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Enhancement of Connected Words in
an Extremely Noisy Environment

Yuval Cohen, Adoram ErellMember, IEEE,and Yuval Bistritz,Senior Member, IEEE

Abstract—A speech enhancement algorithm that is based on maximuma posteriori(MAP) estimator based on an acoustic
a connected-word hidden Markov model (HMM) is developed. speech model. The model is expressed in terms of a Gaussian

Speech is assumed to be highly degraded by statistically indepen-, 1oregressive (AR) HMM. Noise levels considered have been
dent additive noise. The minimum mean square error estimator )

is derived for a connected-word HMM. Further, we derive an Such that the noisy signal is mostly intelligible, addressing

estimator based on a connected-word HMM with explicit state applications of improving the performance of speech commu-
duration. Listening experiments performed with digit strings nication systems in noisy environments.

hav_e shown an increase of |_nteII|g|b|I|ty. The best results were In the current work, we consider the case where speech,
achieved when subjects who listened to the enhanced speech were . . .
given the results of an automatic recognition system. available from gsmgle source, is highly degraded (SNR of less
than 0 dB). This very low input SNR transforms the problem

from improving speech quality for a more convenient listening

to the problem of making the recorded speech intelligible. Our
goal is to maximize the total number of correctly recognized

I. INTRODUCTION words, without posing demands for real time. Possible ap-

EECH enhancement concerns the improvement of pgﬁcations for a small data base are recognition of telephone
geptual aspects for human listening. This includes impro@umbers or bank account numbers from a noisy recorded
ing the speech quality, its intelligibility, and degree of listenegpeech by intelligence and police surveillance, investigation
fatigue. Different approaches have been applied to enhafdalisputed credit card numbers provided over the phone in a
degraded speech signals. Among them are approaches fggy environment, and other similar situations where the goal
exploit perceptual aspects of speech such as the periodidityo maximize the total number of correctly recognized words
of speech, or an underlying model for speech productiogpoken in a noisy environment, without posing demands for
Methods based on spectral subtraction have been widely usedl time.

Other systems operate on more than one input, exploiting theMe present here a speech enhancement algorithm that is
correlation of the noise. These approaches are well presemgtimized for the case of our interest. We utilize a connected-
in [1] and [2]. The statistical-model-based approach assumesrd model, thus exploiting phonetic and linguistic informa-
that the joint statistics of the signal and the noise is knowtion of the given vocabulary. We develop an enhancement
for instance, a hidden Markov model (HMM) can be assumeglgorithm for a connected-word model that includes explicit
An optimal solution, in the statistical sense, to the speech efiate duration. The above statistical model can be used also for
hancement problem can be defined by minimizing the expeciggtomatic speech recognition. Under the model assumptions,
value of a given distortion measure between the clean and the resulting recognizer is optimally adapted to the noise. The
estimated speech signals. possibility of enhancing human performance by being given
Speech enhancement methods that are based on HMM& results of the recognizer is also examined.
have been recently studied by Ephraim for enhancing speechi, order to evaluate the performance of the speech enhance-
signals recorded via a single microphone [3][5]. In higent and recognition algorithms, we considered the set of
work, Ephraim addresses the problem of enhancing contifyits as a test vocabulary. Although it is a small vocabulary,
uous, speaker-independent speech, degraded by a statistiGaly concept of whole-word recognition and estimation can
independent additive noise at input ;lg_nal-to-n0|se ratio (SN fully tested. Moreover, the problem of recognizing and
of apo_ve 5 dB. Ephraim takes a statistical apprqach to deve ancing connected-digit strings is of practical use.
a minimum mean square error (MMSE) estimator, and 4The enhancement algorithm was evaluated by the following

three criteria:
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1) the acoustic HMM (used by Ephraim); the model. The estimatiofft(k) is assumed to be a Gaussian
2) a connected-word HMM; vector with independent elements, thus its elements can be
3) a connected-word HMM with explicit state duratiorindependently estimated by the following expression:
model. M L
Section Il describes implementation issues and the test:(k) = W, (k)Z:(k) = Z Z q TWE (k)| Ze(R) (D)
procedures. An enhancement procedure that involves an in- a=1 v=1
teraction of the listener, an automatic recognizer, and tighere W, (k) denotes the frequency domain Wiener filter,
estimator is described in Section 1V. The tests results are givgiien that the state and mixture component arand~, and
in Section V and discussed in Section VI. q;"" denotes the posterior probability of this particular state
and mixture component given the noisy signal observations
Il. MMSE ESTIMATION until time framet. The estimated speech signgl, can be
This section describes the MMSE estimation based onohtained by taking the inverse DFT &t (k).
connected-word HMM. First we review Ephraim’s model and Let S 7(k), S,(k) be the power spectra of the clean
his estimation algorithm. Then we show how to extend his fospeech and noise code words (calculated by dividing the
mulation to connected-words, utilizing linguistic informationvariance of the AR source innovation by the DFT of the auto
correlated coefficients of the AR process), then

