, 3, and ~y, of zeros of a polynomial P(z) inside, on, and
outside the unit circle IUC, UC, OUC)

C={z|z=¢" 6¢[0.2n]} )
respectively, without their numerical calculation.
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The first direct algebraic solution to this zero location problem
is the Schur-Cohn algorithm, with Schur obtaining a procedure for
determining whether or not @ = n (P(z) is “stable”) [1] and Cohn
extending it to a full &, 8, and -y determination for any polynomial [2].
This Schur-Cohn solution is more known today in a modified form
obtained for it by Marden [3] and in several tabular forms advanced
by Jury [4], [S]. Many variations on this test were published and were
recently classified in [6]. A different approach to the unit circle zero
location problem, has been obtained in [7] for real and in [8] for
complex polynomials and it is the most efficient solation available
today for this problem.

This brief contains a modification to the tests in [7] and {8] that is of
equal strength and efficiency in ordinary use but one that offers a more
suitable form for handling stability or zero location for polynomials
whose coefficients are literal, depend on some parameters, or are
function of further variables. Applications of this kind arise in
determining stability constraints on parameters in feedback control
of linear shift (discrete time) invariant (LSI) systems, in developing
stability conditions for multidimensional LSI filters and other design
problems of stable LSI systems. The current modification also bears
a simpler relation to the Schur-Cohn and Marden-Jury tests.

The presentation here relies to some extent on [7] and [8]. We
prove the current modified form by drawing an equivalence between
it and a the treatment of a certain auxiliary polynomial by the test in its
form in [8]. This provides a shorter proof than alternative independent
proofs that could also be used. We also refer to [8] and [7] for the
treatment of not regular cases after showing that their treatment in
[8] and [7] is applicable also to the current modification.

II. THE ALGORITHM

We shall currently consider the determination of the unit circle zero
location distribution triplet («, 3, ) for a polynomial

Re{P(1)} #0, pn #0 (2)

where the coefficients p; are complex numbers. The assumption on
P(1) needs to be checked first. If P(1) = 0, then the algorithm
described below is applied to the reduced degree polynomial obtained
after zeros at z = 1 were removed (an operation that involves only
addition arithmetics on the coefficients). Since a P(1) = 0 implies
o < n, this observation may already terminate a stability test. A case
when P(1) # 0 but it is purely imaginary, may also be brought to
terms with the assumption by without true multiplicative arithmetics,
e.g, by P(z) = jP(2) (j := v—=1).

By difference, in the assumption in [8] is that P(1) # 0 and it
is real. Thus when P(1) = 0, and further information on the zero
location of this “not stable” polynomial is sought, both procedures
involve a preliminary step of removing zeros at z = 1. The significant
difference is in the next needed adjustments for a complex coefficient
polynomial P(z) with P(1) # 0. For a polynomial P(z) to satisfy
the requirement “P(1) is real” it is necessary in general to multiply
(or divide) it by a nontrivial complex number, e.g., by the complex
conjugate P(1)* of P(1). The operation P(z) = P(1)*P(z) means
just 7 multiplications for a fixed coefficient polynomial but it has
a more adverse impact on a polynomials with literal coefficients,
or the coefficients depend on additional variables or parameters.
In such cases that arise in generalized applications, the result of
multiplying variable coefficients of the polynomial by a factor that
is similarly a polynomial of secondary variables or a function of the
parameters involved, complicates the coefficient dependencies of the

P(z)=po+prz+-+pnz",

1057-7122/96$05.00 © 1996 IEEE
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polynomial that is passed to subsequent stages of the algorithm. In
difference, the requirement in (2) may be satisfied without posing any
further complicity on a generalized polynomials passed to subsequent
steps, while, it will become apparent that, for fixed polynomial
coefficients and in all other respects, the modified procedure is as
simple and efficient as the original test. A manifest for the significance
of the current modification is in that most of today’s applications
of algebraic stability tests involve the manipulation of generalized
polynomials.

Normal Algorithm: Given a polynomial P(z) as in (2) as-
sign to it » + 2 conjugate-symmetric polynomials {F,,(z) =

™o fm,izl,m =n+1,--.,0} by the following algorithm.

