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Abstract. We use the so-called reflection coefficients (RCs) to examine, review, and classify 
the Schur-Cohn and Marden-Jury (SCMJ) class of tests for determining the zero location 
of a discrete-time system polynomial with respect to the unit circle. These parameters are 
taken as a platform to propose a partition of the SCMJ class into four useful types of 
schemes. The four types differ in the sequence of polynomials (the "table") they associate 
with the tested polynomials by scaling factors: (A) a sequence of monic polynomials, (B) a 
sequence of least arithmetic operations, (C) a sequence that produces the principal minors 
of the Schur-Cohn matrix, and (D) a sequence that avoids division arithmetic. A direct 
derivation of a zero location rule in terms of the RCs is first provided and then used to 
track a proper zero location rule in terms of the leading coefficients of the polynomials of 
the B, C, and D scheme prototypes. We review many of the published stability tests in the 
SCMJ class and show that each can be sorted into one of these four types. This process 
is instrumental in extending some of the tests from stability conditions to zero location, 
from real to complex polynomial, in providing a proof of tests stated without a proof, or in 
correcting some inaccuracies. Another interesting outcome of the current approach is that 
a byproduct of developing a zero location rule for the Type C test is one more proof for the 
relation between the zero location of a polynomial and the inertia of its Schur-Cohn matrix. 

1. Introduct ion 

The condition of  stability for a linear discrete shift invariant system corresponds 
to necessary and sufficient conditions for the zeros of the system's  polynomial  
(its characteristic equation) to lie inside the unit circle in the z-plane. Consider a 
polynomial  of  degree n with complex coefficients 

n 

p(z)  = E PiZi ( I )  
i=0 
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and call it stable if it has all its zeros inside the unit circle. Algebraic stability 
tests for discrete systems are methods that determine in some finite number of 
arithmetic operations whether or not a characteristic polynomial of a system is 
stable. Zero location tests extend this problem to also counting the number of 
zeros of the polynomial inside the unit circle (IUC), on the unit circle (UC), and 
outside the unit circle (OUC). 

The first direct algebraic criterion for unit circle stability is due to Schur [30], 
and its extension to zero location to Cohn [19]. Assume a polynomial fro(z) of 
degree m, its conjugate, reverse, and reciprocal (conjugate-reverse) polynomials 
will be denoted by 

rn 

fm(z) = E fm,izi, 
i=0 

m 

r Z Z i f~n( ) : = E f m , m - i  , 
i=O 

m 

f* Z i 7re(z)  : =  z . . ,  ~m,i , 
i=0 

fm ~ (Z) := f--r (Z), 

(2) 

respectively ( ,  will denote complex conjugation). Cohn provided an algorithm 
to implement his zero location criterion. Given a polynomial p(z) he proposed 
to construct a sequence of polynomials {fro(z)} of descending degrees m = n, 
n - 1 . . . . .  1, 0, starting with fn(z) = p(z),  then for m = n . . . . .  1, applying the 
following recursion: 

f , ~ - t ( z )  = i f ro(z )  - i~ , .~ f~ ( z )  for  Ifm.ml > Ifm.oI 
r (z ~ (3) 

f r o ( Z ) -  I j m ,  , for  If.,,ml < lYre,01 
m,o 

The information on the numbers of IUC and OUC zeros may be obtained from 
the changes between the two types of recursions [9] (a recent account and a new 
proof are available in [22, Example 2.2]). 

The Schur-Cohn test in the form in which it is more familiar today is the growth 
of a modification devised to Cohn's setting by Marden [25], [26]. Subsequently, 
Marden's approach has been advanced in several stability table forms by Jury 
and other system theory researchers [2], [7], [8], [12]-[20], [27], [29]. Marden's 
scheme avoids switching between two modes as in (3) when the polynomial has 
both IUC and OUC zeros. Instead the recursion retains a uniform structure, viz., 

fm_l(Z) = f*,ofm(z) -- fm,mf~m(Z), fn(Z) = p(Z). 

The information on the numbers of IUC and OUC zeros is obtained from the 
relative magnitudes of fm,m and fm,o in a manner that will be shortly detailed. 

In digital signal processing applications, stability testing is better known by 
an approach that comes from its own yard and terminology. There, a polynomial 
is determined as stable if (and only if) its "reflection coefficients" are all with 
moduli less than unity. The "reflection coefficients" are parameters that are used in 
several digital signal processing models [28] that may be associated with solving 
a Toeplitz set of equations by the Levinson algorithm [24]. 
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It will turn out that most of the tests available today that stem from the works 
of Schur, Cohn, and Marden can be regarded as associating the tested polynomial 
p(z) by a sequence {fro (z)} formed by a recursion obeys the following form: 

zfm-l(z) = ~Pm{fm(z) -t- kmf~m(Z)}, k m fm,O 
= - -  f r ~ , m "  (4) 

Here the km will be shortly identified as the aforementioned reflection coefficients 
(RCs) and the ~Pm's represent some nonzero (real or complex) numbers. Different 
tests may be the result of the choice of aPm or of operating areversion or conjugation 
(or both) at either or both sides of (4). Further differences may be caused by the 
initiation of the recursions. Namely, fn(z) may be taken to be p(z), or pr(z), or 
if(z), or p~ (z) (where a demand to begin with a monic p (z)/Pn may also sometimes 
be imposed). We shall refer to the class of tests that may be described by (4) within 
all above listed variations as the Schur-Cohn Marden-Jury (SCMJ) class. A typical 
stability or zero location from a subset ofn  or n + 1 distinguished entries from the 
array fi,j of coefficients. The distinguished entries can be conveniently arranged 
to be real even for complex polynomials. A long-standing tradition has been to lay 
out the entries fi.j in a tabular array. We shall therefore interchangeably refer to 
a member of the SCMJ class also as a (stability-) "table" The zero location rules 
depend on the signs of the distinguished entries. The number of IUC or OUC zeros 
is usually given by either the count of the number of negative or positive entries or 
by the number of sign variations or sign consistencies in an ordered sequence of 
distinguished entries. The scaling factors ~P,n and the remaining possible variations 
that differentiate one test in the SCMJ class from another often have an intricate 
effect on the proper form of an accompanying stability and zero location rule for 
each individual test. A valid zero location rule turns out to be in particular prone 
to error because it is more sensitive to the accumulating effects of sign changes. 

We would like to draw attention to a peculiar outcome of our definition of the 
SCMJ class by which Cohn's scheme does not actually belong to the SCMJ class 
(unless one's interest is restricted only to stability conditions). The main difference 
between Cohn's original scheme and the SCMJ class we defined may be described 
as follows. The "reflection coefficients" in Cohn's recursions (momentarily refer- 
ring so to the fractions that appear in (3)) are always with moduli less than unity, 
while the recursion is switching between the indicated two modes. In contrast, in 
the SCMJ recursions (4), the recursions retain a uniform structure and instead the 
km's are allowed to take both Ikml < 1 and Ikml > 1 values. The information on 
distribution of zeros with respect to the unit circle in the SCMJ class is held in the 
moduli of the km's rather than in Cohn's variations of the structure of the recursion. 

