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ABSTRACT

We use the so called reflection coefficients (RC) to examine, review, and classify the Schur-Cohn
and Marden-Jury (SCMJ) class of tests for determining zero location of a discrete-time system
polynomial with respect to the unit circle. These parameters are taken as a platform to propose a
partition of the SCMJ class into four useful type of schemes. The four types differ in the sequence
of polynomials (i.e. the ‘table’) they associate with the tested polynomials by scaling factors: (A) a
sequence of monic polynomials, (B) a sequence of least arithmetic operations, (C) a sequence that
produces the principal minors of the Schur-Cohn matrix and (D) a sequence that avoids division
arithmetic. A direct derivation of a zero location rule in terms of the RC is first provided and then
used to track a proper zero location rule in terms of the leading coefficients of the polynomials of
the B, C and D scheme prototypes. We review many of the published stability tests in the SCMJ
class and show that each can be sorted into one of these four types. This process is instrumental
in extending some of the tests from stability conditions to zero location, from real to complex
polynomial, in providing a proof to tests stated without a proof, or in correcting some inaccuracies.
Another interesting outcome of the current approach is that a by product of the developing a zero
location rule for the C-type test is one more proof for the relation between the zero location of a
polynomial and the inertia of its Schur-Cohn matrix.

1. INTRODUCTION

The condition of stability for linear discrete shift invariant systems corresponds to necessary and
sufficient conditions for the zeros of the system’s polynomial (its characteristic equation) to lie inside
the unit-circle in the z-plane. Consider a polynomial of degree n with complex coefficients

p(z) =
n∑

i=0

piz
i (1)

and call it stable if it has all its zeros inside the unit-circle. Algebraic stability tests for discrete
systems are methods that determine in some finite number of arithmetic operations whether a
characteristic polynomial of a system is stable. Zero location tests extend this problem to also
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counting the number of zeros of the polynomial inside the unit-circle (IUC), on the unit-circle (UC)
and outside the unit-circle (OUC).

The first direct algebraic criterion for unit-circle stability is due to Schur [1], and its extension
to zero location to Cohn [2]. Assume a polynomial fm(z) of degree m, its conjugate, reverse, and
reciprocal (conjugate-reverse) polynomials will be denoted by

fm(z) =
m∑

i=0

fm,iz
i , f̄m(z) :=

m∑
i=0

f?
m,iz

i , fr
m(z) :=

m∑
i=0

fm,m−iz
i , f ]

m(z) := f̄r
m(z) . (2)

respectively ( ? will denote complex conjugation). Cohn provided an algorithm to implement his
zero location criterion. Given a polynomial p(z) he proposed to construct a sequence of polynomials
{fm(z)} of descending degrees m = n, n−1, . . . , 1, 0, starting with fn(z) = p(z) then form = n, . . . , 1
applying the following recursion:

fm−1(z) =

{
1
z [fm(z)− fm,0

f?
m,m

f ]
m(z)] for |fm,m| > |fm,0|

fm(z)− fm,m

f?
m,0

f ]
m(z) for |fm,m| < |fm,0|

(3)

The information on the number of IUC and OUC may be obtained from the changes between the
two types of recursions [2] (A recent account and a new proof is available in [3, Example 2.2]).

The Schur-Cohn test in the form it is more familiar today is the growth of a modification
devised to Cohn’s setting by Marden [4, 5]. Subsequently, Marden’s approach has been advanced in
several stability table forms by Jury and other system theory researchers [6-19]. Marden’s scheme
avoids switching between two modes as in (3) when the polynomial has both IUC and OUC zeros.
Instead the recursion retains a uniform structure viz.,

fm−1(z) = f?
m,0fm(z)− fm,mf

]
m(z) , fn(z) = p(z)

The information on the number of IUC and OUC zeros is obtained from the relative magnitudes of
fm,m and fm,0 in a manner that will be shortly detailed.

In digital signal processing applications, stability testing is better known by an approach that
comes from its own yard and terminology. There, a polynomial is determined as stable if (and only
if) its “reflection coefficients” are all with moduli less than unity. The “reflection coefficient” are
parameters that celebrate in several digital signal processing models [20] that may be associated
with solving a Toeplitz set of equations by the Levinson algorithm [21].

It will turn out that most of the tests available today that stem from the works of Schur,
Cohn and Marden, can be regarded as associating the tested polynomial p(z) by a sequence {fm(z)}
formed by a recursion that obey the following form

zfm−1(z) = ψm{fm(z) + kmf
]
m(z)} , km = − fm,0

f?
m,m

(4)

Here the km will be shortly identified as the aforementioned reflection coefficients (RC) and ψm’s
represent some non-zero (real or complex) numbers. Different tests may be the result of the choice
of ψm, or in operating a reversion or conjugation (or both) at either or both sides of (4). Further
differences may be caused by the initiation of the recursions. Namely, fn(z) may be taken to be
p(z), or pr(z), or p̄(z), or p](z) (where a demand to begin with a monic p(z)/pn may also imposed
sometimes). We shall refer to the class of tests that may be described by (4) within all above listed
variations as the Schur-Cohn Marden-Jury (SCMJ) class. A typical stability or zero location test
consists of a specific sequence {fm(z)} in the SCMJ and a rule to determine zero location from a
subset of n or n+1 distinguished entries from the array fi,j of coefficients. The distinguished can be
conveniently arranged to be real even for complex polynomial. A long standing tradition has been
to lay out the entries fi,j in a tabular array. We shall therefore interchangeable refer to a member
of the SCMJ class also as a (stability-) ‘table’. The zero location rules depend on the signs of the
distinguished entries. The number of IUC or OUC zeros are usually given by either the count of the
number of negative or positive entries or by the number of signs variations or sign consistencies in
an (ordered) sequence of distinguished entries. The scaling factors ψm and the remaining possible
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variations that differentiate one test in the SCMJ class from another often have an intricate effect
on the proper form of an accompanying stability and zero location rule for each individual test. A
valid zero location rules turns out to be in particular prone to error because it is more sensitive to
the accumulating effects of sign changes.

We would like to draw attention to a peculiar outcome of our definition of the SCMJ class by
which Cohn’s scheme does not belong actually to the SCMJ class (unless one’s interest is restricted
to just stability conditions). The main difference between Cohn’s original scheme and the SCMJ
class we defined may be described as follows. The “reflection coefficients” in Cohn’s recursions
(momentarily referring so to the fractions that appear in (3)) are always with moduli less than
unity, while the recursion is switching between the indicated two modes. In difference, in the SCMJ
recursions (4), the recursions retain a uniform structure and instead the km’s are allowed to take
both km < 1 and km > 1 values. The information on distribution of zeros with respect to the unit
circle in the SCMJ class is held in the moduli of the km’s rather than in Cohn’s variations of the
structure of the recursion.

