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ABSTRACT

The paper brings a brief report on three new algebraic tests
to determine whether a two variable polynomial has all its
zeros inside the unil bi-circle (is ’stable’). A three-term
recursion algorithm associates the tested two-variable poly-
nomiel with a sequence of matrices (the 2-D ’table’} that
possess a symmelry which allows to compute only half of
the entries for each mairiz. The recursions incorporate a
deconvolution/division mechanism that removes recursively
redundant common polynomial factors and prevents an ex-
ponential grow of the raw dimension of the matrices. A
minimal set of conditions necessary and sufficient for sta-
bility for a polynomial with variables of degrees (n1,n2) re-
quires one or two 1-D tests of degree ny and the lesting of
whether a last 1-D polynomial has zeros in the real interval
[<1,1] or on |2| = 1. The degree of this last polynomial is
only 2n1nz.

1. INTRODUCTION
A two-dimensional (2-D, two-variable) polynomial

np n2

D(z1,23) = ) ) dip2iz}

=0 k=0
is said to be stable if

D(z1,22) #0, for (z1,22) €V xV

where
T={z:|2|=1},U={2:|2| <1}, V={z:|2 > 1},

are used to denmote the unit circle, its interior, and its
exterior, respectively, and the bar denotes closure, e.g.
V=VUT.

A stable 2-D polynomial is the key for the stability of
2-D linear shift-invariant recursive filters and systems. 2-D
stability tests are methods to determine whether a given
D(z1, 22) is stable.

This paper summarizes main results from recent algebraic
2-D stability tests [1, 2, 3, 4] that stem from 1-D stability
tests in [5] (for real) and in [6] [7] (for complex polynomials).
The referenced 1-D tests propagate symmetric polynomials
by three-term recursions with a single multiplier yielding
computationally more efficient algorithms than alternative
1-D stability tests in the classical Schur-Cohn class that
involves polynomial sequences with no special symmetry.
These recursions were also found to offer computational im-
provement for signal processing algorithm related to linear
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prediction and were called in that context immittance do-
main algorithms in distinction from corresponding classical
.[9¢J]atten'ng Levinson, Schur and Schur-Cohn algorithms [8],
9.
Each of the three reported 2-D stability tests consists of
an algorithm that builds for the tested polynomial a se-
quences of matrices {En} (the 2-D stability ‘table’) and
a set of associated necessary and sufficient conditions for
stability. The sequence of matrices {Ex} are obtained by
three-term recursions of matrices or of two-variable poly-
nomials having these matrices as their coefficients. The
polynomial notation will be used for shortness. Each ma-
trix E,, possesses a certain symmetry by which it suffice to
compute only half of the entries of each matrix. Exploiting
these and derivative symmetries may reduce the computa-
tion cost by roughly a factor of two. For each case only
the most refined form of table and smallest set of stability
condition are cited. The referenced conference proceeding
provide a larger set of stability conditions (more conditions
implied by stability that need not to be tested to conclude
it) while forthcoming publications in journal will provide
full details on the derivation and proofs for the theorems.

Typically, a 2-D stability test for D(z1,2z2) uses one of
several simplified stability condition [11]. This includes
the next Huang-Strintzis simplification [10} [12] that will
be used here (with a =1).

Lemma 1. D(z1,z23) is stable if and only if B

(i) D(z,a)#0  forall z¢€ Vandsomea€eV

(ii) D(s,2) #0  forall (s,2)eTxV .

In view of this simplification the task of an algebraic 2-D
stability test is to provide an easy to program and compu-
tationally efficient algorithm to test second condition in the
Lemma. For the current 2-D tests, the choice a = 1 in the
first condition blends instrumentally with the special role of
z =1 in the underlying 1-D stability tests and contributes
to the simplicity of the stability conditions associated with
the 2-D tables.

Clearly, each 2-D stability test may be applied to ei-
ther D(z1,22) = 21°'Dzo itself (the case that is as-
sumed throughout currently) or to z3‘D'zg where 2 :=
[1,2,...,2°,..]" (with preference to be determined by
whether n; > na or ny < na , resp.).