It is worthwhile to clarify that other tests to determine zero location with respect 
to the unit circle are available today that do not conform to the SCMJ class. 
The recent class of "immittance" tests [3], [4], [6] is notable as an alternative 
approach that also offers a lower count of arithmetic operations than the lowest 
count of operations that is achievable within the SCMJ class (the Type B tests) by 
approximately a factor of two. 
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The set of reflection coefficients of a polynomial is the central theme around 
which this paper revolves. This choice is motivated not only by the popularity 
of these coefficients in signal processing, but also by their following properties 
pertinent to our classification goals: 

(1) The RCs of a given polynomial can be easily determined and they normally 
contain all (actually more than) the necessary information on the number of zeros 
of the polynomial inside and outside the unit circle. 

(2) The RCs offer for the parametrization of the SCMJ class a set of parameters 
that is not affected by scaling and other possible twists that distinguish the many 
versions of tests in the SCMJ class. 

It will soon become evident that for a polynomial's zero distribution the infor- 
mation of only the relative magnitudes of the RCs with respect to unity of a given 
ordered sequence of RCs is sufficient. The remaining information--knowing the 
actual numerical values of the RCs--represents the equivalent of knowing the 
exact numerical values of the zeros of the polynomial. 

First we state and bring a direct proof for the rule to determine the numbers of 
IUC and OUC zeros of a polynomial from its given sequence of RCs. Then we 
focus on four choices of scaling parameters l~m that represent interesting schemes 
in the SCMJ class, we define these as prototypes A, B, C, and D. We maintain a 
quite broad generality of treatment by always considering the zero location rule 
and not just stability conditions, and by always considering the polynomial to 
have complex coefficients. However, as the paper uses the reflection coefficients 
to classify the SCMJ class, the scope of zero location generality is limited by the 
assumption that the set of RCs is well defined. It should be said that it is also always 
possible to determine the distribution of zeros of any polynomial with respect to 
the unit circle in complementary cases that do not yield a well-defined and unique 
set of RCs. How this can be done has been shown already by Cohn, and some 
of the reviewed tests also describe treatment of these singular (or pseudosingular) 
cases. The assumption that the RCs are well defined will be referred to as strong 
regularity and will be characterized in several related equivalent conditions. 

The four types of SCMJ zero location schemes that are defined are as follows. 
The first scheme associates the tested polynomial with a sequence {am (Z) } ofmonic 
polynomials and is labeled "Type A." The sequence {am (z)} serves as a reference 
to all other sequences. It is also used to derive the relations between the RCs and 
the principal minors of the Schur-Cohn matrix. The second "Type B" schemes is 
presented by a sequence {bin(z)} that corresponds to choosing the scalars in (4) 
~m = 1 for m < n - 1. This type represents the lowest arithmetic count algo- 
rithms in the SCMJ class. An example of a "Type B" test is Raible's test [29]. The 
third, "Type C" schemes generates n distinguished entries that produce (or relate 
up to sign) to the Schur-Cohn determinants. In particular, the "Type C" prototype 
algorithm produces a sequence denoted by {cn (z)} whose leading coefficients are 
equal to the principal minors of the Schur-Cohn matrix. "Type C" schemes in 
the literature were advanced by Jury in several versions [12], [14], [18], [19]. We 
presented this part of the current paper in a recent symposium dedicated to Pro- 
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fessor Jury [5]. "Type C" schemes are considered important in obtaining stability 
tests for two-dimensional systems and they perform better in finite precision arith- 
metic. The fourth and last "Type D" schemes, generate sequences {din(z)} while 
avoiding the arithmetic operation of division. "Division-free" schemes of "Type 
D" available in the literature include the tests in [20], [27], and in [7], [8]. This 
form may be useful in applications that involve testing polynomials with coeffi- 
cients that depend on parameters and avoiding divisions leaves it simpler to handle 
coefficients. 

During a subsequent review of tests published in the literature; the uniform 
parametrization of the SCMJ class also turned out to be helpful in sometimes 
supporting theorems stated without proofs, or at times in providing missing zero 
location rules or in correcting zero location rules that were not stated properly. 
Because we consider polynomials with complex coefficients, a complex version 
for tests proposed only for real polynomials also becomes immediately apparent. 

In the course of deriving the zero location rule for the Type C algorithm, we 
actually provide yet another proof of the celebrated Schur-Cohn theorem on the 
relation between the number of positive and negative eigenvalues of the Schur- 
Cohn matrix and the number of zeros of the polynomial inside and outside the unit 
circle. The specialty of this proof is that its starting point is the zero location rule 
proved first on the RCs. This is then used through relations between unit triangular 
(Cholesky) factorizations of the Schur-Cohn and Toeplitz matrices to achieve the 
sought proof (cf. [31]). 

The outline of the paper is as follows. The zero location criterion in terms of 
the set of RCs is derived in the next section. This section associates the tested 
polynomial with a monic sequence of polynomials that is labeled Algorithm A. 
Section 2 also contains the expression for the principal minors of the Schur- 
Cohn matrix in terms of the RCs. Sections 3, 4, and 5 are devoted to the Type B, 
Type C, and Type D schemes, respectively. The presentation of each prototype is 
followed by a review of tests in the literature which belong to that type and is also 
accompanied by a simple numerical demonstration. 

2. Reflection coefficients and zero counting 

Schur [30] and Cohn [9] associated with the polynomial p(z) a Hermitian form 
such that, provided all its squares are nonzero, its number of positive and negative 
squares provides the number oflUC and OUC zeros (see, e.g., [21]). Fujiwara [10] 
(see also [21]) showed that the Schur--Cohn conditions can be posed equivalently 
on the principal minors of the following (n x n)-matrix: 
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C = P*-l 

Pn-1 

P~ "'" Pn-l P. Pn p; p~-i (5) 

p - 1  " "  pl p0 1_0 p~ 
The Schur-Cohn zero location rule was also posed on the determinants of a 
sequence of n matrices of sizes 2m • 2m, m = 1 . . . . .  n (called the Schur- 
Cohn determinants) and was also given in terms of a (not Hermitian) (2n • 2n)- 
matrix A 1:2n, 1:2n whose sequence of centrally situated submatrices A m : 2 n - m , m : 2 n - m ,  

m = 1 . . . . .  n, have determinants that are equal to the principal minors of C [15] 
(see also [16, Theorem 2.6], [2, Theorem 3.11]). The matrix C is referred to in 
the literature as the Schur-Cohn-Fujiwara matrix or the Hermitian Schur-Cohn 
matrix (see [16, Theorem 3.2] [2, Theorem 3.13], and [21, Theorem XVa]). 

The term RCs stems from their interpretation in modeling lossless layered 
media in certain digital signal processing applications, e.g., in modeling the vocal 
tract in speech processing or the earth's surface in geophysical (see, e.g., [28], 
[23]). Another name for RCs that originates from their statistical interpretation in 
approximating a stationary process by an auto-regressive (AR) model is Partial 
Correlation (ParCor) coefficients�9 Common to both interpretations is that they 
involve the solution of a set of equations that may be represented in the following 
normal form: 

Tn[an,o, an,l . . . . .  an,n-l, 1] t = [0 . . . . .  O, dn] t, (6) 

where Tn is a Hermitian positive definite Toeplitz matrix of size (n + 1) x (n + 1) 
and the set is to be solved for the n + 1 unknowns {an,i, dn}. An efficient solution 
to this set of equations is provided by Levinson's algorithm [29]. The Levinson 
algorithm is a recursive algorithm that includes (in a polynomial notation) the 
recursions 

= -- kmam_ I (Z) (7) a m (Z) Zam-1 (Z) 

and a formula (that need not concern us here) to compute the kin's--the "RCs" - -  
that brings into the solution the entries of the Toeplitz matrix. The algorithm starts 
with ao(z) = 1 and is carried out for m = 1 . . . . .  n. It is seen that the polynomials 
am(Z ) n i = Y~O am,iZ are all monic, am,m = 1. 