It is worthwhile to clarify that other tests to determine zero location with respect to the unit
circle are available today that do not conform to the SCMJ class. The recent class of “immittance”
tests [22, 23, 24] is notable as alternative approach that also offers a lower count of arithmetic
operations than the lowest count of operations that is achievable within the SCMJ class (the type
B tests) by approximately a factor of two.

The set of reflection coefficients of a polynomial are the central theme around which this
paper revolves. This choice is motivated beyond their popularity in signal processing, by also their
following properties pertinent to our classification goals:

(1) The RC of a given polynomial can be easily determined and they normally contain all
(actually more than) the necessary information on the number of zeros of the polynomial inside and
outside the unit-circle.

(2) The RC are offer for the parametrization of the SCMJ class a set of parameters that is
not affected by scaling and other possible twists that distinguish the many versions of tests in the
SCMJ class.

It will soon become evident that for a polynomial’s zero distribution the information of only the
relative magnitudes of the RC with respect to unity of a given ordered sequence of RC is sufficient.
The remaining information - knowing the actual numerical values of the RC - represent the equivalent
of knowing the exact numerical values of the zeros of the polynomial.

First we state and bring a direct proof for the rule to determine the number of IUC and
OUC zeros of a polynomial from its given sequence of RC. Then we focus on four choices of scaling
parameters ψm that represent interesting schemes in the SCMJ class that we define as prototypes A,
B, C, and D. We maintain a quite broad generality of treatment by always considering zero location
rule, and not just stability conditions, and in always considering the polynomial to have complex
coefficients. However as the paper uses the reflection coefficients to classify the SCMJ class, the
scope of zero location generality is limited by the assumption that the set of RC is well defined. It
should be said that it is always possible to determine the distribution of zeros of any polynomial with
respect to the unit circle also in complementary cases that do not yield a well defined and unique set
of RC. How this can be done has been too shown already by Cohn and some of the reviewed tests
contain also treatment of these singular (or pseudo singular) cases. The assumption that the RC
are well defined will be referred to as strong regularity and will be characterized in several related
equivalent conditions.

The four types of SCMJ zero location schemes that are defined are as follows. The first
scheme associates the tested polynomial with a sequence {am(z)} of monic polynomial and is la-
beled “Scheme A”. The sequence {am(z)} serves as a reference to all other sequences. It is also used
to derive the relations between RC and the principal minors of the Schur-Cohn matrix. The second
“Prototype B” procedure produces a sequence {bm(z)} that corresponds to choosing the scalars in
(4) ψm = 1 for m ≤ n − 1. It represent the lowest arithmetic count algorithms in the SCMJ class.
An example of a “Type B” test is Raible’s test [11]. The third “Type C” schemes generates n distin-
guished entries that produces (or relate up to sign) to the Schur-Cohn determinants. In particular,
the C-prototype algorithm produces a sequence denoted by {cm(z)} whose leading coefficients are
equal to the principal minors of the Schur-Cohn matrix. “Type C” schemes in the literature were
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advanced by Jury in several version [8, 7, 13, 14]. We presented this part of the current paper in
a recent symposium dedicated to Professor Jury [25]. Type C schemes are considered important
in obtaining stability tests for two-dimensional systems and they perform better in finite precision
arithmetic. The fourth and last “prototype D” scheme generates a sequence {dm(z)} while avoiding
the arithmetic operation of division. “Division-free” schemes of “Type D” available in the literature
include the tests in [6, 10] and in [12, 16]. This form may be useful in applications that involve
testing polynomials with coefficients that depend on parameters when it is of advantage to avoid
divisions and remain with polynomial (rather than rational function) coefficients.

The uniform parametrization of the SCMJ class also turn to be helpful during a subsequent
review of test published in the literature to sometimes support theorems stated without proof, or
at times provide missing zero location rules or correct zero location rules when not stated properly.
Since we consider polynomial with complex coefficient a complex version for tests proposed for only
real polynomials also become at once apparent.

In the course of deriving the zero location rule for the scheme C prototype algorithm, we
actually provide a yet another proof to the celebrated Schur-Cohn theorem on the relation between
the number of positive and negative eigenvalues of the Schur-Cohn matrix and the number of zeros
of the polynomial inside and outside the unit circle. The specialty of this proof is that its starting
point is the zero location rule proved first on the RC is then used through relations between unit
triangular (Cholesky) factorizations of the Schur-Cohn and Toeplitz matrices to achieve the sought
proof (cf. [26]).

The outline of the paper is as follows. The zero location criterion in terms of the set of RC
is derived in the next section. This section associates the tested polynomial with a monic sequence
of polynomials that is labeled Algorithm A. Section 2 also contains the expression for the principal
minors of the Schur-Cohn matrix in terms of the RC. The subsequent sections 3, 4, and 5 are devoted
to the Type B, Type C and Type D schemes, respectively. The presentation of each prototype is
followed by reviewing tests in the literature that belong to that type and is also accompanied by a
simple numerical demonstration.

2. REFLECTION COEFFICIENTS AND ZERO COUNTING

Schur [1] and Cohn [2] associated with the polynomial p(z) a Hermitian form such that, provided
that all its squares are non-zero, then its number of positive and negative squares provide the number
of IUC and OUC zeros (see e.g. [27]). Fujiwara [28] (see also [27]) showed that the Schur-Cohn
conditions can be posed equivalently on the principal minors of the following n× n matrix

C =

 p?
n 0

p?
n−1

.

.

.
p?
1 · · · p?

n−1 p?
n


 pn pn−1 · · · p1

.

.

.
pn−1

0 pn

−

 p0 0
p1

.

.

.
pn−1 · · · p1 p0

 p?
0 p?

1 · · · p?
n−1

.

.

.
p?
1

0 p?
0


The Schur-Cohn zero location rule was also posed on the determinants of a sequence of n matrices
of sizes 2m× 2m , m = 1, . . . , n (called the Schur-Cohn determinants) and was also given in terms
of a (not Hermitian) 2n × 2n matrix ∆1:2n,1:2n whose sequence of centrally situated sub-matrices
∆m:2n−m,m:2n−m, m = 1, . . . , n have determinants that are equal to the principal minors of C [9] (see
also [18, Theorem 2.6], [19, Theorem 3.11]). The matrix C is refered in the literature as the Schur-
Cohn-Fujiwara matrix or the Hermitian Schur-Cohn matrix (see [18, Theorem 3.2] [19, Theorem
3.13] and [27, Theorem XVa] ).

