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Enhancement of Connected Words in
an Extremely Noisy Environment

Yuval Cohen, Adoram Erell,Member, IEEE,and Yuval Bistritz,Senior Member, IEEE

Abstract—A speech enhancement algorithm that is based on
a connected-word hidden Markov model (HMM) is developed.
Speech is assumed to be highly degraded by statistically indepen-
dent additive noise. The minimum mean square error estimator
is derived for a connected-word HMM. Further, we derive an
estimator based on a connected-word HMM with explicit state
duration. Listening experiments performed with digit strings
have shown an increase of intelligibility. The best results were
achieved when subjects who listened to the enhanced speech were
given the results of an automatic recognition system.

Index Terms—Noise reduction, robustness in the presence of
noise, speech recognition

I. INTRODUCTION

SPEECH enhancement concerns the improvement of per-
ceptual aspects for human listening. This includes improv-

ing the speech quality, its intelligibility, and degree of listener
fatigue. Different approaches have been applied to enhance
degraded speech signals. Among them are approaches that
exploit perceptual aspects of speech such as the periodicity
of speech, or an underlying model for speech production.
Methods based on spectral subtraction have been widely used.
Other systems operate on more than one input, exploiting the
correlation of the noise. These approaches are well presented
in [1] and [2]. The statistical-model-based approach assumes
that the joint statistics of the signal and the noise is known;
for instance, a hidden Markov model (HMM) can be assumed.
An optimal solution, in the statistical sense, to the speech en-
hancement problem can be defined by minimizing the expected
value of a given distortion measure between the clean and the
estimated speech signals.

Speech enhancement methods that are based on HMM’s
have been recently studied by Ephraim for enhancing speech
signals recorded via a single microphone [3]–[5]. In his
work, Ephraim addresses the problem of enhancing contin-
uous, speaker-independent speech, degraded by a statistically
independent additive noise at input signal-to-noise ratio (SNR)
of above 5 dB. Ephraim takes a statistical approach to develop
a minimum mean square error (MMSE) estimator, and a
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maximuma posteriori (MAP) estimator based on an acoustic
speech model. The model is expressed in terms of a Gaussian
autoregressive (AR) HMM. Noise levels considered have been
such that the noisy signal is mostly intelligible, addressing
applications of improving the performance of speech commu-
nication systems in noisy environments.

In the current work, we consider the case where speech,
available from a single source, is highly degraded (SNR of less
than 0 dB). This very low input SNR transforms the problem
from improving speech quality for a more convenient listening
to the problem of making the recorded speech intelligible. Our
goal is to maximize the total number of correctly recognized
words, without posing demands for real time. Possible ap-
plications for a small data base are recognition of telephone
numbers or bank account numbers from a noisy recorded
speech by intelligence and police surveillance, investigation
of disputed credit card numbers provided over the phone in a
noisy environment, and other similar situations where the goal
is to maximize the total number of correctly recognized words
spoken in a noisy environment, without posing demands for
real time.

We present here a speech enhancement algorithm that is
optimized for the case of our interest. We utilize a connected-
word model, thus exploiting phonetic and linguistic informa-
tion of the given vocabulary. We develop an enhancement
algorithm for a connected-word model that includes explicit
state duration. The above statistical model can be used also for
automatic speech recognition. Under the model assumptions,
the resulting recognizer is optimally adapted to the noise. The
possibility of enhancing human performance by being given
the results of the recognizer is also examined.

In order to evaluate the performance of the speech enhance-
ment and recognition algorithms, we considered the set of
digits as a test vocabulary. Although it is a small vocabulary,
the concept of whole-word recognition and estimation can
be fully tested. Moreover, the problem of recognizing and
enhancing connected-digit strings is of practical use.

The enhancement algorithm was evaluated by the following
three criteria:

1) SNR;
2) Itakura–Saito distortion measure, which is known to be

correlated to speech intelligibility;
3) human listening tests performed by untrained listeners.

The paper is organized as follows. Section II presents
the speech models and enhancement algorithms. The three
following models are considered:
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1) the acoustic HMM (used by Ephraim);
2) a connected-word HMM;
3) a connected-word HMM with explicit state duration

model.

Section III describes implementation issues and the tests
procedures. An enhancement procedure that involves an in-
teraction of the listener, an automatic recognizer, and the
estimator is described in Section IV. The tests results are given
in Section V and discussed in Section VI.