Given a polynomial p(z )  it is possible to determine its RCs (namely to find 
km's such that (7) will produce an (z) = p( z ) /pn )  by reversing the recursion (7). 

Algori thm A. Apply the algorithm 

am(Z) -F kma~m(Z) am,o 
Zam-l(Z) : 1 Ikml 2 ' k m =  - ~  (8) 

- -  a r r t  ,n ,  t 
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with the initiation an (z) = p (z) / pn. 

Theorem 1 (Zero location rule by RC). A polynomial p(z)  with a well-defined 
set o f  RCs {kin, m = 1 . . . . .  n} has v OUC zeros (no UC zeros) and n - v IUC 
zeros, where v is given by the number o f  negative terms in the sequence 

v = n_{qn, qn-1 . . . . .  ql} (9) 

whose members are defined by 
n 

qm :----- l ~ (  1 --Ikil2), m = 1 . . . . .  n. (10) 
rtl 

We prove Theorem 1 in the Appendix. The proof is obtained by invoking the 
Principle o f  Argument on the recursions (7). 

It is seen that the qm parameters still hold enough information to determine 
zero location. These parameters will play an important role in the forthcoming 
developments. They can be more simply obtained from the sequence of RCs by 
the recursion: 

qm = qm+l(1 -- [km[2), qn+l := 1, m = n, n - 1 . . . . .  1. (11) 

R e m a r k  1. The immediate corollary of Theorem 1 that necessary and sufficient 
conditions for stability (i.e., v = O) are 

Ikml < l, m = l . . . . .  n, 

is a very familiar result in digital signal processing applications, where the km's 
also serve as gains in a lattice realization of the all pole filter 1~an(z) (e.g. [28]), 

We define Algorithm A together with the zero location rule given by Theorem 
1 as our Type A scheme in the SCMJ class. The relation of Algorithm A to the 
Levinson recursions also motivates the use of the term RC in the context of the 
SCMJ Class of stability and zero location. It is clear from (8) that the sequence 
of the RCs of a polynomial is not affected by the possible scaling factors in (4). 
Consequently, the RCs in conjunction with Theorem 1 form convenient tools for 
properly tracking zero location rules for other algorithms in the SCMJ class. 

Definition 1 (Strong regularity). A polynomial p(z)  is said to satisfy conditions 
of strong regularity if Algorithm A does not encounter a premature termination 
(and hence produces a well-defined set of n RCs). 

R e m a r k  2. The condition that causes the recursion to terminate prematurely is 
the occurrence of a k m such that Ikm[ = 1. The offense in general is not the 
division by [1 - Ikml 2] apparent in Algorithm A but that a subsequent km-I = 
--fm-l,O/~*-l,m-1 is not well defined when fm-l,m-1 : 0 and an fm-l,m-1 : 0 
is necessarily preceded by, and always follows, a [kin [ = 1. This is seen by reading 
from (4) that 

fm-l,m-1 = ~fm(fm,m -- kmf*,o) = aPmfm.m(1 -- [kml2) �9 
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Several equivalent conditions for strong regularity will be given in Theorem 2 
below. Strong regularity will be presumed throughout in this paper. 

Fujiwara, who contributed the expression (5) for the Schur-Cohn matrix, also 
showed that a generating function for C = [ci,j] is given by 

C(z, w) = Pt~(z)pr(w) -- p(z)-fi(w) n-1 . 
1 - Z W  = ~-~ ci j z ' w  j. (12) 

i , j=0 

In more modern terminology C(z, w) is sometimes referred to as a generating 
function for T-Bezoutian (a Bezoutian with respect to the unit circle). The T- 
Bezoutians and the former Bezoutians with respect to a line may be treated in a 
unified manner [22]. 

The relations between the principal minors of the Schur-Cohn matrix and the 
reflection coefficients will be obtained by using a couple of results known in the 
context of the Levinson algorithm and the inversion of Toeplitz matrices. First 
it may be noticed from the nested structure of the Levinson algorithm that the 
algorithm in fact provides solutions to all normal sets of equations of the form (6) 
defined by all the submatrices Tin, m = 0, 1 . . . . .  n. This observation implies that 
the Levinson algorithm creates a UDL triangular factorization for the inverse of 
Tn, viz., 

where 
1 
0 

An = : 

0 
0 

T n l  -1 H = A n A  n A n ,  

a l ,o  " ' "  a n - l , O  

1 �9 �9 �9 a n _ l , 1  

0 . . .  1 
0 . . .  0 

an,o 

an , l  

an ,n -1  

1 

(13) 

(13a) 

where the superscript H denotes the conjugate transpose, and An is the diagonal 
matrix 

? n  

An = diag[1, )~1 . . . . .  ~.n]; )~m = U ( 1  Ikil2). (13b) 
i=1 

The second result that we shall use is a formula due to Gohberg and Semencul 
[11] that allows the expression of the inverse of a Toeplitz matrix Tn 1 in terms of 
just the coefficients of an (z) 

n,n a n a n , n - 1  """ an,O 

1 a * , n _ l  " ' .  " ' .  

T~I = ~ " "'. ~n,.-1 

L a*o a~.n_l an,n an,n 

i o oj[ .1 
] an,o "- " '"  : (14) 

) L  n " , . 

� 9  � 9  an*0 
t_an,n-I "'" an,o 0 0 
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This formula indicates that a generating function for Rn := T~ -1 is given by 
(compare to (12) and (5)) 

! a~(Z)dn(W) - zwan(z ) -&, (w)  
~ . ( z ,  w) = - -  (15) 

~-n (1 - z w )  

The relation of the Schur--Cohn matrix for p ( z )  and the Schur-Cohn matrix 
for the corresponding monic polynomial an(z)  = p ( z ) / p n  is seen from (5) to be 

C = Ipnl2(2 (16) 

and the generating function for I~ is (12), 

C(z,  w)  = a~(z)ar  (w)  - an(z) 'gn(w) (17) 
1 - z w  

Next, the recursion (8) can be used to obtain the identity 

a~ (z)a  r (w)  - a n ( z ) a  n ( t o )  = ( 1  - [k  n 12) [a~_ 1 ( z ) a r _ l  (to) 

- z w a n - 1  (z)~.-l(W)]. 

Set this identity in the generating function (17) for C and compare the result with 
the generating function (15) for Rn-i = T~-_11 to find that 

d(z, w) = ~n~n-~(Z, w). 