The term RC stems from their interpretation in modeling lossless layered media in certain
digital signal processing applications that , e.g. in modeling the vocal tract in speech processing or
the earth surface in geophysics (see e.g.[20, 29]). Another name for RC that originates from their
statistical interpretation in approximating a stationary process by an auto-regressive (AR) model is
Partial Correlation (ParCor) coefficients. Common to both interpretations is that they involve the
solution of a set of equations that may be represented in the following normal form

Tn[an,0, an,1, . . . an,n−1, 1]t = [0, . . . , 0, dm]t (6)

where Tn is a Hermitian positive definite Toeplitz matrix of size (n+ 1)× (n+ 1) and the set is to
be solved for the n+1 unknowns {an,i, dn}. An efficient solution to this set of equations is provided
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by Levinson’s algorithm [21]. The Levinson algorithm is a recursive algorithm that includes (in a
polynomial notation) the recursions

am(z) = zam−1(z)− kma
]
m−1(z) (7)

and a formula (that need not concern us here) to compute the km’s - the “RC” - that brings into
the solution the entries of the Toeplitz matrix. The algorithm starts with a0(z) = 1 and is carried
out for m = 1, ..., n. It is seen that the polynomials am(z) =

∑n
0 am,iz

i are all monic, am,m = 1.
Given a polynomial p(z) it is possible to determine its RC (namely to find km’s such that (7)

will produce an(z) = p(z)/pn) by reversing the recursion (7).

Algorithm A. Apply the algorithm

zam−1(z) =
am(z) + kma

]
m(z)

1− |km|2
, km = − am,0

a?
m,m

(8)

with the initiation an(z) = p(z)/pn

Theorem 1. (Zero Location rule by RC.) A polynomial p(z) with a well-defined set of RC
{km , m = 1, . . . , n} has ν OUC zeros (no UC zeros) and n− ν IUC zeros where ν is given by the
number of negative terms in the sequence

ν = n−{qn, qn−1, . . . , q1} (9)

whose members are defined by

qm :=
n∏
m

(1− |ki|2) , m = 1, . . . , n (10)

It is seen that the qm parameters still hold enough information to determine zero location.
These parameters will play an important role in the forthcoming developments. They can more
simply obtained from the sequence of RC by the recursion:

qm = qm+1(1− |km|2) , qn+1 := 1 m = n, n− 1, . . . , 1. (11)

We prove Theorem 1 in the appendix. The proof is obtained by invoking the Principle of Argument
on the recursions (7).

Remark 1. The immediate corollary of Theorem 1 that necessary and sufficient conditions for sta-
bility (i.e. ν = 0) are

|km| < 1 , m = 1, . . . , n ,

is very familiar result in digital signal processing applications where the km’s are also serve as gains
in a lattice realization of the all pole filter 1/an(z) (e.g. [20]).

We define Algorithm A together with the zero location rule given by Theorem 1 as our “Scheme
A” in the SCMJ class .

The relation of Algorithm A to the Levinson recursions motivates the use of the term RC also
in the context of the SCMJ class of stability and zero location. It is clear from (8) that the sequence
of the RC of a polynomial is not affected by the possible scaling factors in (4). Consequently the
RC in conjunction with Theorem 1 form convenient tools for tracking properly zero location rules
for other algorithms in the SCMJ class.

Definition 1. Strong Regularity. A polynomial p(z) is said to satisfy conditions of strong regular-
ity if Algorithm A (or any other test in the SCMJ class) does not encounter a premature termination
(and hence produces a well defined set of n RC)
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Remark 2. The condition that causes the recursion to terminate prematurely is the occurrence of a
km such that |km| = 1. The offense in general is not the division by [1−|km|2] apparent in Algorithm
A but that a subsequent km−1 = −fm−1,0/f

?
m−1,m−1 is not well defined when fm−1,m−1 = 0 and an

fm−1,m−1 = 0 is necessarily preceded by, and always follows a, |km| = 1. This is seen by reading
from (4) that

fm−1,m−1 = ψm(fm,m − kmf
?
m,0) = ψmfm,m(1− |km|2) .

Several equivalent conditions for strong regularity will be given in Theorem 2 below. Strong
regularity will be presumed throughout in this paper.

Fujiwara who contributed the expression (5) for the Schur-Cohn matrix also showed that a
generating function for C = [ci,j ] is given by

C(z, w) =
p](z)pr(w)− p(z)p̄(w)

1− zw
=

n−1∑
i,j=0

ci,jz
iwj (12)

In more modern terminology C(z, w) is sometimes referred to as a generating function for T-
Bezoutian (a Bezoutian with respect to the unit circle). The T-Bezoutians and the former Bezoutians
with respect to a line may be treated in a unified manner [3].

The relations between the principal minors of the Schur-Cohn matrix and the reflection coef-
ficients will be obtained by using a couple of results known in the context of the Levinson algorithm
and the inversion of Toeplitz matrices. First it may be noticed from the nested structure of the
Levinson algorithm that the Levinson algorithm provides in fact a solutions to all normal sets of
equations of the form (6) defined by all the submatrices Tm, m = 0, 1, . . . , n. This observation
implies that the Levinson algorithm creates a UDL triangular factorization for the inverse of Tn,
viz.,

T−1
n = AnΛ−1

n AH
n (13)

where

An =


1 a1,0 · · · an−1,0 an,0

0 1 · · · an−1,1 an,1

...
...

...
...

0 0 · · · 1 an,n−1

0 0 · · · 0 1

 , (13a)

the superscript H denotes conjugate transpose, and Λn is the diagonal matrix

Λn = diag[1 , λ1 , . . . , λn] ; λm =
m∏

i=1

(1− |ki|2) . (13b)

The second result that we shall use is a formula due to Gohberg and Semencul [30] that allows
the expression of the inverse of a Toeplitz matrix T−1

n in terms of just the coefficients of an(z).

T−1
n =

1
λn


a?

n,n 0
a?

n,n−1
...
a?

n,0 · · · a?
n,n−1 a?

n,n



an,n an,n−1 · · · an,0

...
an,n−1

0 an,n

−

− 1
λn


0 0
an,0
...
an,n−1 · · · an,0 0




0 a?
n,0 · · · a?

n,n−1
...

a?
n,0

0 0

 (14)

This formula indicates that a generating function for Rn := T−1
n is given by (compare to (12) and

(5))

Rn(z, w) =
1
λn

a]
n(z)ar

n(w)− zwan(z)ān(w)
(1− zw)

(15)
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The relation of the Schur-Cohn matrix for p(z) and the Schur-Cohn matrix Ĉ for the corre-
sponding monic polynomial an(z) = p(z)/pn is seen from (5) to be

C = |pn|2Ĉ (16)

and the generating function for Ĉ is, (12),

Ĉ(z, w) =
a]

n(z)ar
n(w)− an(z)ān(w)

1− zw
(17)

Next, the recursion (8) can be used to obtain the identity

a]
n(z)ar

n(w)− an(z)ān(w) = (1− |kn|2)[a]
n−1(z)a

r
n−1(w)− zwan−1(z)ān−1(w)] .