II. MMSE ESTIMATION

This section describes the MMSE estimation based on a
connected-word HMM. First we review Ephraim’s model and
his estimation algorithm. Then we show how to extend his for-
mulation to connected-words, utilizing linguistic information.

A. Acoustic HMM

This section summarizes the MMSE enhancer developed
by Ephraim [4]. The clean speech signal was assumed to
be the output of an HMM with states and mixtures
of Gaussian AR processes. Thus, at each time frame this
model represents speech as a vector generated by the Gaussian
AR process associated with the particular state and mixture
component chosen at that given time. An ergodic topology was
chosen so that the resulting acoustic ergodic HMM (EHMM)
model could serve as a speaker and as a context independent,
continuous speech model. The noise was assumed to be
a stationary process characterized by Gaussian AR vectors
which are statistically independent and identically distributed
(this is identical to a one-state, one-mixture component HMM).

The model parameters were estimated using the segmental
-means algorithm [6]. This algorithm approximates the

Baum algorithm with less computations. An initial model
is obtained by applying the generalized Lloyd algorithm in
conjunction with the Itakura–Saito distance measure to a
subset of the training data to create an entry code book.
Then, all training set vectors are clustered using the estimated
codebook and the data within each cluster is used for designing
code words representing the mixture components of that
state. The mixture component probability vectoris also
estimated during this procedure. A uniform initialization of
the initial state probabilities , and the probability transition
matrix, , completes an initial model estimation. This model
is the starting point for an iterative procedure in which the
state and mixture component paths are detected via the Viterbi
algorithm, then the model parameters ( ) along with the
parameter set of the AR processes of the HMM are updated.
Noise model training was performed simply by calculating the
centroid of the noise model training data vectors.

Let denote the time framevectors of samples
of clean speech, noise, and noisy speech, respectively. Let

be the th elements of the discrete Fourier trans-
form (DFT) of the clean speech and of the noisy speech. It is
assumed that the noise is additive and statistically independent
of the clean speech, and that the speech and noise can be
represented by the above models. Under these assumptions
the MMSE estimator of the speech is a filter that takes
into account all the possible states and mixture components of

the model. The estimation is assumed to be a Gaussian
vector with independent elements, thus its elements can be
independently estimated by the following expression:

(1)

where denotes the frequency domain Wiener filter,
given that the state and mixture component areand , and

denotes the posterior probability of this particular state
and mixture component given the noisy signal observations
until time frame . The estimated speech signal,, can be
obtained by taking the inverse DFT of .

Let be the power spectra of the clean
speech and noise code words (calculated by dividing the
variance of the AR source innovation by the DFT of the auto
correlated coefficients of the AR process), then

(2)

The posterior probabilities for the noisy signal are equal to
the normalized forward probabilities associated with the noisy
signal, i.e.,

(3)

where is the forward probability associated with the
noisy signal.

The posterior probabilities are efficiently calculated [6], [7]
by the following recursion:

(4)

where is the state transition probability from stateto
state and is the mixture coefficient. Since a Gaussian
AR model was assumed, the probability density function (pdf)
of the noisy speech sample vector given the state and the
mixture component, , can be shown to be Gaussian
with covariance matrix which is equal to the sum of the clean
speech and the noise covariance matrices.

B. Connected Digit HMM

This subsection presents a Gaussian AR connected-word
estimator. It differs from the EHMM by the topology (the
matrix) and the training process. The connected word model
incorporates linguistic information concerning the structure of
individual words. Specifically, the matrix contains all states
from all words, having a form of a block matrix. Each block
corresponds to a specific word probability transition matrix.
Additional elements are added for the transition probabilities
between words.
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The connected word estimator was realized for the set
of digits. Each digit was characterized by an HMM with a
left–right Bakis topology [8] with a fixed number of states
and mixture components. Word transition probabilities were
implemented in the last state of each digit allowing transitions
to that state itself or to any first state of a digit. A special word
in the vocabulary was designated for silence.

Similarly to the EHMM, the parameter set of our connected
digit HMM (DHMM) model for the speech signal was esti-
mated using the segmental-means algorithm. However, in
this case the Viterbi algorithm was supervised by the known
digit sequence of each sentence in the training set. The initial
model was constructed by combining separately created digit
models. The initial digit model was created by applying the
generalized Lloyd algorithm to a training data subset, manually
segmented into words. Due to the nature of the vocabulary
(digits only), the transition probabilities of the last state of
each digit were forced to be equal. (A detailed description of
the data base is given in Section III.)

