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Stability Testing of Two-Dimensional Discrete
Linear System Polynomials by a
Two-Dimensional Tabular Form

Yuval Bistritz, Senior Member, IEEE

Abstract—A new test for determining whether a bivariate stability in a finite number of operations without determination
polynomial does not vanish in the closed exterior of the unit of the numerical values of the poles. For 2-D systems, the
bicircle (is stable) is developed. A stable bivariate polynomial fqrmer choice is not available because the poles are, in general,

is the key for stability of two-dimensional (2-D) recursive linear . . . .
discrete systems. The 2-D stability test stems from a modified not a countable set of points, but surfaces in a four-dimensional

stability test for one-dimensional (1-D) systems that has been (4-D) space that are hard to localize and are not confined to
developed by the author. It consists of a 2-D table, a sequence ofany closed subset of the space. In spite of these difficulties,
centro-symmetric matrices, and a set of accompanying necessaryand some further reservations that will be mentioned later, it
and sufficient conditions for 2-D stability imposed on it. The gmerges that the main problem in stability determination of a

2-D table is constructed by a three-term recursion of these 2D di t t be stated i that looks lik
matrices or corresponding bivariate polynomials. The minimal <~ IScrete system may be stated in a manner that 100xs like

set of necessary and sufficient conditions for stability consists &n anticipated generalization of the 1-D stability problem.

of testing two univariate polynomial, one before and one after ~ Problem StatementGiven a 2-D (bivariate) polynomial
completing the table, for no zeros outside and no zeros on the determine whether it does not vanish in the closed exterior
unit circle, respectlvely._A larger set of_ us_eful cond!tlons that_ are  of the unit bicircle, viz.

necessary for 2-D stability, and may indicate earlier instability,
is also shown.

ny na
D(z1,20) = Z Z d; 1225 # 0,

Index Terms—Digital filters, discrete-time systems, linear sys-

tems, multidimensional systems, polynomials, stability. =0 k=0 .
\V/(Zl,ZQ) eVxV. (1)
[. INTRODUCTION T =1z |2 = 1},U = {2 |2| < 1},V = {21 |2| > 1}

N important issue in the design and analysis of tw@e use_d to denote the unit circle, its interior, and its exterior,

Adimensional (2-D) linear discrete systems is their stabfieSPectively, and the bar denotes clostire= V U T.

ity. A 2-D system is considered stable (in the BIBO sense) | "€ Paper proposes a new test for solving the stated

if bounded input signals produce bounded output signals. [tREPIEM. A 2-D polynomialD(z1, z») that satisfies (1) will

the same definition that is used as well for the stability of on8€ called stable. Similarly, a 1-D (univariate) polynomial is

dimensional (1-D) systems with the same purpose: to ensur€adjed stable if

well-behaved system with predictable steady state. However, n . _

as with other issues in processing 2-D signals, testing stability D(z)=> diz*#0, VzeV. )

of a 2-D system is more difficult because the simplicity of k=0

the mathematics used for 1-D systems is absent for highgte latter similarity between the conditions for 2-D and 1-D

dimensional systems. For 1-D polynomials the fundamentghble polynomials is useful for the extension of 1-D stability

theorem of algebra states that any polynomial of degreetests to the 2-D case, but it hides the fact that 2-D stable

can be factored as a product of polynomials of degree polynomials relate to stability of 2-D systems in a more

one. This theorem does not hold for multivariate polynomialgomplicated manner than in the 1-D case. We note also that

Consequently, polynomials obtained by thetransform of a other notations for a discrete stable 2-D polynomial are also

2-D difference equation cannot be factored in terms of lowgked in the literature and require (simple) conversion to the

degree polynomials. In 1-D systems, stability testing amourftsrm (1). We shall dwell briefly on these subject in Section I-B.

to examining the location of the poles of the transfer function more comprehensive coverage on this stability problem

with respect to the unit circle. Stability may be determineghd its multidimensional systems background is available in

either by numerical calculation of these poles or by using ong—[5].

of several available algebraic 1-D stability tests that determineThe proposed method to solve the problem is algebraic,

namely, unlike numerical or graphical stability tests, it aims at
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of a few accompanying conditions on 1-D polynomials, that The derivation of the new 2-D stability test is shown in an
may be examined by unit circle zero location tests. The namstructive manner without using appendices for details and
method is based on the method in [6] for determining tharoofs. Preceding the E table with the F table is useful, not
location of zeros of a 1-D polynomial with respect to the unianly to follow the evolution of corresponding scattering 2-D
circle, which is one of the so called immittance counterparts tests, but also to organize the derivation in a tractable order.
the class of Marden—Jury tables of the Schur—Cohn algorithiikis mode of presentation achieves clarity without lengthening
for stability testing [7]. Other immittance algorithms offerthe paper, because proofs for theorems for the E table follow
alternative solutions to additional classical (scattering) signabm proofs of corresponding F table theorem after a brief
processing algorithms related to the Schur—Cohn algorithm [@kplanation of the needed adjustments.