Set this identity in the generating functions (17) for C and compare the result with the generating
function (15) for Rn−1 = T−1

n−1 to find that

Ĉ(z, w) = λnRn−1(z, w)

Thus the next relation between the monic SC matrix and inverse of the n × n Toeplitz matrix
becomes evident.

1
λn

Ĉ = T−1
n−1 (18)

We proceed to use this relation to connect the minors of the Schur-Cohn matrix with the RC.
Toward this goal, first observe from (5) that the Schur-Cohn matrix is centro-Hermitian, i.e. has the
property JCJ = C where J denotes a matrix with 1’s along the anti-diagonal and zeros elsewhere
(the reversion matrix). The UDL triangular factorization (13) implies through (18) and the centro-
Hermitian symmetry the following LDU triangular factorization for Ĉ,

Ĉ = Bn−1Qn−1BH
n−1 (19)

where

Bn−1 = JAn−1J =


1 0 · · · 0 0
an−1,n−2 1 · · · 0 0
...

...
...

...
an−1,1 an−2,1 · · · 1 0
an−1,0 an−2,0 · · · a1,0 1

 (19a)

and
Qn−1 = diag[qn , qn−1 , . . . , q1] ; qi =

λn

λi−1
, i = 1, . . . , n . (19b)

It is noticed that these qm’s are indeed identical to the qm’s as defined before in (10). The im-
plicit assumption that the underlying Schur-Cohn and Toeplitz (sub-) matrices are invertible follows
from the strong regularity assumption. In fact we may at this point summarize several equivalent
conditions for strong regularity.

Theorem 2. (Strong Regularity.)
The following conditions are equivalent

(i) The set of RC are well defined (strong regularity according to Definition 1).

(ii) All the leading principal minors of C are different from zero.

(iii) All the leading principal minors of Tn are different from zero.

(iv) All |km| 6= 1 m = 1, . . . , n

Proof. The equivalencies (ii) ⇔ (iii) ⇔ (iv) are apparent from factorizations (13) and (19). The
equivalence (i) ⇔ (iv) was explained already in Remark 1. Q.E.D.
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Remark 3. Strong regularity implies that the degree η of the greatest common divisor of p(z) and
p](z) is η = 0. In particular it implies that p(z) has no UC zeros. However, although η = 0
is sufficient for no UC zeros, and for non-singularity of the matrices Tn and C, it is still not a
sufficient condition for strong regularity.

It is sufficient to recognize the factorization (19) as a congruency relation between Ĉ and Q in
order to conclude that the two matrices have the same number of positive and negative eigenvalues
(the same inertia). The eigenvalues of the diagonal matrix Q are the qm’s. The number of positive
and negative qm’s were shown in Theorem 1 to give the number of IUC and OUC zeros of p(z).
Thus proof for Theorem 1 in combination with the factorization (19) provides a new proof to the
Schur-Cohn criterion.

Theorem 3. (Schur-Cohn.) If all the leading principal minors of the Schur-Cohn matrix for
p(z), C, are different from zero then the number OUC and IUC zeros of polynomial p(z), ν and
n− ν, are equal to the number of negative and positive eigenvalues of C, respectively.

We proceed to examine in finer detail the factorization (19) in order to obtain explicit expres-
sion for the principle minors of C in terms of the RC. Denote the principal minors of C by

µm := det{C0:m−1} ,m = 1, . . . , n (20)

where the C0:l−1 represents the l × l leading submatrix of C (our count of rows and columns of
matrices begin with i = j = 0).

Theorem 4. (Minors of C in terms of {km}.) Consider p(z) its Schur-Cohn matrix C and as-
sume strong regularity.

(i) The principal minors of C are related to the set of RC by

µm = |pn|2m
n∏

i=n+1−m

qi , m = 1, . . . , n (21)

(ii) The polynomial p(z) has ν OUC and n− ν IUC zeros with

ν = V ar{1, µ1, µ2, . . . , µn} (22)

where V ar denotes the number of sign variations in the indicated sequence.

Proof. The lower upper unit triangular factorization (19) implies that the principal minors µ̂m of
Ĉ are given by

µ̂m =
n∏

i=n+1−m

qi , m = 1, . . . , n (23)

Consequently (21) follows from (16). Noticing that µm/µm+1 = qn−m, the rule (9) of Theorem 1
can be written as

ν = n−{µ1,
µ2

µ1
, . . . ,

µn

µn−1
} (24)

It remains to realize that (22) and (24) are equivalent. Q.E.D.

Example 1. Consider the polynomial

p(z) = p(z) = 4 + 12.5z + 5z2 + z3

that can be checked numerically to have 2 OUC and 1 IUC zero. The sequence {am(z)} consists of
a3(z) = p(z)

a2(z) = 0.5 + 3z + z2 , a1(z) = 2 + z , a0(z) = 1
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The RC are
k1 = −2 , k2 = −0.5 , k3 = −4

Thus the qm parameters (11)

q3 = −15 , q2 = −11.25 , q1 = 33.75

Then according to the rule (9)
#OUC = n−{q3, q2, q1} = 2

The Schur-Cohn matrix is

C =

 −15 −45 −7.5
−45 −146.25 −45
−7.5 −45 −15


The principal minors of C are indeed µ1 = −15 (= q3), µ2 = 168.75 (= q3q2) and µ3 = 5695.3 (=
q3q2q1). According to the rule in the Theorem 4,

#OUC = V ar{1,−15, 168.75, 5695.3} = 2

In difference from some concluding remarks in [26] the number of OUC zeros is not given by the
number of sign variation of the principal minors of C (V ar{−15, 168.75, 5695.3} = 1 in this example)
nor by the principal minors of Tn−1 or its inverse . In fact the signs of the principle minors of C
and T−1

n−1 is affected by the appearance of λn in (18) and λn may be negative.

3. Schemes of Type B

It is possible to restrict somewhat the range of relevant scalars ψm in the search after tests of merit
in the SCMJ class without a danger of missing interesting cases by a cautious inspection on its
structure. For example, when testing a real polynomial there is clearly no point in allowing complex
ψm to complicate the recursion. More generally, the structure of (4) possesses the property that if
fn−1,n−1 is real then all subsequent fm,m , m ≤ n− 1 stay real as long as the ψm’s , m ≤ n− 1 are
real. It is possible to exploit this property by insisting on ψn = f?

n,n,

zfn−1(z) = f?
n,n[fn(z) + knf

]
n(z)] , fn(z) = p(z) . (25)

so that fn−1,n−1 = |fn,n|2(1−|kn|2) is indeed real (and perceives part of the information on kn that
is acute for finding zero location) and afterwards by restricting the subsequent ψm’s to be real. As
will be seen the fm,m form the distinguished entries in terms of which the zero location rules are
given so that being real simplify these rules. All the tests of interest in the SCMJ class are featured
by distinguished entries that are real.