Thus the next relation between the monic Schur--Cohn matrix and inverse of the 
(n x n)-Toeplitz matrix becomes evident, 

! ~ ?  = T2_~. (18) 

We proceed to use this relation to connect the minors of the Schur-Cohn matrix 
with the RCs. Toward this goal, first observe from (5) that the Schur-Cohn matrix 
is centro-Hermitian; i.e., it has the property JCJ  = C, where J denotes a matrix 
with l 's along the anti-diagonal and 0's elsewhere (the reversion matrix). The 
UDL triangular factorization (13) implies through (18) and the centro-Hermitian 
symmetry the following LDU triangular factorization for C: 

= Bn_lQn_lBn_ 1 , 

where 

B n - 1  = JA.-1J = 

1 0 
an-l .n-2  1 �9 �9 �9 0 

a n - l , 1  a n - 2 , 1  �9 �9 �9 1 

a n - l , O  an-2,0 " '"  a l ,o  

Qn-1 = diag[qn, qn-I  . . . .  , ql]; 

and 

(1.9) 

(19a) 

~n 
qi = , i = 1 . . . . .  n. (19b) 

Li-1 
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It is noticed that these qm'S are indeed identical to the qm'S as defined before 
in (10). The implicit assumption that the underlying Schur-Cohn and Toeplitz 
(sub)matrices are invertible follows from the strong regularity assumption. In fact 
we may at this point summarize several equivalent conditions for strong regularity. 

Theorem 2 (Strong regularity). The following conditions are equivalent: 

(i) The set of RCs are well defined (Definition 1 for strong regularity). 
(ii) All the leading principal minors of C are not equal to zero. 

(iii) All the leading principal minors of Tn are not equal to zero. 
(iv) All Ikml ~ 1, m = 1 . . . . .  n. 

Proof. The equivalencies (ii) r (iii) r (iv) are apparent from factorizations (13) 
and (19). The equivalence (i) r (iv) was explained in Remark 1. [] 

Remark 3. Strong regularity implies that the degree r /of  the greatest common 
divisor of p(z) and p~(z) is r] = 0. In particular it implies that p(z) has no UC 
zeros. However, although ~ = 0 is sufficient for no UC zeros and for nonsingularity 
of the matrices Tn and C, it is still not a sufficient condition for strong regularity. 

It is sufficient to recognize the factorization (19) as a congruency relation be- 
tween C and Q in order to conclude that the two matrices have the same number 
of positive and negative eigenvalues (the same inertia). The eigenvalues of the 
diagonal matrix Q are the qm'S. The numbers of positive and negative qm'S were 
shown in Theorem 1 to give the numbers of IUC and OUC zeros of p(z). Thus 
proof for Theorem 1 in combination with the factorization (19) provide a new 
proof of the Schur-Cohn criterion. 

Theorem 3 (Schur-Cohn). If all the leading principal minors of the Schur-Cohn 
matrix for p (z), C, are different from zero then the numbers of O UC and IUC zeros 
of polynomial p(z), v and n - v, are equal to the number of negative and positive 
eigenvalues of C, respectively. 

We proceed to examine in finer detail the factorization (19) in order to obtain 
an explicit expression for the principal minors of C in terms of the RCs. Denote 
the principal minors of C by 

[Zm : :  det{C0:m-1}, m = 1 . . . . .  n, (20) 

where the C0:/_ 1 represents the l • l leading submatrix of C (our count of rows 
and columns of matrices begins with i = j = 0). 

Theorem 4 (Minors of C in terms of {kin}). Consider p(z) and its Schur-Cohn 
matrix C, and assume strong regularity. 
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(i) The principal minors o f  C are related to the set o f  RCs by 

Ix,n = Jpnl 2m ( ' I  qi, m = 1 . . . .  ,n .  (21) 
i=n + l--ra 

(ii) The polynomial p(z )  has v OUC and n - v IUC zeros with 

v = Var{1, l~1,/z2 . . . . .  /zn}, (22) 

where Var denotes the number o f  sign variations in the indicated sequence. 

Proof.  The lower upper unit triangular factorization (19) implies that the principal 
minors/2m of t~ are given by 

fzm = [ ' I  qi, m = 1 . . . . .  n. (23) 
i=n+l -m 

Consequently, (21) follows from (16). Noticing that IZm/IZm+l = qn-m, the rule 
(9) of  Theorem 1 can be written as 

v = n _  ~ 1 , - -  . . . . .  - -  �9 (24) 
/Z1 [Ln-I 

It remains to realize that (22) and (24) are equivalent. [] 

Example  1, Pa r t  a. Consider the polynomial 

p(z)  = 4 + 12.5z + 5z 2 + z 3, 

which can be checked numerically to have 2 OUC zeros and 1 IUC zero. The 
sequence {am(Z)} consists of  

a3(z)  = p ( Z ) ,  a2(z ) = 0.5 + 3Z + Z 2, al(Z)  = 2 + Z, ao(z) = 1. 

The RCs are 
kl = - 2 ,  k2 = -0 .5 ,  k3 = - 4 .  

Thus the q,n parameters (11) are as follows: 

q3 = - 1 5 ,  q2 = -11 .25 ,  ql = 33.75. 

Then according to the rule (9) 

# O U C  = n-{q3,  q2, ql} = 2. 

The Schur--Cohn matrix is 

- 15 -45 -7.5 1 
C = - 4 5  -146 .25  - 4 5  . 

- 7 . 5  - 4 5  - 1 5  

The principal minors of C are indeed/3.1 = --15 ( =  q3),/s ~--- 168.75 (=  qaq2), 
and/z3 = 5695.3 (=  q3q2ql). According to the rule in Theorem 4, 

# O U C  = Var{1, - 1 5 ,  168.75, 5695.3} = 2. 
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In contrast to some concluding remarks in [31] the number of OUC zeros is not 
given by the number of sign variations of the principal minors of C (Var{-15, 
168.75, 5695.3} = 1 in this example) nor by the principal minors of Tn-1 or its 
inverse. In fact the signs of the principal minors of C and T~-_11 are affected by the 
appearance of)~ in (18) and ~.n may be negative. 

3. Schemes of Type B 

By cautious inspection at the structure of the recursion (4), it is possible to restrict 
somewhat the range of relevant scalars ~Pm in the search for tests of merit in 
the SCMJ class without the danger of missing interesting cases. For example, 
when testing a real polynomial there is clearly no point in allowing complex ~Pm 
to complicate the recursion. More generally, the structure of (4) possesses the 
property that if fn-l,n-1 is real then all subsequent fro,m, m _< n - 1, stay real as 
long as the aPm'S, m _5< n - 1, are real. It is possible to exploit this property by 
insisting on lp. = fn*., 

z L - l ( z )  = * z = fn,n[fn( ) + knf~n(Z)], fn(z)  p(z) ,  (25) 

so that fn-l,n-1 = Ifn,.Jz(1 - I k . I  2) is indeed real (and perceives the part of 
the information on k. that is acute for finding zero location) and afterwards by 
restricting the subsequent ~m'S to be real. As will be seen, the fm,m form the 
distinguished entries in terms of which zero location rules are given so that being 
real simplifies these rules. All the tests of interest in the SCMJ class featured 
distinguished entries that are real. 

3.1 Type B: Basic form 

The prototype form corresponds to choosing ~n = Pn* and ~p,~ = 1 for all m < 
n - 1 .  