Since the separate digit models were combined to one model
by creating a global transition matrix in which all digit states
participate, speech enhancement may proceed using the same
(1)–(4) as in the EHMM case. For the current model, is
equal to the total number of states in all digits.

In the above causal approach, the forward probability is
used for calculating the posterior probability for the state and
mixture component given the noisy speech. A noncausal ap-
proach is obtained by using the forward-backward probabilities
to compute the posterior probabilities given all observations of
the noisy signal. We anticipate that it will be advantageous to
use the DHMM with the forward-backward procedure in cases
where the SNR at the end of the word is better than at its
beginning. For this approach, the calculation of the posterior
probabilities in the enhancement algorithm has to be changed
as follows:

(5)

where is the normalized forward probability defined in
(3) and is the normalized backward variable recursively
calculated as follows:

(6)

C. Connected Digit HMM with State Duration

In this Section we develop an estimator based on a
connected-digit HMM with explicit state duration (DDHMM).
This part of the work was motivated by reported evidence that

recognition rates for speaker-dependent systems have been
improved by adding explicit duration model to the HMM [9].

The state duration probability was estimated by build-
ing a duration histogram for each state out of the state sequence
revealed by the Viterbi algorithm during the training process.
Following [10], the normalized histograms were associated to
the particular states as the discrete probability functions of the
state duration.

The transition matrix was modified so that all state
transitions from a state to itself ( ) were set to zero.

Speech signal estimation was based on (1). The additional
state duration affects the calculation of the posterior probabil-
ities, as more possible paths can be taken to reach a specific
state. A well-known recursion exists for the calculation of
the forward probabilities, which includes state duration [11].
These forward probabilities, which are associated with the
noisy signal, are defined by

ends at (7)

the probability of being at state and mixture component
assuming that state ends at time . For speech recognition,
the recursion is followed by selection of an optimal path so
that all false “assumptions” that a particular state ends at time

will not be taken into account.
For the case of estimation, we introduce a new forward

variable. Define

(8)

as an absolute (total) probability of being at state. This
value (normalized by the sum over all ) then multiplies the
Wiener filter. The absolute forward probability is calculated
by adding to the forward probability the possibilities of the
current state ending at time , where

is the maximum permissible duration. A detailed derivation
of the absolute forward probability is given in the Appendix.
It is shown there that the product of the state duration pdf
is substituted by one minus the state duration probability
distribution (cumulative) function, so that

(9)

where

(10)

is the state duration probability distribution (cumulative) func-
tion, are the forward probabilities, and

is the probability of observing given
a state . (Products and sums assume null values of 1 and 0,
respectively, when subindex exceeds upper index.)

To conclude, speech enhancement can be formulated as in
(1),

(11)
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where is defined as the absolute posterior probability
given by the normalization

(12)

D. Scaling

The recursion formulae for the forward probability and for
the absolute forward probability (9) are prone to numerical
instability. The stability of the procedure may be improved
by introducing some appropriate scaling and as a result the
recursion is performed on the posterior probabilities rather
than on the forward probabilities [7], [11]. The procedure
is a modification to the basic scaling as in (4), but takes
in consideration that all previously calculated must be
normalized by the same factor. The following equation gives
the resulting recursion for the scaled forward probability

(13)

where the scale factors are given by

(14)

and the posterior probabilities are given by

(15)

However, we encountered cases where this procedure still
led to an unstable behavior. This occurred when
was very small for all , causing the scale factor
to be very large. As is involved in the calculations of

having nothing to balance it, their
values tended to grow beyond the computer’s dynamic range.
In fact, depending on the matrix and the state duration pdf,
cases where may also be encountered and
imply divisions by zero.

In order to overcome such difficulties we developed a new
scheme for stable forward probabilities recursion. Define

(16)

where the scale factors are given by

(17)

TABLE I
DATA BASE PARAMETERS

and perform recursion for and as follows:

(18)

(19)

It can easily be shown that

(20)

(21)

Thus, all the introduced constants cancel out when the poste-
rior probabilities and are calculated. Note that the scale
factor is composed of two elements: The maximum function
which brings to the range [0, 1], and the sum of the
previous scaled absolute probabilities. By definition this sum
is always greater than the sum of the forward probabilities and
is never equal to zero. Consequently divisions by very small
numbers are avoided. The term acts as a
feedback that keeps the values of in the dynamic range.
The feedback term itself is clipped to a lower and upper limit
to prevent underflow or overflow.