Start with

Foga(2) = (2 = 1)(P(z) = P*(2))
F,(z) = P(z) + P}(2)

(3a)
(3b)

where P*(z) denotes the (conjugate-) reciprocal of P(z), viz,
PH(z) =Y ph_;2 and * denotes complex conjugation.
Then obtain polynomials of descending degrees by the recursion

2Fp—o = (§m +§;:)Fm,1(z) — Fn(2)

m=n+1mn,,2

(42)

where
F..(0)

b = =m0
Fr1(0).

(4b)
This algorithm is referred to as regular if the normal conditions that
Fy1(0) # 0 for all 7o = n, - -, 1 hold. For normal conditions the
recursion provides a sequence of n + 2 conjugate-symmetric (self
reciprocal) polynomials, F3 (z) = F.(z), where each F,,(z) is of
(full) degree m.

The regular recursion needs extensions for cases when a
F,,—1(0) = 0 occurs. Such singular situation may be treated in
the same way as in [8]. A brief account follows.

Structural Singularities: The occurrence of an Fs_1(z) = 0 is
referred to as a “structural singularity” at degree s. A structural
singularities occurs if and only if the zeros of F,(z) are also zeros of
P(z), or, equivalently, iff P(z) has UC zeros or zeros in reciprocal
pairs (RP), z,, and . (A symmetric polynomial like F(z), has
either zeros on C or in pairs located in reciprocal symmetry to it.)
This case is treated by deriving from F,_1(z), as described in [8], a
new pair of symmetric polynomials {Fs_1(z), Fs—2(z)} then using
them to resume the regular three-term recursion. If P(z) has UC or
RP of zeros of multiplicity higher than one then structural singularity
will recur.

Patternless Singularities: Patternless singularities refers to the re-
maining cases when an F1,(0) = 0 (but Fn(z) # 0) occurs. This
situation is not related to any particular pattern of the location of zeros
except that it implies that not all zeros are IUC. The case may be
treated by deriving from Fy(z) a pair { Fr(z), Fr—1(2)}, as described
in [8], and use them to resume the regular recursion. This substitution
does not interfere with the occurrence of structural singularities, their
treatment and conclusions on UC or RP zeros described below.

In regular, as well as after singular, treatments, the polynomials
F,.(z) are always symmetric F,,(z) = F¥ (2). This symmetry may
be used to actually compute only half of the coefficients for each
polynomial. It also follows that o = Fn(1) in the subsequent
theorems are real. Also note that an efficient way to compute them
normally is by the next parallel recursion

on = 2Re{P(1)},

Om—2 =— 2726{67"}0’,71.‘1 — Om

Un+l:07
m=n+1,n,---,2 (5

III. ZERO LOCATION RULES
Zero location rules for the algorithm detailed in the previous section
are presented in this section. in the form of three theorems that
consider the solution in ascending degree of generality.
Theorem 1 (Stability Criterion): Necessary and sufficient condi-
tions for P(z) to have a« = n IUC zeros are that all F,,(1) are
of a same sign (the sign of Re{P(1)}), viz.,

Sgn{F,(1)} = Sgn{Re{P(1)}} m=n,n—1,---,0. (6)

The theorem also implicitly states that regularity is a necessary con-
ditions for P(z) to have only IUC zeros. Occurrence of a frn—~1,0 =
0 implies o < n. Similarly, a Sgn{F,.(1)} # SgnRe{P(1)}
condition implies too that the polynomial is not stable. For stability
testing it is worthy to incorporate the evaluation of F,,(1) into the
recursion. This way, the procedure may be interrupted with the first
indication of instability.

Theorem 2 (No Structural Singularity): When no structural singu-
larity has been observed, P(z) has « = n — v, IUC zeros, no
UC zeros and v = v, OUC where v,, denotes the number of sign
variations (“Var”) in the subsequent sequence of real numbers,

vn = Var{F, (1), Fu_1(1),---, F1(1), Fo}. Q)

Theorem 3 (General Case): In the most general case P(z) may
have 5 UC zeros given by

B=2v, —s

where s is the degree that feature the first occurrence of a Fis_1(z) =
0 (s = 0 stands for no structural singularities), and

vs = Var{Fs(1),F;—1(1),++, F1(1), Fo} 8)
a IUC given by
a=n-—v,
where
vn = Var{F,(1), F1(1),---, F1(1), Fo} ()

and v OUC zeros given by v = n — a — 5.