The first tabular stability test for 2-D stability was proposed
by Maria and Fahmy [9]. It was based on an early form of th&. Notation
Marden—Jury 1-D stability table. A.nderson and Jury prpposedWe shall useP = (p; 1) to denote the coefficients matrix of
to solve the problgm by a polynomial Schqr—Cohn matr'|?< [10}1 2-D polynomialP(s, z) = S, T2 p; xsiz*. Similarly,
Subsequently, Siljak showed that for testing 2-D stability Vig iy genote the vector of coefficients of a 1-D polynomials

positive defi'nite.ness'of thg Schur—Cohn' poI.ynomiaill'matng(z)_ In correspondence to the polynomial variables will
over the unit circle, it suffices to determine its definiteneggnote 5 vector whose entries are powers in ascending degrees
at a single point and positivity ovef’ of its determinant ¢ ihe variable z — [z, 2, ]t (of length determined

polynomial (saving similar examination of lower prinCiple,, context). The notation admits reference to the above 2-D
minor polynomials) [11]. Jury designed a modified tabular ]p'olynomial in several ways, including
D stability test that produces explicitly the principal minors '

of the Schur—Cohn matrix [12], [13] and, as such, it is
capable of combining the manageability of a tabular test with
the simplification in computation introduced by Siljak. More
recently, Hu and Jury [14] improved this test by removing =[po(s),p1(s),
from its implementation redundant factors. Here, py. is the k + 1th column of P and px(s) = s'py is

The paper develops the new test in two stages in @e (polynomial) coefficient ot* when P(s, ) is regarded
order that follows the evolution of Marden—Jury type 2-Rs a 1-D polynomial in the variable. This notation does
stability tables in the literature. In the first stage, a recursigibt explicate the row indices of the entries Bf = (Pi )
for the construction of a sequence of matrices called thewhich may be added as. = [po x,p1x, " - Pny x]*, DUt mainly
table is presented and a certain set of conditions that ave shall manipulate vectors as a whole and act on columns
necessary and sufficient for stability are obtained for it. Thisf matrices. Superscript will denote (conjugate) reversion,
set of stability conditions requires the examination of severaéfined for a matrix and a vector by
1-D polynomials, one for each matrix in the sequence, and . . . .
determining whether they do not vanish (are positive)Zon Pr=JpJ p=Jp
(This point of development approximately parallels the Marigsspectively, where/ denotes the reversion matrix with ones

and Fahmy test) Afterwards it is shown that it suffices ign the main antidiagonal and zeros elsewhere ‘adenotes
examine only the last of these 1-D polynomials (comparabi@mplex conjugate.

to the single positivity test simplification in the scattering cConvolution will be denoted by, e.g.,

approach [11]-[13]). In the second stage, it is first shown

that the number of rows in the matrices of the F table is h=f*px < h(s)= f(s)pr(s).

higher than necessary and a reduced size table form Cal&%volution of a vector by a matrix will mean column by
the E table is obtained. Next, the stability conditions for the,; ,mn convolution, i.e.,

F table are shown to hold also for the E table. The decrease

P(s,z) = Z pk(s)zk
k=0

()2 = 8 Pz,

in the number of rows in the E table reduces significantly G=f«P=I[fxpo,fpr, - f+pnl
the cost of computation of the final form of the table and its =[90,91, " gn] = G(s,2)
single positivity test. The transition from the F table to the = f(s)P(s,2) = [g0(5), g1(5), - -+, gu(8)]2.

reduced E table parallels the improvement that Hu and Jur

contributed in [14] to previous 2-D tests based on the 1-Bheconverse operation of columnwise deconvolution (division
stability test of Jury. The contribution in this paper differs ifvith no remainder) will be denoted by

scope in that it goes all the way from the 1-D stability test in P=G/f = [po,p1,
[6] to the immittance counterpart of the result in [14]. It also G(s,2)
differs from previous approaches in that, currently, the single P(s,z) = "= = [po(s),p1(5), -, pn(5)]2
positivity stability condition is proved directly from intrinsic fs)

properties of the underlying recursion. Each stage in the cand it will represent extraction of a factgfs) common to all
rent development compares well in cost of computation withe polynomialsgy(s).