Algorithm B. Initiation: 

zbn_ I (z) = p* p(z )  - PoP(Z) 

Form = n -  1 . . . . .  1 do: 

zbm_l(z)  = b,n(z) + kmb~(z), kn -- 

(B1) 

bm,o 
(26) 

b*,m 

[Alternative possible initiations are (1) to first normalize to monic the tested poly- 
nomial 

- i  

bn(z) = l----p(z) (B2) 
Pn 



SCHUR-COHN MATRICES AND JURY-MARDEN TABLES 123 

and (2) when the leading coefficient Pn is real it is also possible to start the 
recursions with 

I p(z) if Pn > 0 b~(z) (133) / - p ( z )  i f p n < 0  

For these two alternative initiations (26) may be used, for m = n already.] 

Theorem 5 (Zero location for Algori thm B). If  Algorithm B does not terminate 
prematurely then p(z)  has v OUC and n - v IUC zeros, where v is given by 

v = n-{b~-l,n-1, b~-2,~-2 . . . . .  blA, bo,0}. (27) 

Proof.  From (26) 

bm_l,m_ 1 = bin, m --k kmb~, o = b,,,m(1 - [km[2), m < n - 1. 

By comparison with (11) we obtain that 

bm-l,m-1 : bm,raqm 

in which for (B 1) assume bn,n = I Pn 12, for (B 2) bn,n = 1, and for (B 3 ) b,,n = [Pn [. 
Thus for any of the three initiations the stated rule follows from (9) of  Theorem 1. 

[] 

Example  1 (Cont 'd) ,  Pa r t  b. Consider again p(z) = 4 + 12.5z + 5z 2 + z 3. 
Algorithm B produces a sequence that consists of b 3 (z) = p(z),  

b2(z) = - 7 . 5  - 4 5 z  - 15z 2, bl(z) = - 2 2 . 5  - 11.25z, bo(z) = 33.75. 

Indeed, 
# O U C  = n _ { - 1 5 ,  -11 .25 ,  33.75} = 2. 

Type B schemes are special in offering the least number of operations in the 
SCMJ class--just  n 2 + O(n) operations as compared to 2n 2 + O(n) for tests of 
Type A or for the later Type D, and 3n 2 + O(n) for the next Type C tests. 

In the rest of the paper we shall review many tests published in the literature; we 
define the convention that we shall follow in converting tests that have appeared 
in a "table" form to the more compact polynomial notation that we use. 

R e m a r k  4 (Conversion convention for tables). SCMJ tests have often been pub- 
lished in tabular forms. Usually the format is (format a:) n + 1 pairs of rows (the 
second row in each pair being the reversed conjugate of  the first). Else, (format b:) 
the table consists of just n + 1 rows (omitting the reverted rows). We shall regard 
these tables as forming the coefficients of a sequence of polynomials {fro(z)} by 
the following conversion convention. We shall associate the first, third, fifth . . . .  
in format a or the first, second, third . . . .  in format b with the polynomials fn (z), 
fn-1 (z), fn-2(z) by post-multiplying each row by a vector of  powers [ 1, z, z 2 . . . .  ]t 
of  a corresponding equal length. 
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3.2 Type B: Raible's version 

Raible proposed in [29] a test for real polynomials p(z )  which may be presented 
by the algorithm: 

r Z fm,m 
fro- l (z)  = fro(z) -- ~mf~n( ), ~rn = fm,'--'~; fn(z)  = pr(z) .  (28) 

Assuming Pn > 0, Raible provided the rule that the number of OUC zeros is 
given by 

n-{f~-l,0, fn-2,o . . . . .  fo,0}. (29) 

The above recursion is comparable with the reversion (or the "reciprocation" 
see Remark 5 below) of the recursion in Algorithm B (26): 

br_l (Z) r --- bin(Z)+ kmbm(z) 

by the identifications 

fm (z) = b~ (z), ~m = -kin" 

Consequently, as a corollary from Theorem 5 one has the following extension of 
the test to complex polynomials. 

Corollary 1 (Complex form of Raible's version). Apply to a polynomial p(z )  
the next algorithm. Initiation: 

fn-1 (Z) = p* pr(z)  -- po-fi(Z) (R0) 

F o r m  = n - 1 . . . . .  1 do: 

fm-1(Z) =fm(Z)--~mf~(z),  ~m = 
f m,m (30) 
fm,O" 

[Alternative valid initiations include (1) fn(z)  = ~ p~(z) or, when Pn is real, also 
(2) 

j pr (z) if Pn > 0 
f .  (z) / - p r ( z )  ifpn < 0 

and fo r  these alternatives the recursion also holds for  m = n. ] 
Provided the algorithm does not terminate prematurely, the numbers o f  OUC 

and IUC zeros are v and n - v, where 

V = n-{fn-l,o, fn-2.0 . . . . .  f0,0}. 

Remark 5. We "extrapolate" Raible's test from a real p(z)  to a complex p(z) .  In 
any situation of this kind there is more than one way to do this. A dual extension 
form could identify (28) with the reciprocation of (26) such that fn  (z) = b~ (z) 
and ~m = -k,~ and consider the initiations to correspond to fn(z)  = p~(z). T~)e 
zero location rule for this dual form is the same as the fro,o'S remain real. 
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4. Schemes of Type C 

The goal in this section is to obtain an algorithm in the SCMJ class that produces 
a sequence whose leading coefficients are the principal minors of  the Schur-Cohn 
matrix. For the derivation process it is convenient to define one more set of auxiliary 
parameters that is related to the RCs through the qm's (10) by 

n 

em := I ]  qi; em = em+lqm, en+l :=  1, m = n . . . . .  1. (31) 
i=m 

The sequence {era} may be seen from (23) to represent the principal minors of (~ 
in reversed order, 

f trn = e n + l -  m .  (32) 

Assume that there exists a recursible set of  scalars ~m for which (4) or (25) 
produces a sequence {era (z)} with the property era (z) = era+lain (z), where {am (z)} 
is the monic sequence. Assume, momentarily, that the algorithm starts with en (z) = 
an (Z). Then Cn-l,n-1 = 7t. (1 - Ik. 12),  and for the choice ~n = 1 we get cn-a,n-1 = 

en. A t the  next step, cn-2.n-z = ~n-a(1 - Ik . lZ ) (1  - I k . - l [  2) and c~-2.n-2 = en-1 
is again possible for the choice ~n-1 = (1 - [k~[ 2) = c~-1,~-1. Seemingly, the 
pattern is that the choice 

~tn+l_  i -~- en+l_ i , n+ l_ i /Cn+2_ l , n+2_  i yields en_i ,n_  i = e n + l _  i. (33) 

We verify this pattern by an induction step. Suppose the assertion in (33) holds for 
Cn_i ,n_i 'S  until i = 1 , . . . ,  I. Then at the next step, 

r  ~" l ~ n - l q n - l C n - l , n - l ,  

indeed reduces, for the choice ~ . - I  = r  to Cn_l_l,n_l_ 1 = 

e n - l  . 

This completes the proof that the choosing 

~n = 1; 7tn-l = C~-l,n-1; ~/m = Cm,m ; m < n - -  2, (34) 
r 

yields, for the initiation cn (z) = p ( z ) /Pn ,  a sequence of polynomials {Cm (z)} such 
that 

Cm(Z) = era+lain(z) and cm,m = em+l = ['Zn-m. (35) 

The sought algorithm emerges after removing the restriction to monic initiation to 
be as follows. 