S 7(k
This section summarizes the MMSE enhancer developed W (k) = 5 (£)

TN T )
@,y
by Ephraim [4]. The clean speech signal was assumed toTh . babili .Sy f (k)th S".(k) ianal |
be the output of an HMM withd/ states andL mixtures e posterior probabilities for the noisy signal are equal to

of Gaussian AR processes. Thus, at each time frame tmg normalized forward probabilities associated with the noisy
model represents speech as a vector generated by the Gau?égﬂ?l’ €.,

A. Acoustic HMM

AR process associated with the particular state and mixture ¢ = FUU 1 3)
component chosen at that given time. An ergodic topology was ¢ ¢ M L

chosen so that the resulting acoustic ergodic HMM (EHMM) Z ZF{X’W

model could serve as a speaker and as a context independent, a=ly=1

continuous speech model. The noise was assumed tovideere F,°7 is the forward probability associated with the
a stationary process characterized by Gaussian AR vectogsy signal.

which are statistically independent and identically distributed The posterior probabilities are efficiently calculated [6], [7]
(this is identical to a one-state, one-mixture component HMMy the following recursion:

The model parameters were estimated using the segmental M L
K-means algorithm [6]. This algorithm approximates the S @ tvacya f(zla, )
Baum algorithm with less computations. An initial model . . v=1p=1 £50
is obtained by applying the generalized Lloyd algorithm int T M © M L >
conjunction with the Itakura—Saito distance measure to a Z Z Z Z 4G ava Cyja fl2ela, )
subset of the training data to create &h entry code book. a=ly=lv=1p=1
Then, all training set vectors are clustered using the estimated, . T Cyla f(20]; )
codebook and the data within each cluster is used for designirﬂj ~ M L (4)
code words representing thie mixture components of that Z Zwa Cyla f(20lt, ¥)
state. The mixture component probability vectoris also a=1~y=1

estimated during this procedure. A uniform initialization ofyhere «,,, is the state transition probability from stateto

the initial state probabilitie&, and the pl’obablllty transition statear and Crla is the mixture coefficient. Since a Gaussian
matriX, A, Completes an initial model estimation. This mOdQAR model was assumed’ the probabmty density function (pdf)
is the starting point for an iterative procedure in which thgf the noisy speech sample vector given the state and the
state and mixture component paths are detected via the Vitathiture componentf(z|y, a), can be shown to be Gaussian

algorithm, then the model parameters @, c) along with the with covariance matrix which is equal to the sum of the clean
parameter set of the AR processes of the HMM are update@eech and the noise covariance matrices.

Noise model training was performed simply by calculating the .
centroid of the noise model training data vectors. B. Connected Digit HMM

Lety:, ne, 2¢ denote the time framevectors ofK samples  This subsection presents a Gaussian AR connected-word
of clean speech, noise, and noisy speech, respectively. bstimator. It differs from the EHMM by the topology (thé¢
Y:(k), Z:(k) be thekth elements of the discrete Fourier transmatrix) and the training process. The connected word model
form (DFT) of the clean speech and of the noisy speech. Itircorporates linguistic information concerning the structure of
assumed that the noise is additive and statistically independimatividual words. Specifically, thel matrix contains all states
of the clean speech, and that the speech and noise canfrbm all words, having a form of a block matrix. Each block
represented by the above models. Under these assumpticmsesponds to a specific word probability transition matrix.
the MMSE estimator of the speech is a filtdf that takes Additional elements are added for the transition probabilities
into account all the possible states and mixture componentsbetween words.
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The connected word estimator was realized for the setcognition rates for speaker-dependent systems have been
of digits. Each digit was characterized by an HMM with amproved by adding explicit duration model to the HMM [9].
left—right Bakis topology [8] with a fixed number of states The state duration probability, (d) was estimated by build-
and L mixture components. Word transition probabilities werig a duration histogram for each state out of the state sequence
implemented in the last state of each digit allowing transitionsvealed by the Viterbi algorithm during the training process.
to that state itself or to any first state of a digit. A special worBHollowing [10], the normalized histograms were associated to
in the vocabulary was designated for silence. the particular states as the discrete probability functions of the