3.1. Type B: Basic Form

This form correspond to choosing ψn = p?
n and ψm = 1 for all m ≤ n− 1.

Algorithm B Initiation:
zbn−1(z) = p?

np(z)− p0p(z) (B1)

For m = n− 1, . . . , 1 do:

zbm−1(z) = bm(z) + kmb
]
m(z) , kn = − bm,0

b?m,m

(26)

[Alternative possible initiations are (1) to first normalize to monic the tested polynomial,

bn(z) =
1
pn
p(z) (B2)

9
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and (2) when the leading coefficient pn is real it is also possible to start the recursions
with

bn(z) =
{

p(z) if pn > 0
−p(z) if pn < 0 (B3)

For these two alternative initiations (26) may be used for already m = n.]

Theorem 5. (Zero location for Algorithm B) If Algorithm B does not terminate prematurely
then p(z) has ν OUC and n− ν IUC zeros where ν is given by

ν = n−{bn−1,n−1, bn−2,n−2, . . . , b1,1, b0,0} (27)

Proof. From (26)

bm−1,m−1 = bm,m + kmb
?
m,0 = bm,m(1− |km|2) , m ≤ n− 1

By comparison with (11) obtain that

bm−1,m−1 = bm,mqm

in which for (B1) assume bn,n = |pn|2, for (B2) bn,n = 1, and for (B3) bn,n = |pn|. Thus for any of
the three initiations the stated rule follows from (9) of Theorem 1. Q.E.D.

Example 1 (cont’d) [part b]. Consider again p(z) = 4+12.5z+5z2 +z3. Algorithm B produces
a sequence that consists of b3(z) = p(z),

b2(z) = −7.5− 45z − 15z2 , b1(z) = −22.5− 11.25z , b0(z) = 33.75

Indeed,
#OUC = n−{−15,−11.25, 33.75} = 2

Type B schemes are special in offering the least number of operations in the SCMJ class - just
n2 + O(n) operations as compared to 2n2 + O(n) for tests of type A or for the later type D, and
3n2 +O(n) for the next type C tests.

Since in the rest of the paper we shall review many tests published in the literature we at this
point define the convention that we shall follow in converting tests that have appeared in a ‘table’
form to the more compact polynomial notation that we use.

Remark 4. (Conversion Convention for Tables.) SCMJ tests often were published in tabular
forms. Usually the format is (format a:) n+ 1 pairs of rows (the second row in each pair being the
reversed conjugate of the first) Else, (format b:) the table consists of just n+ 1 rows (omitting the
reverted rows). We shall regard these tables as forming the coefficients of a sequence of polynomials
{fm(z)} by the following conversion convention. We shall associate the first, third, fifth, ... in format
(a) or the first, second, third, ... in format (b) with the polynomials fn(z), fn−1(z), fn−2(z) by post
multiplying each row by a vector of powers [1, z, z2, . . .]t of a corresponding equal length.

3.2. Type B: Raible’s version

Raible proposed in [11] a test for real polynomials p(z) that may be presented by the algorithm:

fm−1(z) = fm(z)− ξmf
r
m(z) , ξm =

fm,m

fm,0
, ; fn(z) = pr(z) (28)

Assuming pn > 0, Raible provided the rule that the number of OUC zeros is given by

n−{fn−1,0, fn−2,0, . . . f0,0} (29)

The above recursion is comparable with the reversion (or the “reciprocation” see Remark 5
below) of the recursion in Algorithm B (26):

brm−1(z) = brm(z) + kmb̄m(z)

10
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by the identifications
fm(z) = brm(z) , ξm = −km

Consequently as a corollary from Theorem 5 one has the following extension to complex polynomial
of the test.

Corollary 1. (Complex form for Raible’s version) . Apply to a polynomial p(z) the next al-
gorithm. Initiation:

fn−1(z) = p?
np

r(z)− p0p̄(z) (R0)

For m = n− 1, . . . , 1 do:

fm−1(z) = fm(z)− ξmf
]
m(z) , ξm =

fm,m

fm,0
(30)

[Alternative valid initiations include fn(z) = 1
pn
p](z) or, when pn is real, also 2)

fn(z) =
{

pr(z) if pn > 0
−pr(z) if pn < 0

and for these alternative the recursion holds also for m = n.]
Provided the algorithm does not terminate prematurely, the number of OUC and IUC zeros are

ν and n− ν where
ν = n−{fn−1,0, fn−2,0, . . . , f0,0}

Remark 5. We “extrapolate” Raible’s test from a real p(z) to a complex p(z). In any situation
of this kind there is more than one way to do so. A dual extension form could identify (28) with
the reciprocation of (26) such that fm(z) = b]m(z) and ξm = −k?

m and consider the initiations to
correspond to fn(z) = p](z) . The zero location rule for this dual form is the same since the fm,0’s
remain real.

4. Schemes of Type C

The goal in this section is to obtain an algorithm in the SCMJ class that produces a sequence whose
leading coefficients are the principal minors of the Schur-Cohn matrix. For the derivation process it
is convenient to define one more set of auxiliary parameters that is related to the RC through the
qm’s (10) by

em :=
n∏

i=m

qi ; em = em+1qm , en+1 := 1 , m = n, . . . , 1 (31)

The sequence {em} may be seen from (23) to represent the principal minors of the Ĉ in reversed
order,

µ̂m = en+1−m (32)

Assume there exists a recursible set of scalars ψm for which (4), or (25) produces a sequence
{cm(z)} with the property cm(z) = em+1am(z) where {am(z)} is the monic sequence. Assume,
momentarily, that the algorithm starts with cn(z) = an(z). Then cn−1,n−1 = ψn(1− |kn|2) and for
the choice ψn = 1 we get cn−1,n−1 = en . At the next step, cn−2,n−2 = ψn−1(1− |kn|2)(1− |kn−1|2)
and cn−2,n−2 = en−1 is again possible for the choice ψn−1 = (1− |kn|2) = cn−1,n−1. Seemingly the
pattern is that the choice

ψn+1−i = cn+1−i,n+1−i/cn+2−i,n+2−i yields cn−i,n−i = en+1−i (33)

We verify this pattern by an induction step. Suppose the assertion in (33) holds for cn−i,n−i’s till
i = 1, . . . , l. Then at the next step, cn−l−1,n−l−1 = ψn−lqn−lcn−l,n−l, indeed reduces for the choice
ψn−l = cn−l,n−l/cn+1−l,n+1−l, to cn−l−1,n−l−1 = en−l.