As a proof for all the previous assertions it will suffice to prove
the next lemma. It will relate them to their counterparts in [7] and
[8) via an auxiliary polynomial

Du(2) = LFaz) + 52~ DFai(2) (10)
where F,(z) and F,,_1(z) are the second and third polynomials
produced by the algorithm of Section II for P(z). Note that D, (1) =
$[P(1) + P(1)"] is real and non zero as requested in [8]. Assume
the algorithm in there yields for D, (z) the sequence {T,.(z) m =
n,--+,0}.

Lemma 1:

a) Tm(z) = F(2) form ==n,---,0

b) D,(z) and P(z) have the same («,(3,7v) count of zero

distribution with respect to the unit circle.

The rest of this section is devoted to proving this Lemma. First it
is apparent that the method in [8] produces for D, (z) the next two
first polynomials.

Tn(z) = [Dn(2) + Dfl(z)] = Fo(2)
Tr—1(z) := [Dn(z) — Dfl(z)]/(z ~ 1) = Faca(2).

(11a)
(11b)
Part (a) of the Lemma follows from the fact that two consecutive

degree polynomials of the three term recursion here and in [8]
determines uniquely the remaining sequence. This fact holds also
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for the occurrence of singularities as they are treated in both cases
identically.

To proceed, we shall express D, (z) in terms of P(z). Using (3)
and (4) one obtains

22Dn(z) = (P(2) 4+ P*(2)) (2 + 651127 4 bpyrz — 6712 — Snt1)
+ (P(z) = P(2))(—" + 22— 1) (12)

where 8,11 = (p;, — po)/(ps + po). Let us write the above as
2D(z) = P(2)A(z) + P*(z)B(z) (13)

where A(z) and B(z) are two second degree polynomials defined by

2A<Z> = —1 —_ 6n+1 + (3+ (Sn+1 — 5;+1)Z

F(—14680)7 (13a)
2B(2) =1~ bni1+ (= 1+ 6nq1 — 6541z
+(1460)7 (13b)

Property 1: The polynomial A(z) has one IUC and one QUC
Zeros.

We apply to A(z) the zero location procedure [8] to prove this
property.

First, since A(1) = 1, the preliminary requirement there is
satisfied. Let the real part, imaginary part and the phase of 6,4,
be denoted by

bagr = 6%+ j67 = |6uqa|e’®. (14)

The procedure in [8] produces for A(z) the next sequence of
symmetric polynomials
To(2)=-2+462 -2 TR(1)=2>0
Ti(z) = 267 + j26" + (26" - j267)z = Ty (1) = 467
To(z) = —4cos(¢s) — 6 = To(1) <0 Vo
It is seen that Var{T>(1), T1(1),75(1)} = 1 for any 6,4,. From
this it follows from the zero location rules in [8] that A(z) has 1

OUC and 1 IUC zero.
Property 2:

[A(2)] > [B(2)]
The part A(1) = B(1) = 1 is apparent from (13). The inequality

may be verified by an evaluation of z~' A(z) and 2~ ' B(z)onz € C.
Let z = exp(jy) then

e TV A(e’Y) =3 — 2cos ¢ — 26" sinw + j2(6% sin v + 67)
e B(e’Y) = —1+ 2cosy — 267 sin g + j2(6% sin v + 67).

forall1# 2€ C, A(1)= B(1). (15)

The two right-hand sides (RHS) have identical imaginary parts.
Concurrently, the difference between the respective real parts is given
by 4(1 ~ cos ), an expression that is positive for all ¥ € (0, 27).
The inequality in Property 2 follows.

Property 3: UC (as well as RP) zeros of P(z) are also zero of
D,,(z) and vice versa.