III. I MPLEMENTATION ISSUES

For applications such as speaker dependent systems or
surveillance concerning speech enhancement, a large clean
speech data base for the subject speaker is not likely to
be available. Therefore, contra to the general belief that
HMM’s need a large data base for properly estimating the
HMM parameters, we chose to implement our algorithm on
a relatively small data base of a single speaker. Thus, we
picked a data bases for a male and for a female speaker from
the TI connected digit data base [12]. The vocabulary consists
of 11 digits (Zero/O, One, Two, , Nine). Each data base
was divided into two independent sets: A training set and a
testing set, so that the sentences in the testing sets were not
included in the training sets. A selected subset that included
approximately half of the training set was manually segmented
for initialization of the HMM parameter set for each digit.
Table I summarizes the parameters concerning the data base.

In order to extract the speech features, i.e., the coefficients
of the AR process, speech was divided into frames of 256
samples obtained at an 8 kHz sampling rate. Speech frames
were weighted by a trapezoidal window with a slope duration
of eight samples.
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Two types of noise sources were used: a Gaussian white
noise generated by the computer and noise recorded with a
desktop microphone in a computer room. As opposed to white
noise that covers all the speech bandwidth, room noise is
more dominant in the lower frequencies. Hence, sentences
degraded by room noise were usually more intelligible than
those degraded by white noise. The input SNR in all tests was
less or equal to 10 dB. The choice of the lower limit aimed
to a degradation level for which human recognition error rate
falls in the 40–60% range. This requirement guided us into
choosing minimal input SNR’s of 13 dB for the room noise
and 0 dB for white noise.

The noisy speech was enhanced by the MMSE estimators
described in Section II. The ergodic HMM (EHMM) had
8 states, and 32 mixture components of Gaussian AR
processes of order 10. The connected-digit models had
five states per digit (a total of 60 states including a word
for silence), and five mixture components per state. These
parameters were chosen based on tests of a wide range of
values, and several SNR levels. A special word was assigned
to represent silence portions of the clean speech. The model for
this word was trained by the silence segments of the training
data set found at the beginning of the sentences. Explicit state
duration was added to the connected-digit model. Each state
was assigned a state duration probability with a maximum
range of 25. The noise was assumed to be the output of
a Gaussian AR pdf. The noise spectrum was estimated from an
average of all available noise model training sequences. These
sequences were available from noisy sentences segments in
which speech was absent (usually at the beginning or end of
a sentence).

A. Performance Evaluation

Comparison between models is given by means of i) SNR
values for the enhanced signal, ii) the Itakura–Saito distance
between the enhanced sentence and the clean sentence, and iii)
human listening tests performed by untrained listeners. The
Itakura–Saito distortion measure is known to be more corre-
lated to speech intelligibility than SNR. In practice however,
both methods become unreliable when speech is highly dis-
torted. Therefore, for highly degraded speech, the evaluation
was done only by human intelligibility tests. These tests were
performed in two stages: First, the noisy sentence was played
several times until the listener felt he extracted all possible
information from the sentence. The digits he recognized were
written down. In the second phase, a similar process was
repeated with the enhanced sentence obtained from one of the
competing models. In this phase, the listener could listen upon
request to both the noisy and the enhanced sentences. Finally,
the average error rates were computed for both stages.

The MMSE enhancement algorithm can be logically divided
into two steps: First, finding the most likely sequence of states
and mixture components and second, applying the appropriate
Wiener filter. In the following tables a comparison to an
MMSE estimator with an optimal state path (OSP) is provided
as an attempt to give a theoretical performance bound for the
MMSE estimators based on Gaussian AR models [6]. This
estimator is calculated by choosing the Wiener filter for each

Fig. 1. Average error rates (%) obtained by six listeners for the recognition of
noisy, EHMM enhanced sentences and DHMM enhanced sentences (female
speaker, room noise).

time frame according to the state and mixture component path
determined from the clean speech. This path was determined
by a Viterbi decoder using the DDHMM.

IV. M AN–MACHINE INTERACTION

In surveillance applications with very low input SNR’s,
the aim is to achieve a maximum recognition rate out of a
given recorded speech with no constraint on time or com-
putation effort. During preliminary tests, we noticed that
human recognition rate was similar to that obtained by an
automatic recognizer (a Viterbi recognizer adapted to noise
[3]). However, the correctly recognized words were not al-
ways the same; i.e., the automatic recognizer succeeded in
recognizing words that the listener failed to recognize, and
vice versa. Motivated by these observations, we considered
two interactive procedures to increase the overall recognition
rate.