respective scattering counterpart 2-D stability tests, becaus®otation such afd, ] or [G, 0,0] will denote pre- or post-
the immittance approach exhibits certain structural symmetrigadding of the columns of the matri¥ by a shown number
that may be used to compute less entries in the 2-D table. of columns of zeros of the same length.

e pn] e
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During the process of developing the new method it wiNSSK on7? and, at the same time, satisfyidg(z;, zo) # 0
be useful to think of the coefficient matri® of P(s,z) as on v _ T2 Also, a system withD(z,z) that vanishes
associated with the next function on 12, but is stabilized by the numerator vanishing there as

no well, represents a situation of zero stability margin that is not
P(3,2) =s7™/2P(s,2) = Zpk(§)zk =3Pz (3) acceptable as stable in practice. So, in a practical sense, a
k=0 stableD(z1, 25) is also a necessary condition for a system’s
stability.

There is no uniquely agreed convention to define the stable
2-D polynomial in the literature. For 1-D systems, tle
tf?gﬁsform is defined mainly in negative powerszo0fSo a 1-D
polynomial A(z) = [1,z71,--+, 2 "]a is stable if A(z) # 0
Vz € V. Using a similarly negative convention for th#
transform in two variables, a 2-D polynomial z , z2) should
be defined as stable if it has the form and satisfies the relation

where 3 = [S—rn/Q’ 8—(771/2—1)’ e S(rn/?—l)7 Snl/Q]t (Of a
length determined by the context, e.g2, = ny; here) and
§ as a function argument denotes power series to equal ex
in each of the two variablegs—!, s) or (s—/2,s/2) (for m
even or odd, respectively). A function suchzags) is called
a balanced polynomial.

We shall construct for the polynomidl(z;, z2) a sequence

of matrices {E,,,,m = -1,0,---,n(= ng)} which are

centro-symmetrick;, = E,,. These matrices may be linked

to either E,,(s,») or E,.(s,») by the above convention. Alzy,z0) =1, 27 oo 20 M A[L 25t e 25 ™)
The 2-D polynomial £,,(s, z) will be of degreen, — m £0 Y(z,2) eV xV. ()

in z and of a certain degreé.(m) in s which increases

with m in a manner that will be discussed later. When . o ]

reference is made to columns or entries of a matrix or vectbPiS convention is used, for example, in [3] and [5]. Clearly,
that is member in a sequence, the sequential indexwill A(z1,22) s stable if and only ifD(zy, zo) with D = JAJ is

be set in brackets and precede other indexes. For exampPle, andi(z) is stable if and only ifD(z) with coefficient

Em(§7 Z) = [6[m10(§), 6[m11(§), T C[m]n—m(g)]z =3 [e[rn}Ov vector d h: Ja is f]tabf r?on;/ersmn Ifro?ﬂ(zlz 22) ItO
e[rn}lv ) e[rn}n—rn]z where e[rn}k = [C[m]o ks C[rn}l ks D(zb 22? appeﬂs when bot po ynomlas. ora r.atlona tr.ans_
S (m)7k]t is the & + 1th column of E, . ' ' fer function obtained by th& transform, defined with negative

powers, are multiplied by a common zero-phase factor to get a
B. On 2-D Stability and Stable 2-D Polynomials den(_)r_ninator p(_)lynomigl of positive powers. Several texts on
stability of multidimensional systems reach the convenience of
As was mentioned already, the relation Of 2-D Stable polu'ea“ng W|th po'ynomia's in positive powers S|mp|y by using
nomials to stable 2-D discrete systems is more complicatggh  transform defined in positive powers of its variables, cf.
than in the 1-D case, see [1]-[5] for detailed coverage on tfig [2], [4]. In this case, a polynomiaB(z1, z,) is created by
subject. We give here a brief account on these differences %&@ociating the above mattikwith positive powers of; and

on the conversion between 2-D stable polynomials, as defingd Thus, B(z;, z,) is stable if it has the form and satisfies the
in (1), and alternative conventions that are also in use in th§ation

literature.
Assume a system transfer function of a recursive discrete
2-D system or filter with first quadrant support consisting Bz, 22) =121, -, 2 AL, 22, 257
of the ratio of two finite degree 2-D polynomials (a system £0V(21,20) €U x U. (5)

with different wedge support can be transformed to the first
quadrant by a simple linear mapping without affecting itE . | . . .
o B(z1,z le if ly if A(z
stability): say N(z1,z:) and D(z1, z2). Assume that these vidently, _(fl’i?l) IS stable i and only if A(z,
two polynomials are coprime, namely, they have no commozﬁ) = B(x",2 ) is stable. In summary, fo test the
poly P ’ Y, they condition (4) or (5), the test in its current form has to be
factors (except a constant or a linear phase term). For_a