2. EXTENDED REAL TEST

This first 2-D stability test stems from a division-free form
of the test for real polynomials in [5] and was first presented
in [1). Define for the polynomial D(2i,22) the auxiliary
polynomial

W(s',8,2) =D(s7',2)D(s,2) ='Wz ,
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where the notation § := [s™™,...,s7},1,s,...,8™]" is in-

troduced. This operation creates a matrix W of size
(2n1 + 1) x (2n2 + 1). The columns ¢; of W are symmet-
ric vectors, i.e. Jw; = w; where J is the reversion matrix
(with 1's on the antidiagonal and zeros elsewhere). By map-
ping the coefficient polynomials from T to the finite interval
[—1,1] via the transformation

e s+s8t
T2

seT , zel[-1,1]

it is possible to return to the original row size. We shall
denote the resulting 2-D polynomial by

R(z,2) = W(s—ls 81z)|==%(a+a—1)

The above substitution is simply implemented by exploiting
trigonometric relations that follows from regarding ¢ and =
as 8 = e/ and = = c0s0 (j = v/—1) and is also equivalent
to replacing a series expansion in Chebyshev polynomials
Tim(x) = 3[s™ + s7™] by expansion in a power series.

Note that testing condition (ii) in Lemma 1 is equivalent
to testing R(z, ) for the condition

R(z,2) #0 Vre[-1,1] and VzeV

Algorithm 1: Real 2-D Table.

Use R(z, z) to assign to the tested polynomial a sequence
of polynomials n+1 (n := 2ny, is the column size of R) 2-D
polynomials

n—m

EQ(z,2) = ef) (@),
k=0

m=0,...,n

Each coefficient matrix ES7 exhibits the symrnetry ES T =

E,(,f), ie., ef;)] = egf] nemik K=0,.,mn—m

Initiation. E{"(z,z) = R(z,z) + z"R(z, 2~ })

R(z,z) — 2"R(z,z" 1)

E{"(z,2) = —

Recursion. For m =0,1,...,n — 2 compute:
zEf:lz(x,z) =

= ef'r")l o(®)(z + 1)E5.fll(z, z) — 8f2+1]
ﬂm—1(a:)

where 7, (z) = ef;zl olx) for m > 1, fm(z) =1 for m < 1.

o@)ES (z, 2)

Theorem 1. (Stability conditions for Algorithm 1)
D(z1,22) is stable if, and only if, the next three conditions
(i) (i) and (i) or (iii’) hold.

(i) D(z,1)#0 forallzeV
(ii) D(1,2)#0 forallze V
(ii5) €(z) #0 for allz € [-1,1]
(iii*) €(z) > 0 for allz € [-1,1]

where €& (z) := E{ (z,1) = ef;]) o(2).

3. EXTENDED COMPLEX TEST

The current test stems from a division-free form of the test
for complex polynomials in {6] and was first presented in [2].
Define for the polynomial D(z1, 22) the auxiliary polynomial

M(5,2) == D(s"',1)D(s,2) =§'Mz

Note that currently, condition (ii) of Lemma 1 is equiva-
lent to

M(@,2)#£0forseT,zeV

In the forthcoming Superscript * to denote (conjugate)
reversion, defined for a matrix and a vector, respectively,

by P! = JPJp* = Jp where J is the previously mentioned
reversion matrix of appropriate size.

Algorithm 2: Complex 2-D Table.

Use M(3, z) to assign to the tested polynomial a sequence
of n+ 1 (n = n2) polynomials

n—m

EQG2) =) 2@+, m=0,..,n
0

Each coefficient matrix ESS exhibits the symmetry J EQJ
=E£:)’ i-e‘, ef'c'z] k= Jefsz] k=0,-.-,n“m

Initiation. E$(3,7) = M(3,2) + M*(3, 2)

n—m—k?

M(3,2) + M¥(3, 2)
z—-1

E{7(,2) =
Recursion. For m=0,1,...,n — 2 compute:
92,1(8) = €2 @)l 1 ' (®)
qfr?{—l (8) = ef2+1] o(g)efgﬂ] o“ 3)
and ¢ (8) := E{?(5,1).
zE,(:iz(.?, 2) =

- - L. ~ o -
_ I GED, (5,219, (8)2ES)1 5, 214 1 (5)ES (5, 2)

a2 (3)

Theorem 2. (Stability conditions for Algorithm 2)
D(21, z2) is stable if, and only if, the next three conditions
(i) (%) and (%) or (iii’) hold.

() D(z,1)#0 forallzcV

(ii) D(1,2) #0 forallze V
(i) €(3)£0 forallseT
(ii*) €9(8) >0 forallseT

where e (3) = ES(3,1) = 2 (3).



4. EXTENDED MODIFIED COMPLEX TEST

The last 2-D test for the current survey stems from a
division-free form of the modified test for complex poly-
nomials in [7] and was first presented in [3].