11



REFLECTIONS ON SCHUR-COHN MATRICES AND JURY-MARDEN TABLES

This completes the proof that the choosing

ψn = 1 ; ψn−1 = cn−1,n−1 ; ψm =
cm,m

cm+1,m+1
; m ≤ n− 2 (34)

yields, for the initiation cn(z) = p(z)/pn, a sequence of polynomials {cm(z)} such that

cm(z) = em+1am(z) and cm,m = em+1 = µ̂n−m (35)

The sought algorithm emerges after removing the restriction to monic initiation to be as follows.

4.1. Type C : Basic Form

The basic algorithm for Type C schemes is as follows.

Algorithm C. Initiation:

zcn−1(z) = p?
np(z)− p0p

](z) (C1)

For m = n− 1, . . . , 1 do:

zcm−1(z) = φm{cm,mcm(z)− cm,0c
]
m(z)} (36)

with φm given by

φn−1 = 1 ; φm =
1

cm+1,m+1
, m = n− 2, n− 3, . . . , 1

Theorem 6. (Zero location for Algorithm C.) If Algorithm C does not terminate prematurely
then p(z) has ν OUC and n− ν IUC zeros where ν is given by

ν = V ar{1, cn−1,n−1, cn−2,n−2 , . . . , c0,0} (37)

Proof. For the initiation with a monic polynomial we obtained the relation (35). The definition
of the em’s in combination with the rule (9) implies that

ν = V ar{1, en, en−1 , . . . , e1} (38)

For the more general initiation (C1) the relation (35) starts instead with cn−1(z) = |pn|2an−1(z)
and subsequently

cm−1,m−1 = (|pn|2)n+1−mem , m = 1, . . . , n (39)
Thus (38) implies the stated rule. Q.E.D.

Algorithm C also achieves the goal of producing the principal minors of the Schur-Cohn matrix.
(Initiations other then (C1) similar to those proposed before for Algorithm B will also lead to the
rule (37) but will miss the identification of cm,m with the minors of C stated below.) The property
is summarized as follows.

Theorem 7. (Algorithm C and the Minors of the matrix C.) The leading coefficients of the
sequence of polynomials produced by Algorithm C (with initiation (C1)) form the principal minors
of the Schur-Cohn matrix C of p(z), as follows.

cm,m = µn−m where µm+1 := det{C0:m} , m = 0, . . . , n− 1 (40)

Proof. Immediate from (31), (39) and (21). Q.E.D.

Example 1 (cont’d) [part c] Consider again p(z) = 4+12.5z+5z2+z3. The algorithm constructs

c3(z) = p(z) ; c2(z) = −7.5− 45z − 15z2 ;

c1(z) = −33.75 + 168.75z , (φ2 := 1) ; c0(z) = 5695.3 , (φ1 = −1/15)
Evaluate (37) with the requested values

#OUC = V ar{1,−15, 168.75, 5695.3} = 2

Theorem 6 implies for p(z) 2 OUC and 1 IUC zero. The principal minors of the Schur-Cohn matrix
were computed in part (a) of the example. The comparison shows that the principal minors are
indeed given by : µ1 = c2,2 = −15, µ2 = c1,1 = 168.75 and µ3 = c2,2 = 5695.3, as claimed in
Theorem 7.

12
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4.2. Type C: Jury’s versions

Scheme of type C were advanced by Jury in several occasions. They are considered to be of advantage
in algorithms to test stability of two-dimensional system [13] and to offer better accuracy in finite
arithmetic precision [31]. Two versions are available. An earlier version [17, p. 104] and [7] that
considers only real polynomials and a modified version [8, 9, 13, 14] that in [13] also treats complex
polynomials.

4.2.1. Jury’s modified test

The construction rules for the table in [13] may be described in polynomial notation following the
conversion convention of Remark 4 by the algorithm

fm−1(z) =
1
ηm

{fm,0f̄m − f?
m,mf

r
m(z)} , fn(z) = pr(z) (41)

where
ηn = ηn−1 = 1 , ηm = fm+1,0 for m = n− 2, n− 3, . . .

A careful step by step comparison of this recursion with Algorithm C (36) reveals the following
relations with the C-prototype polynomials

fn−2i(z) = crn−2i(z) , fn−2i+1(z) = c]n−2i+1(z) , i = 0, 1, 2, . . .

In the above use is made of the fact that fm,0 = cm,m are real for m ≤ n − 1. The distinguished
entries that in [13, 14] are denoted by ∆m correspond in the current notation to fn−m,0. and
therefore

∆n−m = fm,0 = cm,m = det{C0:m−1}, , m = 1, 2, . . . , n (42)

where the last equality follows from Theorem 7. This provides a proof for the statement in [13] that
the ∆m form the principal minors of the Schur-Cohn matrix.

Furthermore, Theorem 6 provides a zero location rule for the algorithm (41).

Corollary 2. (Jury’s modified version) Consider the algorithm (41). Provided (41) does not
terminate prematurely, the number of OUC and IUC zeros are ν and n− ν where

ν = V ar{1, fn−1,0, fn−2,0, . . . , f0,0}

References [13] and [14] state without a proof only the stability conditions (that all ∆m =
fm,0 > 0) for this table form. The current proof is different from a proof in an unpublished report
[15] available from the author. Also the zero location rule we deduce for this table here is in
disagreement with the rule proposes in [15] (Part c of example 1 is a ready counterexample that the
number of OUC zeros is not ν = n−{fn−1,0, fn−2,0 . . . , f0,0}).

4.2.2. The earlier version.

The modified version is an enhancement to an earlier version of this table in [17, p. 104] and
[7]. Since theses version consider only real polynomials the extension to complex polynomial is not
unique (recall the earlier remark 5). A possible extension of it to complex polynomials is as follows.

fm−1(z) =
1
ηm

{fm,0f̄m − f?
m,mf

r
m(z)} , fn(z) = p(z) (43)

The seemingly minute change of the initiation by comparison with (41) has a remarkable impact on
the accompanying stability and zero location rules and on the relations of the distinguished entries
to the Schur-Cohn determinants µm. Currently the sequence{fm(z)} can be shown to relate to the
Algorithm C prototype sequence (36) as follows.

fn−2i(z) = c]n−2i(z) , fn−2i+1(z) = −crn−2i+1(z) , i = 1, 2, . . . (44)
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Consequently, the relations with the Schur-Cohn determinants are now

fn−m,0 = (−1)mdet{C0:m−1} ,m = 1, . . . n

The next corollary follow at once.

Corollary 3. (Jury’s earlier version.) Consider the algorithm (43). Provided it does not ter-
minate prematurely, the number of OUC and IUC zeros are ν and n− ν where

ν = V ar{1,−fn−1,0, fn−2,0,−fn−3,0, . . . , (−1)nf0,0}

These results support the stability conditions

fn−2i,0 > 0 , fn−2i+1,0 < 0 , i = 1, 2, . . .

(see e.g. [17, p. 105]) and the relations to the Schur-Cohn determinant provided by Jury [17, p.
105]. The enhancement of the modified version of §4.2.1 over this earlier version is in simpler forms
for the stability conditions and the relations to the principal minors of C.