. . . applied to D = JAJ. Alternatively, the test (shown in
1-D system with a tran_sfer function, S.EN(Z)/ D(2), '.f the Section |-C) can be adjusted to incorporateby carrying
numerator and denominator polynomials are coprime, th

ey . - - o ;
. ifto it th itutionD — A*, which involv nl impl
may not have common zeros and thus stability of the systeﬁO t the substitutionD — A7, ¢ olves only a simple

is determined solely by stability aD(z). In the 2-D case, change in the initiation of the table construction.

because 2-D polynomials are not factorable in general, the

coprime polynomialsV(z, z2) and D(z, ze) may still have ] -

zero surfaces that intersect & at values that are thenC: Preview of the 2-D Stability Test

called nonessential singularities of the second kind (NSSK)Using the notation in Section I-A, we summarize here the
of N(z1,22)/D(z1,22). It was shown in [15] that NSSK may 2-D stability testing procedure that is developed in this paper.
stabilize a system with an unstabll&z;, z>). Thus, in a strict  In the following, steps in brackets are optional steps, i.e.,
mathematical sense a stalll¥ -z, z>) is a sufficient, but not they are suggested but may be skipped. Exit marks a point at
necessary, condition for 2-D stability. It becomes a necessavhich the algorithm may be interrupted withi ¥ 21, 22) is not
condition for stability if the system is assumed to have n&table conclusion. An illustration by a numerical example will
NSSK. However, as was said in [1], it appears that in practidee provided in Section V after completing the development of
recursive filter design algorithms will virtually never producehe test.
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The Proposed 2-D Stability Tesffo test whetheD(z;,22) it. Then it modifies the 1-D stability test in [6] to a form that

is stable, i.e., whether (1) holds, proceed as follows. is more suitable for extension to 2-D stability testing.
Step 1: Pre-Examinations.
Test whetherD(z, 1) is 1-D stable. A. Huang-Strintzis Stability Conditions
False—exit, True—continue. Lemma 1: (Huang-Strintzis)(z,, z,) is stable if and only
Test whether D(1,%z) is 1-D stable. False—exit, jf
True—continue. )
[Optionally, perform additional tests for 1-D polynomials . o
whose stability are necessary for 2-D stability, such as D(z,a) # 0, VzeV and somer € V (6)

D(z,z) or D(s,,z) and D(z,s,) ats, € V, e.g.,s, = b)
oo, —1, and exit if any of them is not stable.]

Step 2: 2-D Table Construction. D(s,z) #0, V(s,2) € T x V. (7)
Obtain the sequence of centro-symmetric matrieégsm =
-1,0,1, -+, ne (E,, = E;, is of size(n1(2m+1)) X (ny —
m) for m > 0)

This Lemma was introduced to the field by Huang for
a = oo [16], [1] and in its above form by Strintzis [17]. It
states that the search ov&r x V (a 4-D subspace of the

E_ =[0,D— D] —[D - D%, 0] bivariate complex plane) in (1) may be replaced by a search
Ey=D + D~ of (21, 22) over justI'x V (a 3-D subspace). Other simplifying
n forms of stability conditions of this kind are also known [4],
€0 = Z eon,  q-1:=1 (25). [18], but they do not seem to offer true extra computational
k=0 merit. It is possible, for example, to relate our derivation to
Form = 0,---,n— 1 (n := ny) do: the Decarlo—-Strintzis simplification which confines the s_earch
[Optionallyv(forjm >1) camputee : S e €m = 0 D§§1,32) # 0 ¥(s1,52) € T'x T cf. [3] or [5]. This
em/<o. - m k=0 C[mlks cm condition represents a search of just a 2-D subspace, but

its examination requires the same effort as condition (7). It
is desirable to choose a real because then no complex
arithmetic is introduced for a redb (the common case). We
Im = €[m]o * Gfm]o; m = €lm—1]o * efm]o fix our choice toa = 1 that integrates nicely with the special
role thatz = 1 plays in our immittance stability conditions,
and we shall not state further the existence of alternatives.

Test whethersté,, # 0 Vs € T
False—exit, True—continue.]