Algorithm 3: Modified Complex 2-D table
Assign to the tested polynomial a sequence of a sequence of
‘n 4 2 (n = n2) polynomials

n-—-m
EW(3,2) = Z M@z, m=-1,0,...,n
0

Each coefficient matrix E%) exhibits the symmetry
JEW ] =E® ie. e(:"‘) = Je) k=0,.,n—m

[m) fm) n—m—k?
Initiation. E¥)(3,2) = (z — 1)(D(3, z) — D'(3,2))
E$M(3,2) = D(3,2) + D*(3, 2)

Recursion. For m = 0,1,...,n — 1 compute:
~ #,.
gw(8) = eff_1y o(ef) 0 3)

- ) x i,
g% (3) = &) ((3)eft) o (3)

and let ¢ (3) == 1.

2EX) (3,2) =

_ W @EL 6, 2198 (5)2B% (5, -4 H)EL, 5, 2)
qr(r‘:-)—l(g)
Theorem 3. (Stability conditions for Algorithm 3)

D(z,z2) is stable if, and only if, the next three conditions
(i) (i) and (iii) or (iii’) hold.

(i) D(z,1)#0 forallzeV

(ii) D(1,2)#0 forallzeV
(iif) e{)(3) #£O0 forallseT
i) &@G)>0forallseT

ore
where e (5) = < : (;) and ¥)(3) = E¥)(3,1).
€0
Note that e{*)(3) = ef::]) o(®.

5. NUMERICAL EXAMPLE

For illustration, consider the polynomial used as an example
in several papers following [10].

0 0 0.2500 1
21]]0 0.2500 0.5000 P

D(z,z2)=[1 =z}
0.2500 0.5000 1.0000

22

For conditions (i) and (ii), D(z,1) = D(l,z) =
[0.25000.7500 1.7500]z are easily determined to be stable.
Entries reflecting structural symmetry will be shown inside
parentheses.

2

5.1. Extended Real 2-D Test
0.0625 0.2500 0.6875 1.0000 0.8125
R=| 00000 0.1250 0.5000 1.1250 1.2500
0.0000 0.0000 0.2500 0.5000 1.0000
0.8750 1.2500 1.3750 (1.2500) (0.8750)
E{? =] 1.2500 1.2500 1.0000 (1.2500) (1.2500)
1.0000 0.5000 0.5000 (0.5000) (1.0000)

0.7500 1.5000 (1.5000) (0.7500)
E{ =| 12500 2.2500 (2.2500) (1.2500)
1.0000 1.5000 (1.5000) ‘1.0000)

1.5938
5.2188
8.2500
6.6250
2.5000

1.0312
3.3750
56250
4.7500
i 2.0000

(1.0312)
(3.3750)
(5.6250)
(4.7500)
(2.0000)

E{ =

0.4219
2.3438
6.1953
9.6250
9.3438
5.3750
1.5000

(0.4219)
(2.3438
(6.19533
(9.6250
(9.3438
(5.3750)
(1.5000)

B =

The computation of the next matrix involves for the first
time a division of the right hand side polynomial by a (non-
trivial) factor 7, (z) = [0.7500, 1.2500, 1.0000]x. The first
deconvolution shortens the right hand side matrix (that has
2n2 + 1 — 4 columns, i.e one in this example) by n2 (=2 in
this example) rows.

E{" = [0.2637,1.8867,6.8486,15.7266, 24.7578, 27.1406,
20.3281, 9.5625, 2.250¢]*

The polynomial x*E{” # 0 for z € [-1,1]. This may be
verified numerically or algebraically, by conversion from =z
to s with the aforementioned mapping of [-1,1] to T then
using the method in [5] to show that the resulting symmet-
ric polynomial does not vanish on T'. Thus, according to
Theorem 1, D(z1, z2) is stable.