Similarly to the EHMM, the parameter set of our connectestate duration.
digit HMM (DHMM) model for the speech signal was esti- The transition matrixA was modified so that all state
mated using the segmental-means algorithm. However, intransitions from a state to itsel& ,) were set to zero.
this case the Viterbi algorithm was supervised by the known Speech signal estimation was based on (1). The additional
digit sequence of each sentence in the training set. The init&éte duration affects the calculation of the posterior probabil-
model was constructed by combining separately created digjies, as more possible paths can be taken to reach a specific
models. The initial digit model was created by applying thstate. A well-known recursion exists for the calculation of
generalized Lloyd algorithm to a training data subset, manuatlye forward probabilities, which includes state duration [11].
segmented into words. Due to the nature of the vocabulafese forward probabilities, which are associated with the
(digits only), the transition probabilities of the last state afioisy signal, are defined by
each digit were forced to be equal. (A detailed description of F&Y = P(zoz1 - 21,7y, o €nds att) @)

the data base is given in Section lll.) o , .
Since the separate digit models were combined to one molf¥§ Probability of being at state and mixture component

by creating a global transition matrix in which all digit state@SSUMing that state ends at timet. For speech recognition,
participate, speech enhancement may proceed using the skifer€cursion is followed by select|on_ of an optimal path SO
(1)=(4) as in the EHMM case. For the current modd, is that_ all false “assum_ptlons” that a particular state ends at time
equal to the total number of states in all digits. ¢ will not be taken into account.

In the above causal approach, the forward probability is PO the case of estimation, we introduce a new forward
used for calculating the posterior probability for the state arf@riable. Define
mixture component given the noisy speech. A noncausal ap- FoU = Plzozy 2,7, Q) (8)

proach is obtained by ysing the f.o_r\./vard_—backward proba.bilitieoé an absolute (total) probability of being at state This
to compute the posterior probabilities given all observations 9f o (normalized by the sum over all~) then multiplies the

the noisy signal. We anticipate that it will be advantageous {iener filter. The absolute forward probability is calculated
use the DHMM with the forward-backward procedure in casgs, aqding to the forward probability the possibilities of the
where the SNR at the end of the word is better than at i{§rent state ending at timer 1,¢ +2,---, ¢+ D — 1, where

beginning. For this approach, the calculation of the posterigf is the maximum permissible duration. A detailed derivation
probabilities in the enhancement algorithm has to be changgd,o spsolute forward probability is given in the Appendix.

as follows: oo It is shown there that the product of the state duration pdf
o = F, B, (5) IS substituted by one minus the state duration probability
¢ ML distribution (cumulative) function, so that
ZZFtﬁBtﬁ M L D
B a=ly=1 Fr=3"3 "> B aye Mo (d)eya £z, )
whereF';a, v is the normalized forward probability defined in v=1 p=1 d=1
(3) andB,"" is the normalized backward variable recursively t—1
calculated as follows: I Gl ()
M L s=t—d+1
3 B aacu f(zgalv, ) where
Fam/ _ v=1 p=1 D d—1
¢ MEME . Ma(d):Zpa(k)zl—Zpa(k) (10)
Z Z Z Z B3t aow cupp [ (zeg1|v, 1) k=d k=1
a=lay=1lv=lp=l is the state duration probability distribution (cumulative) func-
. t1<T_ 1 1 tion, F,”", are the forward probabilities, and(z|a) =
By = LT ML (6) E??:l cyjaf (25|, m) is the probability of observing, given
Z Z a statex. (Products and sums assume null values of 1 and 0,
o o respectively, when subindex exceeds upper index.)
To conclude, speech enhancement can be formulated as in
C. Connected Digit HMM with State Duration (1),

In this Section we develop an estimator based on a R M L N N
connected-digit HMM with explicit state duration (DDHMM). Yi(k) =Y. > QWK | Zu(k) (11)
This part of the work was motivated by reported evidence that a=1 y=1
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where Q7 is defined as the absolute posterior probability TABLE |
given by the normalization DATA BASE PARAMETERS