Assume P(z) has 3 UC zeros and denote by U/5(z) the polynomial
formed by the collection of these zeros. Since Ué(z) = Ug(z) these
are also zeros of P(z). Thus Ugs(2) is a divisor for Froy1(2) Fr(z)
and by properties inherent to the underlying three-term recursion it
is then also a factor of F;,_;(z). Therefore Ugs(z) divides D, (z) by
definition (10). Conversely, let U (=) represent the polynomial of all
UC zeros of Dy (z). Then it is also a factor of D} (z). Therefore, in
view of (11), Ug(z) is a factor common to both F,(z) and F,, ;(z)
and watking the three term recursion one step upward, Ug (z) is a
factor of also Fy,11(z). Consequently by (3) Us(z) is a factor of
(2=1)Fa(2)+ Fny1(2) = (¢ —1)P(z), and as D, (z) is not allowed

to vanish at z = 1, Us(2) is a factor of P(z). Although the next
observation will not be used, it is evident that the above reasoning
equally holds to also show that P(z) and D, (z) share RP of zeros.
It is stressed that the above reasoning also holds for the extreme
situations when Us(2) is of degree n or when P(z) = P¥(z).

In order the prove claim (b) of Lemma 1 we obtain from (13)

2Dy (z)

z P!(z) B(z)
P(z)A(z)

=1 B an)

(16)

and will apply to it the principle of argument with the using of the
above properties to show that the number of IUC zeros of D(z) and
P(z) is equal.

Assume first that D(z) and P(z) have no UC zeros. Then the
mapping of the unit circle by ;(f;j(zz) is well defined and we want
to show that it does not encircle the origin. For this, it suffices to
show that the real part in the RHS of (16) remains positive for all

z =exp(juv) € C. For 1 # z € C we have (using property 2)

Pi(2) B(z)
P(z) A(z)

B(z)

A(z) <1

and the strict inequality guarantees that the real part in the RHS of
(16) is positive. For the value = = 1 A(1) = B(1) but a direct
evaluation of the real part of the RHS of (16) yields

Pi(1)

1+R8{W

}>0 & Re{P(1)} #0

Consequently, adding the assumption in (2) on P(z), it follows that
the mapping of C' by (16) never encircle the origin. Invoking the
principle of argument it follows that zD,, (z) has as many IUC zeros
as P(z)A(z). Therefore, P(z) has a IUC zeros if and only if (iff)
P(2)A(z) has a + 1 IUC zeros (using property 1), iff 2D, (z) has
o+ 1 IUC zeros, iff D,(z) has o TUC zeros. If there are no UC
zeros than both P(z) and D, (z) have v = n — o OUC zeros.

Assume next that 3 > 0 UC zeros are present. Using Property 3,
all UC zeros form a factor Up(z) that is common to P(z), Dy (z)
and P?(z). This factor cancels out from the rational function at both
sides of (16). Let P(z) = P(2)Ups(z) and Du(z) = D(2)Ugs(2).
It is possible to repeat the previous evaluation with P(z) and D(z)
substituting P(z) and D, (z), and show that (I5(z) and therefore)
P(z) has o TUC zeros, iff (D(z) and therefore) Dy (z) has «
IUC zeros. This time because there are UC zeros, the resulting
zero distribution for both P(z) and D, (z) is: a IUC, 8 UC and
v =n—a— 3 OUC zeros. This completes the proof of Lemma 1.

The lemma provides at once a circuitous proof for all the assertions
made for the modified test through corresponding results proven in
[8] and [7].

IV. ADDITIONAL ASPECTS
The current procedure may also be regarded as applying the method
in [8] to the next polynomial

Dusi(2) = (2 - 1)P(2) a7

rather than to P(z). This may be seen by applying the method in [8]
to Dnt1(2) to obtain that the two first polynomials there

Tat1(2) := Dnga(2) + DE (2) = (2 = 1)(P(z) — P(2))
Ta(2) := [Dns1(2) = DE 1 (2)]/(z = 1) = P(2) + P(2)

coincide with the current initiation pair. The situation may be
regarded as follows. After ensuring that P(z) has no zeros at z = 1,
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the current procedure “deliberately” plants a zero at z = 1. Then the
test in [8] is applied to this polynomial that is assured to have a zero
of multiplicity 1 at z = 1. It is easily shown that the latter feature
holds iff T5,+1(1) = 0 but T5,(1) # 0. Such a single UC zero, unlike
other constellations of UC zeros, can not “drift” downward to show
itself later as (part of) a structural singularity. With this property it
also can not make all lower degree polynomials T, (z) vanish at
z = 1, therefore no interference is caused for deducing information
on zeros location from the signs of the T, (1)’s.