The first procedure is as follows: The listener who had
finished determining all digits in the string was supplied with
the digit string output of the automatic recognizer (providing
the listener this string at an earlier stage might have influenced
his result). Now he began a new session in which he was again
requested to recognize the words in the sentence.

In a second procedure, the listener was allowed to affect
the enhancer by supplying it with a suggested digit string.
A Viterbi recognizer adapted to noise and supervised by this
digit string produced a state sequence which was used by the
enhancer. Alternatively, the enhancer was designed to accept
the suggested digit string, and perform the enhancement using
a constrained model. The listener could hear the sentence
that resulted, subject to the constraints he had given. He was
allowed to change his input string repeatedly and test the
results until satisfied.

V. EXPERIMENTAL RESULTS

The MMSE enhancers were applied to both female and
male testing sentences in the presence of white noise. Av-
erage Itakura–Saito distortion is given in Table II for the
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TABLE II
AVERAGE ITAKURA–SAITO DISTANCES OF THEENHANCED TESTING SENTENCES

(FEMALE SPEAKER, WHITE NOISE) OBTAINED BY USING THE MMSE
ESTIMATORS, THE MMSE ESTIMATOR WITH AN OPTIMAL STATE PATH

OBTAINED FROM CLEAN SPEECH (OSP),AND NO ESTIMATOR (NOISY)

TABLE III
SAME AS TABLE II FOR A MALE SPEAKER

TABLE IV
AVERAGE ERROR RATES (%) AND THE TOTAL IMPROVEMENT OBTAINED IN

HUMAN RECOGNITION TESTS (FEMALE SPEAKER, ROOM NOISE AT �13 DB
SNR). ENHANCEMENT PERFORMED BY THE MMSE ESTIMATORS USING THE

ERGODIC HMM (EHMM) AND THE CONNECTED-DIGIT MODEL (DHMM)

female speaker and in Table III for the male speaker. Careful
listening to the enhanced sentences convinced us that the
perceived quality was consistent with the results shown in
Tables II and III. In most sentences the connected-digit models
(DHMM, DHMM-FB, DDHMM) outperformed the ergodic
model (EHMM). This was more noticeable with lower input
SNR levels. All tested models obtained similar SNR improve-
ment. The estimators provided enhanced sentences with an
average SNR of 15.5, 11.5, and 8.0 dB for 10, 5, and 0 dB input
SNR’s, respectively. Sentences enhanced using the OSP model
were found to be less distorted than the sentences enhanced
using other models, and were completely intelligible even at
an SNR level of 13 dB room noise.

Spoken digit strings at a 10 dB input SNR level were noisy
enough to be inconvenient for the listener, but produced almost
no problem of intelligibility especially when unlimited number
of playbacks were allowed. In order to compare the relative
intelligibility obtained by the various models, we performed
intelligibility tests with untrained listeners for lower input SNR
levels. Each listener participated in two independent tests, one
for the EHMM enhanced sentences and one for the DHMM
enhanced sentences, following the procedure described in
Section III-A. The average error rates (%) for the noisy and
enhanced sentences (female speaker, room noise at a13 dB
SNR) for EHMM and for DHMM were computed for six
independent listeners. The results are shown in Fig. 1. As
the error rate of the noisy sentences recognition was found
to be similar for both tests, only the average was plotted.
The average results for all listeners, summarized in Table IV,
indicate superiority of the DHMM. Moreover, the listeners
described the quality of speech in DHMM-enhanced sentences
as better than with EHMM enhancement even when they were
able to recognize digits correctly with both models.

In Section IV we described two procedures for
man–machine interaction. For the first approach, a third

TABLE V
AVERAGE ERROR RATES (%) OBTAINED IN MAN-MACHINE INTERACTION

TESTS. DHMM ESTIMATOR WAS APPLIED TO NOISY SENTENCES

(FEMALE SPEAKER, ROOM NOISE, �13 DB). THE LISTENER

WAS SUPPLIED WITH THE OUTPUT OF THE AUTOMATIC RECOGNIZER

phase was added to the human recognition tests. In this phase,
after listening to the noisy sentence (first phase) and the
enhanced sentence (second phase), we provided the listener
with the output of the automatic recognizer. These tests were
performed on female testing sentences degraded by room
noise at a 13 dB SNR, which were enhanced and recognized
with the DHMM. The average error rate for five listeners was
computed, and is shown in Table V.