Fe sentences in  sentences in  digits in digits in  digits manually
t (12) speaker training set  testing set  training set testing set segmented
male 69 8 210 56 110

M L ’
E E Fo female 69 8 199 54 81

a=1~y=1

Y
" =

and perform recursion foF,* " and F,* " as follows:
D. Scaling M L D
The recursion formulae for the forward probability and for F;*" = Z Z F" ! aye pa(d)yjo (2], )
the absolute forward probability (9) are prone to numerical v=1 p=1 d=1
instability. The stability of the procedure may be improved t—1
by introducing some appropriate scaling and as a result the 1] F sl (18)
recursion is performed on the posterior probabilities rather s=t—d+1
than on the forward probabilities [7], [11]. The procedure M L D
is a modification to the basic scaling as in (4), but takes 77 =>_ > > F"t aya Ma(d)cyja f' (2|, 7)
in consideration that all previously calculateg must be v=1 p=1 d=1
normalized by the same factor. The following equation gives t=1
the resulting recursion for the scaled forward probabifif§/" ] PGl 19)
M L D s=t—d+l
FloY = Z Z 0" Gy Pald) ¢y (2], ) It can easily be shown that
v=1 p=1 d=1 Ft/a’ 7= koky -kt Ftoz,"/ (20)
f‘t/a’ 7= koky -kt f-toz,'y' (21)

s=t—dtl Thus, all the introduced constants cancel out when the poste-
i1 rior probabilitiesq, and Q, are calculated. Note that the scale
F%7 =mapa(t+1) ot (2], 7) H Flzs|)w, fac'torkt !s composed of two elements: The maximum function
s which bringsf(z¢|«, ) to the range [0, 1], and the sum of the
Lt previous scaled absolute probabilities. By definition this sum
+ o f (2|, ) Z 44 e pa(d) is always greater than the sum of the forward probabilities and
v=1 pu=1 d=1 is never equal to zero. Consequently divisions by very small
t—1 numbers are avoided. The tefm’_, Ef{zl F,% acts as a
- I fGsloyws 0<t<D-1 (13) feedback that keeps the valuesif" " in the dynamic range.

s=t—d+1 The feedback term itself is clipped to a lower and upper limit
where the scale factors, are given by to prevent underflow or overflow.
M L -1
wy = [Z ZF{“” (14) lIl. | MPLEMENTATION |SSUES
a=1~y=1 . .
and the posterior probabilitieg are given by For applications such as speaker dependent systems or

rr, surveillance concerning speech enhancement, a large clean
Q= wely (15) speech data base for the subject speaker is not likely to
However, we encountered cases where this procedure $i#l available. Therefore, contra to the general belief that
led to an unstable behavior. This occurred whéff"” HMM's need a large data base for properly estimating the
was very small for alla, v, causing the scale factow; HMM parameters, we chose to implement our algorithm on
to be very large. Asw, is involved in the calculations of a relatively small data base of a single speaker. Thus, we
Ft’_‘f_’lw, Ft’f_’;, e F{_‘T_’D” having nothing to balance it, their picked a data bases for a male and for a female speaker from
values tended to grow beyond the computer’'s dynamic rangiee Tl connected digit data base [12]. The vocabulary consists
In fact, depending on thd matrix and the state duration pdf,of 11 digits (Zero/O, One, Two,.., Nine). Each data base
cases wherd’}“" = 0V «, v may also be encountered andvas divided into two independent sets: A training set and a
imply divisions by zero. testing set, so that the sentences in the testing sets were not
In order to overcome such difficulties we developed a neinwcluded in the training sets. A selected subset that included
scheme for stable forward probabilities recursion. Define approximately half of the training set was manually segmented

[ (ze|ony) = ke f (], ) (16) for initialization_of the HMM parameter set_for each digit.
Table | summarizes the parameters concerning the data base.
where the scale factors, are given by In order to extract the speech features, i.e., the coefficients
1 of the AR process, speech was divided into frame& cf 256
ke = M L 17) samples obtained at an 8 kHz sampling rate. Speech frames
max [f (zt] e, 7)) Z Z F were weighted by a trapezoidal window with a slope duration

a=1v=1 of eight samples.
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Two types of noise sources were used: a Gaussian white 7¢.0
noise generated by the computer and noise recorded with a
desktop microphone in a computer room. As opposed to white 6501
noise that covers all the speech bandwidth, room noise i§ . |
more dominant in the lower frequencies. Hence, sentences

degraded by room noise were usually more intelligible tharg 5.0

those degraded by white noise. The input SNR in all tests Wa§ ; \‘\A
less or equal to 10 dB. The choice of the lower limit aimeds >
to a degradation level for which human recognition error rategﬂ 45.04
falls in the 40-60% range. This requirement guided us intc
choosing minimal input SNR’s 0£13 dB for the room noise  40.01

and 0 dB for white noise.