4.1 Type C: Basic form 

The prototype algorithm for Type C schemes is as follows. 
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Algorithm C. Initiation: 

zcn_ 1 (z) = p~p(z )  - pop~(z) (C1) 

F o r m = n -  1 . . . . .  ldo :  

ZCm_ 1 (z) = r  {Cm,mCm (Z) -- Cm,oC~m (Z)} (36) 

with q~m given by 

1 
~ b n - l = l ;  dpm -- - -  , m = n - 2, n - 3 . . . . .  1. 

em+l ,m+l 

Theorem 6 (Zero location for Algorithm C). I f  Algorithm C does not terminate 

prematurely then p(z )  has v OUC and n - v IUC zeros, where v is given by 

v = Var{1, c n - l , . - l ,  Cn-2,n-2 . . . . .  c0,0}. (37) 

Proof. For the initiation with a monic polynomial we obtained the relation (35). 
The definition of the em's in combination with the rule (9) implies that 

v = Var{1, en, e.-1 . . . . .  el}. (38) 

For the more general initiation (C1) the relation (35) starts instead with Cn-1 (z) = 
IPn IZan-1 (Z) and subsequently 

Cm-l,m-1 = (JPnl2)n+l-mem, m = 1 . . . . .  n. (39) 

Thus (38) implies the stated rule. [] 

Algorithm C also achieves the goal of producing the principal minors of the 
Schur--Cohn matrix. (Initiations other then (C1) similar to those proposed before 
for Algorithm B will also lead to the rule (37) but will miss the identification of 
Cm,m with the minors of C stated below.) The property is summarized as follows. 

Theorem 7 (Algorithm C and the minors of the matrix C). The leading coef- 
f icients o f  the sequence o f  polynomials produced by Algorithm C (with initiation 
(C1)) f o rm the principal minors o f  the Schur-Cohn matrix C o f  p ( z )  as fol lows 

Cm,m = IZn-m where /Zm+l := det{C0:m}, m = 0 . . . . .  n - 1. (40) 

Proof. Immediate from (31), (39), and (21). [] 

Example  1 (Cont 'd),  Par t  e. Consider again p(z)  = 4 + 12.5z + 5z 2 + z 3. The 
algorithm constructs 

c3(z) = p(z); cz(z) = -7 .5  - 4 5 z  - 15z2; 

Cl(Z) = -33 .75  + 168.75z, (~b2 := 1); co(z) = 5695.3, (q~l = -1 /15 ) .  

Evaluate (37) with the requested values 

# O U C  = Var{1, -15 ,  168.75, 5695.3} = 2. 
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Theorem 6 implies for p(z )  2 0 U C  zeros and 1 IUC zero. The principal minors of 
the Schur--Cohn matrix were computed in Part a of the example. The comparison 
shows that the principal minors are indeed given by /x l  = c2,2 = - 1 5 , / x 2  = 
c1,1 = 168.75, and/z3 = C0,o = 5695.3, as claimed in Theorem 7. 

4.2 Type C: Jury's versions 

Schemes of Type C were advanced by Jury on several occasions. They are con- 
sidered to be advantageous in algorithms to test the stability of two-dimensional 
systems [18] and to offer better accuracy in finite arithmetic precision [1]. Two 
versions are available, an earlier version [13, p. 104], [12], which considers only 
real polynomials, and a modified version [14], [15], [18], [19], which in [18] also 
treats complex polynomials. 

4.2.1. Jury's modified test. The construction rules for the table in [18] may be 
described in polynomial notation, following the conversion convention of Remark 
4, by the algorithm 

1 {  -- , r z  , 
fm- l (Z)  = ~ f m , O f , n -  fm,mf[n( 1} 

rim 
f~(z) = pr(z) ,  (41) 

where 

0n = rin-1 = 1, rim = fm+l,o for m = n - 2, n - 3 . . . . .  

A careful step-by-step comparison of this recursion with Algorithm C (36) reveals 
the following relations with the Type C polynomials: 

fn-2i (Z) cr_2i (Z), L - 2 i + l  (Z) = = c~_2i+1 (Z), i = 0, 1, 2 . . . . .  

In the above use is made of the fact that fm,o = Crn,m are real for m < n -- 1. 
The distinguished entries that in [18], [19] are denoted by Am correspond in the 
current notation to f,_m,0, and therefore 

An-m = fm,o = Cm,m = det{Co:m-1}, m = 1, 2 . . . . .  n, (42) 

where the last equality follows from Theorem 7. This provides a proof  for the 
statement in [18] that the Am form the principal minors of  the Schur-Cohn matrix. 

Furthermore, Theorem 6 provides a zero location rule for the algorithm (41). 

Corollary 2 (Jury's modified version). Consider the algorithm (41). Provided 

(41) does not terminate prematurely, the numbers o f  OUC and IUC zeros are v 
and n - v, where 

v = Vat{l, f .-1,o,  f . -z ,o  . . . . .  fo,o}. 
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References [18] and [19] state without a proof only the stability conditions (that 
all Am = f,~,o > 0) for this table form. The current proof is different from a proof 
in an unpublished report [17] available from the author. Also the zero location rule 
we deduce for this table here is in disagreement with the rule proposed in [17] 
(Part c of Example 1 is a ready counterexample that the number of OUC zeros is 
not v = n - { fn - l , o ,  fn-2,0 . . . . .  f0.0}). 

4.2.2. The earlier version. The modified version is an enhancement to an earlier 
version of this table in [13, p. 104] and [12]. Because these versions consider only 
real polynomials, the extension to complex polynomials is not unique (recall the 
earlier Remark 5). A possible extension to complex polynomials is as follows: 

1 {  -- , r z  
f m - l ( z )  = - -  fm,Ofm -- fm,,nf~n( )}, fn(Z) = p(Z). (43) 

rlm 

The seemingly minute change of the initiation by comparison with (41) has a 
remarkable impact on the accompanying stability and zero location rules and 
on the relations of the distinguished entries to the Schur--Cohn determinants/Zm. 
Currently, the sequence {fm (z) } can be shown to relate to the Algorithm C prototype 
sequence (36) as follows: 

fn_2i(Z) : Cn_2i(Z) fn_2i+l(Z) : _Cn_2i+l(Z),r i = 1, 2 . . . . .  (44) 

Consequently, the relations with the Schur-Cohn determinants are now 

fn-m,O = ( - 1 )  m det{C0:m-1 }, m = 1 . . . . .  n. 

The next corollary follows at once. 

Corollary 3 (Jury's earlier version). Consider the algorithm (43). Provided it 

does not terminate prematurely, the numbers o f  OUC and IUC zeros are v and 

n -- v, where 

;v = Var{1, - fn - l , 0 ,  fn-2,o, - f n - 3 , o  . . . . .  (-1)nfo,0} �9 

These results support the stability conditions 

fn-2i,o > 0, fn-2i+l,O < 0, i = 1, 2 . . . .  

and the relations to the Schur-Cohn determinant provided by Jury [13, p. 105]. 
The enhancement of the modified version of Section 4.2.1 over this earlier version 
is in simpler forms for the stability conditions and the relations to the principal 
minors of C. 