Another interesting feature of the current sequence {F.(z)} is
its closer tie to the sequence of polynomials that are formed for
P(z) by the Schur-Cohn and Marden-Jury unit-circle zero location
procedure [3]-[6]. To exhibit this relation, assume a polynomial P(z)
for which a regular recursion obtains {Fy.(2),m = n,---,0} and
let {¢nm(z),m = n,---,0} be the Schur-Cohn sequence of monic
polynomials which are obtained for P(z) starting with a,(z) =
P(z)/p» and proceeding with the recursion

am(z) + kmagn(z) . am(O)
1= |km]? Ak (0).

2am—1(2) =

Regularity implies no UC zeros and the number of OUC and IUC
zeros can be determined by certain rules from the reflection coefficient
parameters k,, (or by other means for a not monic sequence see, e.g.,
[6]). The polynomials in the two sequences {Fy.(2)} and {am(z)}
are related as follows:

Fin(2) = Ymam (2) + i (2) (18)
where 1, are a sequence of complex numbers defined by the
recursion

y _ Um (Iw:n+l = Umt1 km+1) (1 - |km]2)
Ym—1 = -
V’:n - wmkm
L — |kl
1— kn.

Yn =1, Yn_1 =2 19

This relation follows from [9] (after using in there the recursion
for 7m = vm/t?m to show by induction that if v, = v, for
m = n,n — 1 then the same holds for all m). Thus each Fi,(z)
forms the symmetric part of a corresponding scaled Schur-Cohn
polynomial ¥/, a. (2). (In general the zeros of Fi,(z) are not those
of am(2) + a%,(2).) When P(z) is real the relation may be seen
to simplify and the F,,(z) become proportional to a,,(z) + a¥,(z).
(It is shown in [9] that a single-multiplier three-term recursion of
polynomials proportional to the a..(z) + af,(z) is not possible for
a complex P(z).)

One reviewer drew our attention to our reference to [10]. It con-
siders a stability test for real polynomials (only) that too propagates
polynomials proportional to a,(z) + af,(z) but uses a three-term
recursion with two multipliers per recursion step. This test and a
previous stability test referenced in it that it modifies requests twice
the amount of computation of [7] or the current test used for a real
polynomial because our tests have a single-multiplier per recursion
step. In addition they are not truly original because they form two
of several possible choices of two-multiplier three-term recursions
of immittance (“symmetric”) type Schur recursions obtained before
in [9] (for complex polynomials, and in earlier references given
in there for real polynomials) and discarded during the systematic
search in there for the more efficient single-multiplier recursions.
In fact, neither the test in [10], nor the previous test it modifies, are
computationally more efficient than a Schur recursion of polynomials
proportional to a,.(z) that uses a single-multiplier per recursion

step (e.g., Raible’s test and tests in the “B scheme” category in
[6]). This observation is already enough to deny from ([10] its
expected advantage even by comparison to certain Schur recursion
as a candidate for generalization to multidimensional stability testing.
While the fact that, unlike the Schur recursions, [10] is limited
to real polynomials makes it actually an inferior candidate for
multidimensional stability testing by comparison to an appropriate
Schur recursion. Tractable relation of a stability test to the principal
minors of the Schur matrix has been assumed during the last two
decades as an important asset for using it as a basis for an efficient
multidimensional stability tests because it allows the immediate
adoption of a simplification that Siljak introduced to the field for
testing positivity of a Schur polynomial matrix [11]. However by
developing new solutions directly to the needs of the problem under
consideration instead of forcing on it older available results, it can
be shown that any of the immittance stability tests in [7] and [8]
and the current test, renders a simple 2-D stability test with inherent
Siljak-type simplification without a reference to Schur minors or to
Siljak’s result [12]-[14].

The current and the original forms of the test involve a comparable
number of elementary arithmetic operations. There is an approximate
trade-off between the current extra recursion step and the pre-scaling
in the original form. For real polynomials the one recursion step
less represent a slight advantage for the original form. The current
form is preferable for handling certain generalized applications. For
example, it may be simpler to test a polynomial with some literal
coefficients or coefficients dependent on more parameters in order
to obtain stability constrains on the free parameters. Situations of
this type of applications arise e.g., in feedback control of linear
shift invariant systems. It may also simplify stability testing that
involves polynomials whose coefficients are function of secondary
variables. An application of this type is obtaining stability conditions
for multidimensional systems [14].
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