The noisy speech was enhanced by the MMSE estimators >>* 3 3 7 3 s
described in Section Il. The ergodic HMM (EHMM) had = test number
8 states, and. = 32 mixture components of Gaussian AR
processes of ordeV, = 10. The connected-digit models had |+ noisy -#— EHMM —e— DHMM l

five states per digit (a total d¥/ = 60 states including a word
for silence), and. = five mixture components per state. ThesEig. 1. Average error rates (%) obtained by six listeners for the recognition of
parameters were chosen based on tests of a wide rangé;ésg/léeliH:\ggAmeggiasr;'ed sentences and DHMM enhanced sentences (female
values, and several SNR levels. A special word was assigned
to represent silence portions of the clean speech. The modeltfore frame according to the state and mixture component path
this word was trained by the silence segments of the trainidgtermined from the clean speech. This path was determined
data set found at the beginning of the sentences. Explicit stbiea Viterbi decoder using the DDHMM.
duration was added to the connected-digit model. Each state
was assigned a state duration probability with a maximum IV.  MAN-MACHINE INTERACTION
range of D = 25. The noise was assumed to be the output of In surveillance applications with very low input SNR’s,
a Gaussian AR pdf. The noise spectrum was estimated fromtag aim is to achieve a maximum recognition rate out of a
average of all available noise model training sequences. Thg#gen recorded speech with no constraint on time or com-
sequences were available from noisy sentences segmentputation effort. During preliminary tests, we noticed that
which speech was absent (usually at the beginning or endmefiman recognition rate was similar to that obtained by an
a sentence). automatic recognizer (a Viterbi recognizer adapted to noise
[3]). However, the correctly recognized words were not al-
ways the same; i.e., the automatic recognizer succeeded in
Comparison between models is given by means of i) SNRRcognizing words that the listener failed to recognize, and
values for the enhanced signal, ii) the ltakura—Saito distandgee versa. Motivated by these observations, we considered
between the enhanced sentence and the clean sentence, artavidi)interactive procedures to increase the overall recognition
human listening tests performed by untrained listeners. Thage.
Itakura—Saito distortion measure is known to be more corre-The first procedure is as follows: The listener who had
lated to speech intelligibility than SNR. In practice howevefinished determining all digits in the string was supplied with
both methods become unreliable when speech is highly dike digit string output of the automatic recognizer (providing
torted. Therefore, for highly degraded speech, the evaluatitive listener this string at an earlier stage might have influenced
was done only by human intelligibility tests. These tests wehgs result). Now he began a new session in which he was again
performed in two stages: First, the noisy sentence was playeguested to recognize the words in the sentence.
several times until the listener felt he extracted all possibleIn a second procedure, the listener was allowed to affect
information from the sentence. The digits he recognized wetfee enhancer by supplying it with a suggested digit string.
written down. In the second phase, a similar process waAsViterbi recognizer adapted to noise and supervised by this
repeated with the enhanced sentence obtained from one ofdigit string produced a state sequence which was used by the
competing models. In this phase, the listener could listen upenhancer. Alternatively, the enhancer was designed to accept
request to both the noisy and the enhanced sentences. Fin#lfig,suggested digit string, and perform the enhancement using
the average error rates were computed for both stages. a constrained model. The listener could hear the sentence
The MMSE enhancement algorithm can be logically dividethat resulted, subject to the constraints he had given. He was
into two steps: First, finding the most likely sequence of stateowed to change his input string repeatedly and test the
and mixture components and second, applying the appropriegsults until satisfied.
Wiener filter. In the following tables a comparison to an
MMSE estimator with an optimal state path (OSP) is provided
as an attempt to give a theoretical performance bound for theThe MMSE enhancers were applied to both female and
MMSE estimators based on Gaussian AR models [6]. Thisale testing sentences in the presence of white noise. Av-
estimator is calculated by choosing the Wiener filter for ea@rage Itakura—Saito distortion is given in Table Il for the