5. Schemes of Type D 

In the first paragraph of Section 3 we explained that it suffices to search for 
interesting tests that obey the recursion (4) with ~n = f~,n and real ~m, m < n. It 
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is in particular interesting in this subclass to examine the association of  the zero 
location rule to a recursion like (35), 

zfm_x(Z) = C~m(fm,rnfm(Z) -- fm,Of~(z)} ,  

in which all ~bm = 1. The specialty of this scheme is that it avoids the operation of  
division. 

5.1 Type D: Basic fo rm 

The prototype algorithm for Type D schemes is as follows. 

A l g o r i t h m  D. For  m = n - 1 . . . . .  1 do: 

zdm_ 1 (z) = d~,mdm(z) - dm,od~(z),  d . ( z )  = p ( z )  

(dm,m are real for m < n - 1). 

(45) 

We try to obtain a zero location rule for this algorithm. Comparing the highest 
power coefficients gives 

dm-l,m-1 = Idm,ml2(1 - [kml2), m = n, n - 1 . . . . .  1. (46) 

Therefore, the leading coefficients {dm,,~} are real for all m < n - 1. Furthermore, 
a step-by-step comparison of  the dm (z) with am (z) yields 

dn-1 (z) = Idn,n 12(1 - Ikn 12)an-1 (Z), 

d~-2(z) = Idn-1,n-112(1 - Ikn-llZ)an-2(z),  etc. 

The following relations become apparent: 

q~ = (1 - I k ~ [  z) = d~-1,.-1 
Id~,.I 2 

qn-1 = (1 - Iknl2)(1 - I k ~ _ l [  2) = d~-1, .- ldn-2,~-2 _ d~-2.~-2 
d 2 , 4 2  Id,~,.12d~_l,n_l ~,n t'~n_ l,tl_ 1 

q . -2  = q . - l ( 1  - Ikn-2[  2) = dn-3,n-3 dn-2,n-2 
d2_2,n_2 [dn.n[2dn-l.n-1 

dn-3,n-3 
Id... 12dn-l,n-ldn-2,n-2 

dn-i-l,n-i-1 
q . - i  = Idn.n 12 I-Ii=1 dn-t , . - t"  

The above relations provide the key to posing the zero location rule for Algo-  
rithm D in terms of its leading coefficients. 
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T h e o r e m  8 (Zero  location for  Algor i thm D). I f  Algorithm D does not terminate 
prematurely then p ( z )  has v OUC and n - v IUC zeros, where v is given by 

n 

V = n-{gn,gn-1  . . . . .  g l } ,  gm : =  I-Idi- l , i -m,  (47) 
i = m  

where the auxiliary parameter gm's may also be calculated recursively by 

gm = dm- l ,m- lgm+m,  gn+m : '~-  1 ,  m ~--- n ,  n - 1 . . . . .  

Proof.  The rule follows from the basic rule (9) after developing further the expres- 
sions obtained for dm,m in terms of gin's into the following relations: 

gn = Idn,nl2qn , gn-1 = [Idnn 212q2qn 1 etc. 

that is seen to lead to 

2 2 i 2 i 2 I-1 
gn-i [dn n ] ] qn qn-1 2 = " " " qn-i+lqn-i" 

It is possible to obtain from here either a direct expression for gin's in terms of 

qm's 
2 2 2 2 n -m - 

gm =qmqm+lqm+2' ' 'qn  [ dnnl2] 2" ",  m = 1 . . . . .  n, (48) 

or, alternatively, a more compact  but recursive relation between these parameters, 
viz., 

gm = gZ+lqm" 

Either of  these relations makes it clear that sgn{gm } = sgn{qm }. [] 

E x a m p l e  1 (Cont 'd) ,  P a r t  d. The sequence {din(z)} produced for p(z )  = 4 + 
12.5z + 5z 2 + z 3 consists of  d3(z) = p(z )  and 

d2(z) = - 7 . 5 - 4 5 z - 1 5 z  2, dl(z) = -33 .75+168 .75z ,  do(z) = -85430 .  

Therefore 

g3 = d2,2 = - 1 5 ,  g2 = d2,2dl,1 = -2531.2 ,  gl = d2,2dl,1do,o = 2.1624.108. 

Then 
# O U C  = n _ { - 1 5 ,  -2531 .2 ,  2.1624.108} = 2. 

5.2 Type D: Marden's version 

Marden's  original test is a Type D scheme devoid of division [25] (see also [26, 
Theorem (42.1)] and [16, Theorem 5.6]). 

Marden considers the algorithm 

fm_l(Z) = f*,ofm(Z) -- fm,mf~m(Z), f,~(Z) = p(Z), (49) 
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which, in a step-by-step identification procedure of Marden's sequence {fro(z)} 
with the sequence {din (z)} of Algorithm D shows that 

fn(z) = dn(Z); fn- l (Z)  = -dn~-i (Z); 

f m ( z ) = d ~ ( z )  for m = n - 2 ,  n - 3  . . . . .  O. 

Marden then defines the auxiliary parameters 

P m =  ~-I fn-i,n-i,  m = 1 . . . . .  n, (50) 
i=1 

which, in our notation (47), corresponds to 

m 

Pm = - I - I  dn- i ,n - i  = - -gn+l -m ,  m = l  . . . . .  n. 
i=1 

Consequently, Marden's theorem is reproducible from Theorem 8. 

CoroLlary 4 (Marden). Consider for a polynomial p(z)  the algorithm (51) and 
define the parameters (50). I f  all the products Pk are nonzero then p (z) has zr IUC 
and n - rr OUC zeros, where 

rr = n_{pl ,  P2 . . . . .  Pn}. (51) 

5.3 Type D: The Maria-Fahmy version 

Maria and Fahmy proposed in [27] a table for complex polynomials that relied 
on the test for real polynomials that was proposed by Jury and Blanchard in [20] 
(see same in [13, p. 98]). The table in [29] converts by our standard convention of 
Remark 4 to the algorithm 

* r Z f r o - l ( z )  = f rn ,Ofm(z )  --  f~n,mfm( ), f n ( z )  = p (Z) .  (52) 

The following relation to the polynomials in the main D-type algorithm may 
be detected: 

fn(z) = d,(z); fn-I  (z) = -d r_ l  (z); 

fn-ai(z) = d~n-zi(z); fn--(2i-~l) = drn-(2i+l)(z) for i = 1, 2 . . . . .  

For these relations Theorem 8 can be invoked to extend the stability conditions in 
[27], 

fn-l,0 < 0, f,,,m > 0, m = n - 2 ,  n - 3  . . . . .  0 

into the next zero location rule. 
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Corollary 5 (Maria and Fahmy's version). Consider  a lgor i thm (52). I f  it does 
not  terminate  premature ly  define 

m 

Pm= 17 f n - i , n - i ,  m = 1 . . . . .  n. 
i-----I 

Then p ( z )  has zr I U C  and  n - Jr O U C  zeros, where  

= n - { p l , p z  . . . . .  Pn}. (53) 

The fact that the generalization to complex polynomials that Maria and Fahmy 
obtained using the real tests in [20] is not identical to Marden's test although 
[20] was derived from Marden's test is again a demonstration of the mentioned 
nonunique way in which a real test procedure can be extended to complex poly- 
nomials. 