5. Schemes of Type D

In the first paragraph of section 3 we explained that it suffices to search interesting tests that obey
the recursion (4) with ψn = f?

n,n and real ψm, m < n. It is in particular interesting in this subclass
to examine the association of zero location rule to a recursion like (35),

zfm−1(z) = φm{fm,mfm(z)− fm,0f
]
m(z)} ,

in which with all φm = 1. The specialty of this scheme is that it avoids the operation of division.

5.1. Scheme D : Basic Form

Algorithm D. For m = n− 1, . . . , 1 do:

zdm−1(z) = d?
m,mdm(z)− dm,0d

]
m(z) , dn(z) = p(z) (45)

(dm,m are real for m ≤ n− 1.)

We try to obtain a zero location rule for this algorithm. Comparing the highest power coefficients
gives

dm−1,m−1 = |dm,m|2(1− |km|2) , m = n, n− 1, . . . 1 (46)

Therefore, the leading coefficients {dm,m} are real for all m ≤ n− 1. Furthermore, a step by step
comparison of the dm(z) with am(z) yields

dn−1(z) = |dn,n|2(1− |kn|2)an−1(z) ,

dn−2(z) = |dn−1,n−1|2(1− |kn−1|2)an−2(z) , etc.

The following relations become apparent

qn = (1− |kn|2) =
dn−1,n−1

|dn,n|2

qn−1 = (1− |kn|2)(1− |kn−1|2) =
dn−1,n−1

|dn,n|2
dn−2,n−2

d2
n−1,n−1

=
dn−2,n−2

|dn,n|2dn−1,n−1

qn−2 = qn−1(1− |kn−2|2) =
dn−3,n−3

d2
n−2,n−2

dn−2,n−2

|dn,n|2dn−1,n−1
=

dn−3,n−3

|dn,n|2dn−1,n−1dn−2,n−2

...

qn−i =
dn−i−1,n−i−1

|dn,n|2
∏i

l=1 dn−l,n−l

The above relation provide the key to posing the zero location rule for Algorithm D in terms
of its leading coefficients.
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Theorem 8. (Zero Location for Algorithm D) If Algorithm D does not terminate prematurely
then p(z) has ν OUC and n− ν IUC zeros where ν is given by

ν = n−{gn, gn−1, . . . , g1} , gm :=
n∏

i=m

di−1,i−1 (47)

where the auxiliary parameter gm’s may also be calculated recursively by

gm = dm−1,m−1gm+1 , gn+1 := 1 , m = n, n− 1, . . .

Proof. The rule follows from the basic rule (9) after developing further the expressions obtained
for dm,m in terms of qm’s into the following relations.

gn = |dn,n|2qn , gn−1 = [|dn,n|2]2q2nqn−1 etc.

that is seen to lead to
gn−i = [|dn,n|2]2

i

q2
i

n q
2i−1

n−1 · · · q2n−i+1qn−i

It is possible to obtain from here either a direct expression for gm’s in terms of qm’s

gm = qmq
2
m+1q

22

m+2 · · · q2
n−m

n [|dn,n|2]2
n−m

, m = 1, . . . n . (48)

or alternatively a more compact but recursive relation between these parameters, viz.

gm = g2
m+1qm

Either of these relations makes it clear that sgn{gm} = sgn{qm}. Q.E.D.

Example 1 (cont’d) [part d]. The sequence {dm(z)} produced for p(z) = 4 + 12.5z + 5z2 + z3

consists of d3(z) = p(z) and

d2(z) = −7.5− 45z − 15z2 , d1(z) = −33.75 + 168.75z , d0(z) = −85430

Therefore

g3 = d2,2 = −15 , g2 = d2,2d1,1 = −2531.2 , g1 = d2,2d1,1d0,0 = 2.1624 · 108

Then
#OUC = n−{−15,−2531.2, 2.1624 · 108} = 2

5.2. Type D: Marden’s version

Marden’s original test is a Type D scheme devoid of division[4] (see also [5, Theorem (42,1)] and
[18, Theorem 5.6]).

Marden considers the algorithm

fm−1(z) = f?
m,0fm(z)− fm,mf

]
m(z) , fn(z) = p(z) (49)

which in a step by step identification procedure of Marden’s sequence {fm(z)} with the sequence
{dm(z)} of Algorithm D shows that

fn(z) = dn(z) ; fn−1(z) = −d]
n−1(z) ; fm(z) = d]

m(z) for m = n− 2, n− 3, . . . , 0

Marden then defines the auxiliary parameters

pm =
m∏

i=1

fn−i,n−i , m = 1, . . . , n (50)

which, in our notation (47) corresponds to

pm = −
m∏

i=1

dn−i,n−i = −gn+1−m , m = 1, . . . , n

Consequently Marden’s theorem is reproducible from Theorem 8.
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Corollary 4. (Marden) Consider for a polynomial p(z) the algorithm (51) and define the param-
eters (50) If all the products pk are nonzero then p(z) has π IUC and n− π OUC zeros where

π = n−{p1, p2, . . . .pn} (51)

5.3. Type D: The Maria-Fahmy version

Maria and Fahmy proposed in [10] a table for complex polynomials that relied on the test for real
polynomials that was proposed by Jury and Blanchard in [6] (see same in [17, p. 98]) The table in
[10] converts by our standard convention of Remark 4 to the algorithm

fm−1(z) = fm0f̄m(z)− f?
m,mf

r
m(z) , fn(z) = p(z) (52)

The following relation to the polynomials in the main D-type algorithm may be detected.

fn(z) = dn(z) ; fn−1(z) = −dr
n−1(z)

fn−2i(z) = d]
n−2i(z) ; fn−(2i+1) = dr

n−(2i+1)(z) for i = 1, 2, . . .

For these relations Theorem 8 can be invoked to extend the stability conditions in [10],

fn−1,0 < 0 , fm,m > 0 , m = n− 2, n− 3, . . . , 0

into the next zero location rule.

Corollary 5. (Maria and Fahmy’s version) Consider algorithm (52). If it does not terminate
prematurely define

pm =
m∏

i=1

fn−i,n−i , m = 1, . . . , n .

Then p(z) has π IUC and n− π OUC zeros where

π = n−{p1, p2, . . . .pn} (53)

The fact that the generalization to complex polynomials that Maria and Fahmy obtained using the
real tests in [6] is not identical to Marden’s test although [6] was derived from Marden’s test is again
a demonstration to the mentioned nonunique way that a real test procedure can be extended to
complex polynomials.