A. Performance Evaluation

V. EXPERIMENTAL RESULTS
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TABLE 1 TABLE V
AVERAGE ITAKURA—SAITO DISTANCES OF THEENHANCED TESTING SENTENCES AVERAGE ERROR RATES (%) OBTAINED IN MAN-MACHINE INTERACTION
(FEMALE SPEAKER, WHITE NoISE) OBTAINED BY UsING THE MMSE Tests DHMM EsTIMATOR WAS APPLIED TO NOISY SENTENCES
EsTimMATORS, THE MMSE ESTIMATOR WITH AN OPTIMAL STATE PATH (FEMALE SPeEAKER, Room Noisg, —13 bB). THE LISTENER
OBTAINED FROM CLEAN SPeeCH (OSP),AND No EsTiMATOR (NOISY) WAS SUPPLIED WITH THE OUTPUT OF THE AUTOMATIC RECOGNIZER
SNR_DDHMM DHMMFB DHMM EHMM OSP NOISY noisy enhanced human-recognizer info improvement(%)
10 1.15 1.09 1.19 1.42 0.88 4.23 567 178 15.6 233
5 1.67 1.61 1.68 185 116  7.52 : : RO '
0 2.63 2.68 2.65 2.49 1.33 1347
TABLE Il phase was added to the human recognition tests. In this phase,
SAME AS TABLE Il FOR A MALE SPEAKER after listening to the noisy sentence (first phase) and the
SNR DDHMM DHMM-FB DHMM EHMM OSP NOISY enhanced sentence (second phase), we provided the listener
10 1.20 1.17 1.23 128 081 796 with the output of the automatic recognizer. These tests were
5 1.50 1.51 1.56 1.86 1.02  11.92 -
o Ls6 o8 Lss 939 107 1760 pe_rformed on female tesyng sentences degraded by room
noise at a-13 dB SNR, which were enhanced and recognized
TABLE IV with the DHMM. The average error rate for five listeners was
AVERAGE ERROR RATES (%) AND THE TOTAL IMPROVEMENT OBTAINED IN computed, and is shown in Table V.
Human ReCOGNITION TESTS (FEMALE SPEAKER, Room Noise AT —13 bB Th n r h or in ion IV w |
SNR). BNHANCEMENT PERFORMED BY THE MMSE ESTIMATORS USING THE 3 i\e(;o dhapﬁ oach p Odedse(;j hSECt 0 " as as_o
ErGobic HMM (EHMM) AND THE CoNNECTED-DIGIT MoDEL (DHMM) tes_te : _Ourt phase was added to the recogm“(_)n_ tes_t n
i _ which the listener could suggest to the enhancer a digit string.
model  noisy enhanced improvement(%) The output of this guided enhancer was played to the listener
EHMM  56.2 94.2 3.5 so he could confirm his assumption or alter it. This iterative
DHMM  55.6 46.6 16.2 procedure was repeated until the listener was satisfied. Such

tests for a—13 dB room noise failed to improve the overall
female speaker and in Table Ill for the male speaker. Carefglcognition rates. However, this procedure was found to be of
listening to the enhanced sentences convinced us that Yiague for higher SNR’s in cases where the sentence contained
perceived quality was consistent with the results shown énly a single questionable digit. For example, in one case a
Tables Il and Ill. In most sentences the connected-digit modédilstener was able to recognize a digit correctly after trying three
(DHMM, DHMM-FB, DDHMM) outperformed the ergodic alternatives. In another case, where a digit was completely
model (EHMM). This was more noticeable with lower inputinrecognized, he was able to reduce the uncertainty to one of
SNR levels. All tested models obtained similar SNR improvewo alternatives.
ment. The estimators provided enhanced sentences with aalthough the computation effort is irrelevant to the applica-
average SNR of 15.5, 11.5, and 8.0 dB for 10, 5, and 0 dB inptiins we address, we note here that enhancing a 3 s sentence on
SNR’s, respectively. Sentences enhanced using the OSP med8parc10 workstation took 10, 14, 17, and 130 s for EHMM,
were found to be less distorted than the sentences enhandbétMM, DHMM-FB, and DDHMM, respectively.
using other models, and were completely intelligible even at
an SNR level of—13 dB room noise.