5.2 Type D: Chen's  version 

The table of Chen and Chan in [7] and Chen and Shiao in [8] translates into the 
following polynomial recursion: 

Zfm- l (Z )  = fm ,mfm(z )  -- f m , o f ~ ( z ) ,  f n ( z )  = P(z ) /Pn"  

They considered only real polynomials and assumed the tested polynomial is first 
scaled to be monic. With these constraints the recursion coincides with Algorithm 
D. They provide the right stability conditions but their rule for the number of OUC 
zeros 

V = n - { f n - l , n - l ,  fn-2 ,n-2 . . . . .  f0,0} 

is wrong, as the next counterexample may illustrate. 

Example  2. The polynomial p ( z )  = 0.5 + 9z + 12z z + z 3 has 1 0 U C  and 2 IUC 
zeros. It is real and monic so that both Algorithm D and Chen's test associate to it 
the same sequence of polynomials: d3 = p ( z )  and 

dz(z) = 3+7.5z+0.75z z, d l ( z )  = -16.875-8.4375z,  do(z) = -213.57. 

Using (47) 

g3 = d2,2 = 0.75, g2 = dz.2dl,1 = -6.3281, gl = d2,zdl,ldo,o = 1351.5. 

Theorem 8 obtains the correct number of OUC zeros 

v = n-{g3, g2, gl} = n_{0.75, -6.3281, 1351.5} = 1. 

Instead, Chen's rule suggests that the number of OUC zeros is 

n-{d2,2, da,1, do,o} = n_{0.75, -8.4375, -213.57} = 2. 
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6. Conclusions 

The paper used the reflection coefficient to parametrize the tests in the Schur- 
Cohn and Marden-Jury tests class of methods for determining the zero location 
of a polynomial with respect to the unit circle. The SCMJ class was classified into 
four useful types of recursions. Although the polynomials in the four prototype 
sequences that were defined differ only in scaling factors from each other, this 
difference has at times quite an intricate effect on expressing the zero location 
rule in terms of the "native" polynomial coefficients. The invariance of the set of 
reflection coefficients for all tests in the SCMJ class facilitated the derivation of 
zero location rules for Types B, C, and D in terms of the leading coefficients of the 
polynomials in the sequence. The current systematic approach makes it possible to 
classify essentially any test published in this class into one of the defined types in 
spite of the masking effect of operations such as difference in initiation, reversion, 
conjugation, or reciprocation and sign variation of polynomials in corresponding 
sequences. The classification process led at times to corrections to wrongly-stated 
zero location rules, to the support of results stated with no accessible proof, or to 
generalization to some extent of the reviewed tests. 

In the course of pursuing the zero location rule for the C-type scheme we in fact 
obtained yet another proof to the relation between zero location of a polynomial 
and the principal minors (hence the inertia) of the Schur--Cohn matrix generated 
for that polynomial. 

Appendix: Proof of Theorem 1 

Let (rrrn, urn) denote the number of (OUC, IUC) zeros of am(z) (strong regularity 
implies no UC zeros). Obtain from the recursion (4) and its reciprocation the two 
equations 

zarn-l(z) = 1 + "  a~(z) a~_l(Z) I a~(z) 
Xma-a'~' k 'am(z) = 1 + . (a.1, a.2) 

am(Z) k* am (z) 

Observe that a~(z) = 1 for Izl 1. Applying the principle of argument on (a.1) 

for [krni < 1 and on (a.2) for Ikml > 1 proves, respectively, that 

if Ikrnl < ! (zrrn, vrn) = (7rm-1 + 1, 1)m_l) 
(a.3) 

if [krnl > 1 (rCm, v.~) = (Vm-~ + 1, Zm-O. 

Define for each fixed m, m < 
1 . . . . . . . .  m} by 

n, its own sequence (10) of qls, {q~rn), l = 

m 
--I _(m) q}m)= ( 1 - l k i l 2 ) ,  I = l  . . . . .  m, q r n + l : = l "  
i=l 
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Note that in this new notation the original sequence of qm's in (10) corresponds to 
{qm = q(m n), m = 1 . . . . .  n}. 

Normalize each such sequence {q{m)} by dividing each of its entries by its 

minimal indexed member  q~m) 

q (m) t 
I+1 1 

q~m) - -  l--Ii=l (1 --  Ikil 2) "-- ql ,  I = 1 . . . . .  n.  

The resulting new parameters ql are independent of  the index m (therefore super- 
scripts (m) were dropped) and they can be computed recursively as follows. 

1 
ql = qt-I  (1 - )ktl2) ' 0o := 1, l = 1 . . . . .  n. (a.4) 

Thus the sequence in (9) is given by {ql, q2 . . . . .  qn } = {[o~n), O~n) . . . . .  On(~)]q~n)}, 
where the used notational convention is defined by 

{[ql, c)2 . . . . .  q~]ql} := {qlqlq2ql . . . . .  glnql}. 

L e m m a  1. The number o f  (IUC, O UC) zeros o f  the mth degree polynomial am (z), 
(m - vm, Vm), is given by 

Vm n_{q~m), (m) = q2 . . . . .  q(m m)} = n-{ tq l ,  q2 . . . . .  qmJq~m)} �9 (a.5) 

Proof, The proof  of  the lemma is by induction over m = 1, 2 . . . . .  n. The m = 1 
is clear from (a.3). Assume the assertion (a.5) holds until m = l - 1 so that the 
numbers of  IUC and OUC zeros of  at-1 (z) are given, respectively, by 

Vl--1 = n-{[q l ,  q2 . . . . .  ql-1]q~ I-1)} and Y/'l--1 = n + { [ q l ,  q2 . . . . .  ql-l]q~l-1)} �9 

We have to show that the above implies that (a.5) gives the correct numbers of  IUC 
and OUC zeros also for at (z). 

There are two possibilities; either [ktl < 1 or ]ktl > 1. For the case Ikl[ < 1 
(a.3) implies that vt = vt-1 (and zrt = Jrt-1 + 1). It is needed to check whether (a.5) 
provides the same result. For Iktl < 1 (a.4) shows that sgn(q~/)) = sgn(q~/-1)). 
Therefore 

vt = n-{[q l ,  q2 . . . . .  ql-1, qtJq~ l)} = n-{[ql ,  q2 . . . . .  qt-1]q~ ~)} 

= n-{[q l ,  q2 . . . . .  g~l-1]q(l t- l)} = Vl--l" 

In the above we dropped a by definition positive term q~t)~l = 1 > 0 from the 
n_ count. In the case [kl[ > 1 (a.3) implies that vl = zrl_l and again it has to 
be verified that the rule (a.5) is consistent with this case too. For Iktl > 1 (a.4) 

(l)~ __- indicates that sgn(ql , -sgn(q~t-1)).  Therefore 

Vl = n - { [ q l ,  q2 . . . . .  q / -1 ,  ql]q~ l)} = n - { [ q l ,  q2 . . . . .  q / -1 ]q /}  [ ]  

= n + { [ q  1 , q . . . . .  ql_l]q(l l - l )  } ~. 7gl_ 1 . 

Theorem 1 corresponds to m = n in this lemma. 
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