5.4. Type D : Chen’s version

The table of Chen with Shan in [12] and with Shiao in [16] translates into the following polynomial
recursion,

zfm−1(z) = fm,mfm(z)− fm,0f
]
m(z) , fn(z) = p(z)/pn ,

They considered only real polynomials and assumed the tested polynomial is first scaled to be monic.
With these constraints the recursion coincides with Algorithm D. They provide the right stability
conditions but their rule for the number of OUC zeros

ν = n−{fn−1,n−1, fn−2,n−2, . . . , f0,0}

is wrong as the next counterexample may illustrate.
Example 2. The polynomial p(z) = 0.5 + 9z + 12z2 + z3 has 1 OUC and 2 IUC zeros. It

is real and monic so that both Algorithm D and Chen’s test associate to it the same sequence of
polynomials: d3 = p(z) and

d2(z) = 3 + 7.5z + 0.75z2 , d1(z) = −16.875− 8.4375z , d0(z) = −213.57

Using (47)

g3 = d2,2 = 0.75 , g2 = d2,2d1,1 = −6.3281 , g1 = d2,2d1,1d0,0 = 1351.5
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Theorem 8 obtains the correct number of OUC zeros

ν = n−{g3, g2, g1} = n−{0.75,−6.3281, 1351.5} = 1

Instead the Chen’s rule suggests that the number of OUC zeros is

n−{d2,2, d1,1, d0,0} = n−{0.75,−8.4375,−213.57} = 2

6. Conclusion

The paper used the reflection coefficient to parametrize the tests in the Schur-Cohn and Marden-
Jury tests class of methods for determining zero location of a polynomial with respect to the unit
circle The SCMJ class was classified into four useful types of recursions. Although the polynomials
in the four prototype sequences that were defined differ only in scaling factors from each other,
this difference has at times quite intricate effect on expressing the zero location rule in terms of
the ”native” polynomial coefficients. The invariance of the set of reflection coefficients for all tests
in the SCMJ class facilitated the derivation of zero location rules for the B, C, D types in terms
of the leading coefficients of the polynomials in the sequence. The current systematic approach
makes it possible to classify essentially any test published in this class into one of the defined types
in spite of the masking effect of operations such as difference in initiation, reversion, conjugation
or reciprocation and sign variation of polynomials in corresponding sequences. The classification
process led at times corrections to wrongly stated zero location rules, support results stated with no
accessible proof, or to some extent of generalization for the reviewed tests.

In the course of pursuing the zero location rule for the C-type scheme we in fact obtained a
yet another proof to the relation between zero location of a polynomial and the principal minors
(hence the inertia) of the Schur-Cohn matrix generated for that polynomial.
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Appendix A: Proof for Theorem 1

Let (πm, νm) denote the number of (OUC,IUC) zeros of am(z) (strong regularity implies no UC
zeros). Obtain from the recursions (4) and its reciprocation the two equations

zam−1(z)
am(z)

= 1 + km
a]

m(z)
am(z)

,
a]

m−1(z)
k?

mam(z)
= 1 +

1
k?

m

a]
m(z)
am(z)

(a.1, a.2)

Observe that |a]
m(z)|

|am(z)| = 1 for |z| = 1. Applying the Principle of Argument on (a.1) for |km| < 1 and
on (a.2) for |km| > 1 proves, respectively, that

if |km| < 1 (πm, νm) = (πm−1 + 1, νm−1)
if |km| > 1 (πm, νm) = (νm−1 + 1, πm−1)

(a.3)

Define for each fixed m, m ≤ n, its own sequence (10) of ql‘s, {q(m)
l , l = 1 . . .m} by

q
(m)
l =

m∏
i=l

(1− |ki|2) , l = 1, . . . ,m , q
(m)
m+1 := 1

Note that in this new notation the original sequence of qm’s in (10) corresponds to {qm = q
(n)
m ,

m = 1, . . . , n}.
Normalize each such sequence {q(m)

i } by dividing each of its entries by its minimal indexed
member q(m)

1

q
(m)
l+1

q
(m)
1

=
l∏

i=1

1
(1− |ki|2)

:= q̂l , l = 1, . . . , n

The resulting new parameters q̂l are independent of the index m (therefore superscripts (m) were
dropped) and they can be computed recursively as follows.

q̂l = q̂l−1
1

(1− |kl|2)
, q̂0 := 1 , l = 1, . . . , n (a.4)

Thus, the sequence in (9) is given by {q1, q2, . . . , qn} = {[q̂(n)
1 , q̂

(n)
2 , . . . , q̂

(n)
n ]q(n)

1 } where the used
notional convention is defined by

{[q̂1, q̂2, . . . , q̂n]q1} := {q̂1q1, q̂2q1, . . . , q̂nq1}

Lemma 1. The number of (IUC,OUC) zeros of the m−th degree polynomial am(z), (m− νm, νm),
are given by

νm = n−{q(m)
1 , q

(m)
2 , . . . , q(m)

m } = n−{[q̂1, q̂2, . . . , q̂m]q(m)
1 } (a.5)

Proof. The proof of the Lemma is by induction over m = 1, 2, . . . , n. The m = 1 is clear from
(a.3). Assume the assertion (a.5) holds till m = l − 1 so that the number of IUC and OUC zeros of
al−1(z) are given, respectively, by

νl−1 = n−{[q̂1, q̂2, . . . , q̂l−1]q
(l−1)
1 } and πl−1 = n+{[q̂1, q̂2, . . . , q̂l−1]q

(l−1)
1 }

We have to show that the above implies that the (a.5) gives the correct number of IUC and OUC
zeros also for al(z).

There are two possibilities; either |kl| < 1 or |kl| > 1. For the case |kl| < 1 (a.3) implies that
νl = νl−1 (and πl = πl−1 + 1). It is needed to check whether (a.5) provides the same result. For
|kl| < 1 (a.4) shows that sgn(q(l)1 ) = sgn(q(l−1)

1 ). Therefore

νl = n−{[q̂1, q̂2, . . . , q̂l−1, q̂l]q
(l)
1 } = n−{[q̂1, q̂2, . . . , q̂l−1]q

(l)
1 } = n−{[q̂1, q̂2, . . . , q̂l−1]q

(l−1)
1 } = νl−1
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In the above we dropped a by definition positive term q
(l)
1 q̂l = 1 > 1 from the n− count. In the case

|kl| > 1 (a.3) implies that νl = πl−1 and again it has to be verified that the rule (a.5) is consistent
with this case too. For |kl| > 1 (a.4) indicates that sgn(q(l)1 ) = −sgn(q(l−1)

1 ). Therefore

νl = n−{[q̂1, q̂2, . . . , q̂l−1, q̂l]q
(l)
1 } = n−{[q̂1, q̂2, . . . , q̂l−1]ql

1} = n+{[q̂1, q̂2, . . . , q̂l−1]q
(l−1)
1 } = πl−1

Q.E.D.

Theorem 1 corresponds to m = n in this lemma.

REFERENCES
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