Spoken digit strings at a 10 dB input SNR level were noisy The purpose of the research presented in this paper was
enough to be inconvenient for the listener, but produced almdst develop and examine methods for achieving maximum
no problem of intelligibility especially when unlimited numbehuman recognition for extremely noisy sentences. The basic
of playbacks were allowed. In order to compare the relativeodel presented by Ephraim [4] was modified to utilize
intelligibility obtained by the various models, we performedinguistic information by using a connected-word model with
intelligibility tests with untrained listeners for lower input SNRfinite vocabulary. A further refinement of the model was the
levels. Each listener participated in two independent tests, an&oduction of explicit state duration model. We examined two
for the EHMM enhanced sentences and one for the DHMNethods for achieving maximum recognition. First, MMSE
enhanced sentences, following the procedure describedestimators based on these models were derived. Second, two
Section IlI-A. The average error rates (%) for the noisy arrocedures for integrating the human and computer recognition
enhanced sentences (female speaker, room noise-aB8alB abilities were studied.

SNR) for EHMM and for DHMM were computed for six The results in Tables Il and Il show that the DHMM out
independent listeners. The results are shown in Fig. 1. psrforms the EHMM, suggesting that linguistic information
the error rate of the noisy sentences recognition was fouisdindeed instrumental in the enhancement procedure. The
to be similar for both tests, only the average was plottedxplicit duration model did not produce any significant im-
The average results for all listeners, summarized in Table Igrovement in the perceptual experiments, but did improve
indicate superiority of the DHMM. Moreover, the listener@automatic recognition. We hypothesize that the recognition
described the quality of speech in DHMM-enhanced sentencese improvement is due to a better selection of the state
as better than with EHMM enhancement even when they weaed mixture component path via the Viterbi algorithm. In
able to recognize digits correctly with both models. the enhancement process, on the other hand, there is no

In Section IV we described two procedures foselection of a unique path, but rather a summation over
man—machine interaction. For the first approach, a thiedl states. Thus, as noise increases and the Viterbi path

VI. CONCLUSIONS AND DISCUSSION
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becomes less dominant, the correlation between recognition =l
and enhancement performances weakens. ’ H f(zs]a) t>D -1
The most significant result of our study is that processing s=t—d+l

the noisy signal with the DHMM estimator increased the .~ s

intelligibility (Table IV). It is possible that the intelligibilty  ~¢  — "ePa(t+ Deva flztle 'V)SUO fesle)

increase is an outcome of more convenience in listening to M Lt -

the processed speech, which reduces the Iisteqer’s fatigqe, +Z Z Z FV e pald) ey f2e] s )
compared to the nonprocessed speech. The noise reduction v=1 p=1 d=1

encouraged the listener to hear the sentence many times, -1

while the inconvenience of the noisy sentence usually led the . H fzs|) 0<t<D—-1. (22)
listener to use fewer playbacks and possibly caused worse s=t—d+1

performance. The EHMM estimator also increased the SNRConsider a current state at time frarhevhich has begun

but the enhanced sentences suffered more distortion and ahdime ¢ — d. This state may last until timé+ 1 or ¢ + 2

intelligibility did not improve. etc., until timet — d+ D. Therefore, an additional probability,
The best intelligibility was achieved by combining the hu¥;"" (d) must be accounted for, as follows:

man and the machine recognition capabilities. The recognition M L D

error rates obtained for the automatic recognizer and for theV;""(d) = > > > Fhavapa(k)eyja f(zla, )

listener were found to be at similar levels on independent v=1 p=1 k=d+1
tests. Making the recognizer’'s output available to the listener =l
increased the overall intelligibility. I Gl (23)

The second interactive approach, in which the estimator was s=t—dtl

guided by a digit string supplied by the listener, failed for ver@ total expression apcogntmg for all possible starting points
low input SNR levels. For these SNR levels the recogniticf (€ current state is given by

error rate is approximately 50%, where almost half of the ., D @

errors are due to deletions. Guiding the estimator along i = Z Vit '(d)

partially mistaken path, with no indication of deleted words, d]\jl . b D

led to poor results. For higher SNR levels, in which most of _ v, p

the string is correctly recognized, this approach is expected to %~ ;::1 dz::l k:zd;rl Fi2qavapa(k)eyia f(z]a: 7)

show improvement. Preliminary tests with strings having only —1

onte guestionable digit, have shown an increase in recognition . f(zs|a) t>D—1

rates. s=t—d+1

In our work we considered very low SNR levels which t D

would be unacceptable in most communication systems. OW,*” = Z Vo (d) + Z TaPa(k)cyja f(2e|a, )