The second approach proposed in Section IV was also
tested. A fourth phase was added to the recognition test in
which the listener could suggest to the enhancer a digit string.
The output of this guided enhancer was played to the listener
so he could confirm his assumption or alter it. This iterative
procedure was repeated until the listener was satisfied. Such
tests for a 13 dB room noise failed to improve the overall
recognition rates. However, this procedure was found to be of
value for higher SNR’s in cases where the sentence contained
only a single questionable digit. For example, in one case a
listener was able to recognize a digit correctly after trying three
alternatives. In another case, where a digit was completely
unrecognized, he was able to reduce the uncertainty to one of
two alternatives.

Although the computation effort is irrelevant to the applica-
tions we address, we note here that enhancing a 3 s sentence on
a Sparc10 workstation took 10, 14, 17, and 130 s for EHMM,
DHMM, DHMM-FB, and DDHMM, respectively.

VI. CONCLUSIONS AND DISCUSSION

The purpose of the research presented in this paper was
to develop and examine methods for achieving maximum
human recognition for extremely noisy sentences. The basic
model presented by Ephraim [4] was modified to utilize
linguistic information by using a connected-word model with
finite vocabulary. A further refinement of the model was the
introduction of explicit state duration model. We examined two
methods for achieving maximum recognition. First, MMSE
estimators based on these models were derived. Second, two
procedures for integrating the human and computer recognition
abilities were studied.

The results in Tables II and III show that the DHMM out
performs the EHMM, suggesting that linguistic information
is indeed instrumental in the enhancement procedure. The
explicit duration model did not produce any significant im-
provement in the perceptual experiments, but did improve
automatic recognition. We hypothesize that the recognition
rate improvement is due to a better selection of the state
and mixture component path via the Viterbi algorithm. In
the enhancement process, on the other hand, there is no
selection of a unique path, but rather a summation over
all states. Thus, as noise increases and the Viterbi path
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becomes less dominant, the correlation between recognition
and enhancement performances weakens.

The most significant result of our study is that processing
the noisy signal with the DHMM estimator increased the
intelligibility (Table IV). It is possible that the intelligibility
increase is an outcome of more convenience in listening to
the processed speech, which reduces the listener’s fatigue,
compared to the nonprocessed speech. The noise reduction
encouraged the listener to hear the sentence many times,
while the inconvenience of the noisy sentence usually led the
listener to use fewer playbacks and possibly caused worse
performance. The EHMM estimator also increased the SNR
but the enhanced sentences suffered more distortion and the
intelligibility did not improve.

The best intelligibility was achieved by combining the hu-
man and the machine recognition capabilities. The recognition
error rates obtained for the automatic recognizer and for the
listener were found to be at similar levels on independent
tests. Making the recognizer’s output available to the listener
increased the overall intelligibility.

The second interactive approach, in which the estimator was
guided by a digit string supplied by the listener, failed for very
low input SNR levels. For these SNR levels the recognition
error rate is approximately 50%, where almost half of the
errors are due to deletions. Guiding the estimator along a
partially mistaken path, with no indication of deleted words,
led to poor results. For higher SNR levels, in which most of
the string is correctly recognized, this approach is expected to
show improvement. Preliminary tests with strings having only
one questionable digit, have shown an increase in recognition
rates.

In our work we considered very low SNR levels which
would be unacceptable in most communication systems. Our
setting and results are considered to be of practical interest
in applications such as surveillance, where very low SNR
levels are commonly encountered. A relatively small set of
experiments was performed to evaluate the method. More
experiments may be useful to obtain more reliable subjective
assessments for the obtained results. The reported results are
also limited to a very small vocabulary of 11 digits. It remains
to be seen that the method developed here yields improvement
over the EHMM with also a larger vocabulary. A possible
extension to an unlimited vocabulary would be to use a
phoneme-based HMM, which is less restrictive than a finite
vocabulary but more restrictive than an ergodic HMM.

APPENDIX

A. Absolute Forward Probability Calculation

The absolute forward probability as defined in (8)
can be derived from the forward probability by adding it to
the probability of the current state extending beyond time.
The recursion for the forward probability is given by

(22)

Consider a current state at time framewhich has begun
at time . This state may last until time or
etc., until time . Therefore, an additional probability,

must be accounted for, as follows:

(23)

A total expression accounting for all possible starting points
of the current state is given by

(24)

We define the function to be one minus the state
duration probability distribution (cumulative) function

(25)
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Using the above definition and the fact that

(26)

we obtain

(27)

This result shows that the defined absolute probability is
similar to the forward probability except that the duration pdf,

, is substituted for one minus the duration distribution
function, .
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