5.2. Extended Complex 2-D Test

0.4375
1.0625
2.1875
0.8750
0.2500

0 0

0 0.4375
0.4375 1.0625
0.1875 0.4375
0.0625 0.1250

0.2500
0.8750
2.6250
1.2500
0.0625

0.2500
0.8750
1.7500
0.8750
0.3750

1.2500  (0.5000)
0.8750  (1.2500)
2.1250 gz.szso)
(0.8750)  (0.8750)
(0.1250)  (0.2500)

EQ =

(0.3750)
(1.2500)
(1.7500)
(0.8750)
(0.2500)

E® =



Set m=0 to compute E{: g{* =[0.0938 ,0.5469 ,2.1875
,4.5156 ,6.7031 ,5. 1406 2 6250 ,0. 7500 0 1250]‘
(c) = [0.0938 ,0. 5469 ,1.8594 ,3.6094 ,4.7969 ,3.6094
1 8594 ,0. 5469 ,0. 0938] ObtaJn the rlght hand

side numerator polynomial’s matrix coeflicient that in

this case the matrix has one column {[0.0547, 0.4336,

2.0840, 6.3281, 14.066, 22.301, 26.447, (22.301), (14.066),

(6.3281),(2.0840),(0 4336) (0.0547)]*. Obtain ¢ by sum-

ming the columns of ES?, ¢{” = [0.8750, 3.0000, 7.3750,
(3.0000), (0.8750)]° and deconvolve the numerator with
§?. The row size is reduced by 4 (=2n;) and the result is

EY = [0.0625, 0.2812, 0.8906, 1.5938, 2.0781, (1.5938),
(0.8906), (0.2812), (0.0625)]*

The corresponding symmetric polynomial s‘E§°) can be
tested (e.g. by [5]) to have 4 zeros in V their 4 recipro-
cals in U and no zeros on T. Thus D(z1,22) is stable by
Theorem 2.

5.3. Extended Modified Complex 2-D test

1.0000 —0.5000 (—0.5000) (0.0000)
E® = | 05000 —0.5000 (—0.5000) (0.5000)
0.0000 —0.5000 (—0.5000) (1.0000)

0.5000 0.5000  (0.5000)

1.0000 0.5000 (0.5000)
E(I‘)
0.5000 (0.5000) (1.0000)

Set m = 0 to compute E*), g{*) =

,0.5000 ,0.0000]¢, g{*) =
, 0.5000]*

[0.5000 , 0.7500 ,1.2500
{0.5000 , 0.7500 , 1.5000 , 0.7500

0.5000 (0.5000)
1.7500 (1.5000)
41250 (3.7500)
E® = | 43750 (4.3750)
3.7500 (4.1250)
1.5000 (1.7500)
0.5000 (0.5000)

Set m =1 to compute E*. ¢¥) = [0.5000, 1.7500,
4.7500, 7.0000, 8.1875, 6.0000, 3.4375, ,1.1250, 0.2500],

¢® = [0.2500 ,1.6250 ,6.5625 ,17.1250 ,33.6250
,48.9219 ,56.0312 ,(48.9219) ,(33.6250) ,(17.1250)

,(6.5625) ,(1.6250). ,(0.2500)]. Each column in the right
hand side numerator matrix is deconvolved by q((,“). There
are ng —m columns at step m - one column currently
that is given by: [0.2500,1.6875 , 7.3750 , 21.469 , 48.102
, 82.781 , 115.02 , 127. 27 (115 02) , (82 781) , (48 102)
, (21 469) (7. 3750) , (L. 6875) (0. 2500)]‘ After decon-

volutlon it becomes E(“) = [0.5000, 2.6250,9.3125, 20.344,

33.312,37.969, (33.312), (20.344), (9.3125), (2.6250),
(0.5000))

As the final construction step, eg“)(.’s’) = E®(3)/e¥(s)
has to be computed where (3) = E®(3,1) =

[2.000, 1.500, (2.000)]5.

e = [0.2500, 1.1250, 3.5625, 6.3750, 8.3125, (6.3750),
(3.5625), (1.1250), (0.2500)]"

The condition &)(s) = s'¢¥*) # 0 Vs € T may be ver-
ified algebraically (e.g. by [5]) or numerically. Therefore
D(z1, z2) is stable by Theorem 3.

6. CONCLUDING REMARKS

Three efficient algorithms and conditions for testing
whether all the zeros of a two-variable polynomial reside in-
side the unit bi-circle were presented. A computational cost
effective implementation should exploit the symmetries of
the involved arrays. The second and the third algorithms
are of comparable count of operations and for a polyno-
mial of variable degrees (n1,n2) they end with test zeros on
|2| = 1 of a symmetric polynomial of degree 2nin2. The first
algorithm involves a double amount of iterations and ends
with a positivity test on [-1,1] for a polynomial of degree
2n1n2 that is mappable to testing a symmetric polynomial
of degree 4nins for zeros on |z| = 1. Proofs of theorems,
more stability conditions, details and improvements will be
the subject of forthcoming publications.
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