setting and results are considered to be of practical interest d=1 k=t+2

in applications such as surveillance, where very low SNR t—1

levels are commonly encountered. A relatively small set of : f(zs]a)

experiments was performed to evaluate the method. More 5=0

experiments may be useful to obtain more reliable subjective ML D -

assessments for the obtained results. The reported results are Z Z Z B2 gavapa(k)eya flzla,7)

also limited to a very small vocabulary of 11 digits. It remains "Zlfjl =t k=dil

to be seen that the method developed here yields improvement H Flzs]e)

over the EHMM with also a larger vocabulary. A possible st dil

extension to an unlimited vocabulary would be to use a D

phoneme-based HMM, which is less restrictive than a finite + Z TaPa(k)eyja F(2e] e, 7)

vocabulary but more restrictive than an ergodic HMM. k—tt2
t—1

APPENDIX I fGle)  0<t<D-1. (24)

=0

A. Absolute Forward Probability Calculation i . )
We define the functionM,(d) to be one minus the state

The absolute forward probability;” as defined in (8) yyration probability distribution (cumulative) function
can be derived from the forward probability by adding it to

D
the probability of the current state extending beyond time M(d) A Z pa(k)
The recursion for the forward probability is given by —d

M L D d—1
Y= Z Z Z F2 L aya pa(d) ey [z, ) =1- Z pa(k). (25)
k=1

v=1 p=1 d=1
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Using the above definition and the fact that
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[11] S. E. Levinson, “Continuously variable duration hidden Markov models
for automatic speech recognitionComput. Speech Langpp. 29-45,
1986.

[12] R. G. Leonard, “A database for speaker-independent digit recognition,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processi,
1984, pp. 42.11.1-42.11.4.

(26)

Yuval Cohen received the B.S.c. and M.S.c. de-

f‘ta:"/ — Fta/‘/ + Vta/‘/
we obtain
M L D
f‘tOé”Y = Z Z F:_’ZL auaMa(d) Cyla f(Zt|Oé, ,7)
v=1 p=1 d=1
t_
. H f(zs|c) t>D-1
s=t—d+1

t—1

grees in electrical engineering (with distinction)
from Tel-Aviv University, Israel, in 1987 and 1994,

FoT =maMa(t+Deya flzla, ¥) [ fzle)
=0

respectively.
From 1987 until 1992, he was a design engineer
at the Israeli Defense Force. Since 1993, he has

M L ot held several management positions in leading Israeli
v, fh industrial companies. Currently, he is Manager of
+ Z Z F2g va Ma(d) Eyle Flzle, ) the Electrical Engineering Group at RND Networks
v=1l p=1 d=1 Ltd., Tel Aviv, Israel.

t—1
- I fGsle) o0<t<D-1.
s=t—d+1

(27)

T_hi§ result shows that the_(_jefined absolute prOba_‘bi"ty l@oram Erell (M'97) received the B.Sc, M.Sc, and Ph.D. (cum laude) degrees
similar to the forward probability except that the duration pdfp physics from Tel Aviv University, Israel.

pald),
function, M, (d).

(1]

(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

[20]

is substituted for one minus the duration distribution From 1985 to 1991, he was a post-doctoral fellow and then a faculty
member with the Department of Electrical Engineering, Tel-Aviv University,

working on auditory modeling and application of speech perception to speech
coding. During 1988 and 1989, he was an International Fellow at the Speech
Research Laboratory, S.R.l., Menlo Park, CA, working on noise-robust speech
recognition. From 1992 to 1994, he joined the algorithm-development group
J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth conat M.B.T., Israeli Air Craft Industry, working on signal processing of radar
pression of noisy speechProc. IEEE,vol. 67, pp. 1586-1604, Dec. signals. Since 1994, he has been with the Speech Group, DSPC Israel, Ltd.,
1979. Givat Shmuel, Israel, leading research and development on various speech
J. S. Lim, Ed.,Speech EnhancementEnglewood Cliffs, NJ: Prentice- processing topics.

Hall, 1983.

Y. Ephraim, “Statistical-model-based speech enhancement systems,”
Proc. IEEE,vol. 80, pp. 1526-1555, Oct. 1992.

__, “A minimum mean square error approach for speech enhance-
ment,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing,
Apr. 1990, pp. 829-832.
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