Ern =0m * [Ernv 0]
[0, Ern,—l—l 3 0] = (Ern + Er:n — Gm * Ern,—l)/an—l . (26/)

Step 3: Post-Examination. B. Modified 1-D Stability Test

Our starting point attempts to combine Lemma 1 with the
. 1-D stability test in [6]. The algorithm in [6] uses a three-
én = En/co. term recursion with a multiplier (denoted there &y) that is
Test whether, (s) = s'¢, # 0Vs € T obtain(_ed by division of two numbers. It is qle_s?rabl_e to obtain
False—exit, True-D(z1, z») is stable. a version of the_ test_that is free of t_hls d|V|5|_on_|n order to
The condition in Step 3 as well as similar optional corcircumvent dealing with rational functions efin its intended
ditions é,,(s) = sté, # 0 Vs € T for m < n in Step application. Such a division-free version of_ [6] is (_jgrlvgd
2 may be replaced by the conditian,(3) = 3¢, > 0 below. An apparent advantage of the following modification

Vs € T and are therefore also referred to as positivity testS. that when used in conjunction with Lemma 1, it admits

All the mentioned 1-D polynomial tests may be carried Oﬁpam_pulatlo_n_ of (_)nly p_olynomlals. Some_ additional a_dvantages

algebraically by unit circle zero location tests, including [6PT this modification will be noted after its presentation.

that underlies the current 2-D test. Consider a 1-D polynomial

The paper is organized as follows. The Section Il brings ~ ‘

two auxiliary results: a simplification to condition (1) and a p(x) = p#", Re{p(1)} #0 (8)
modification for the stability test in [6]. Section Il derives k=0
a preliminary form for the test, the F table, and its stabilitwherep, are complex scalars artle{-} denotes real part of.
conditions. Section IV derives the final form of the proposed Algorithm 1: Division-Free 1-D TableObtain for the poly-
2-D test, the E table, and its stability conditions. Section Womial (8) the following sequence of polynomiglg,,(z) =

makes some comments on implementation of the new 231" fimx2"*, m = —1,0,1,---,n} and scalarg,,, m =
test and brings a numerical illustration. The paper ends withl,---,n}
some concluding remarks. i) Initiation:
Il. AUXILIARY RESULTS f-1(2) = (z = D(p(2) — r°(2))
fo(z) =p(2) +p7(2) )

This section cites first a simplification of the condition (1)
that is the starting point of most algebraic methods for testing and¢g := fo(1) (= 2Re{p(1)} # 0 by assumption)
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i) Recursion:Form =0,---,n — 1: D(s,z). The result of application of Algorithm 1 td(s, z),
_ N N regarding it as a 1-D polynomial inwith balanced polynomial
2fmt1(2) = (Fym 1100 + Fim—110fim102) frn (2) coefficients dependent os € 7, is described below in
= fimjoSimjofm—1(2) (10)  Algorithm 2. This algorithm associate® with a sequence
of matrices{F,,,,,m = —1,0,---,n = no} that we call the F

and Pmt1 = fm+1(1)
Theorem 1: 1-D Stability Condition&ssume Algorithm 1
is applied top(z) (8). p(z) is stable if and only if

¢m>0, m=1--,n. (12)
Po
Proof: Denote the sequence fp(z) in [6] by {¢,.(z)}
(rather than{F,,(2)} used for it in there). Compare the
recursions here with the recursion in [6] to realize that tI’lS
relation between the sequencég,(z)} here and{t,.,(z)}
there iSfm(Z) = Z/}mtm(z) with wm = |f[m—110|21/}m—2 =
|ttm—1j0* %2, _1%m—2, m > 1,9p_1 = 1,4po = 1. The current
necessary and sufficient conditions follow from correspondi
stability conditions in [6] via the fact that all the,,, are real
and positive. [ |
Remark 1: The polynomials{ f,,.(z),m = -1,0,1,---,n .
produced by Algorithm 1 are i)nju(gz)ﬂe symmetyic(>) is 0];‘ A. Construction of the F Table
degreer—m and f{jn—m—i = ff;l}ivi =0,1,---,n—m. The Algorithm 2: The F Table (Preliminary Table Form{.on-
normal conditions in [6] transform here to the condition that afitruct for D(z;, z2) a sequence of polynomialgF’,. (3, ») =
fimjo # 0. Normal conditions remain necessary conditions fqr;’j;é" f[myf(é')z’“,m =-1,0,1,---,n(=n2)} by the follow-
stability and the conditiory,,,jo = 0 implies and is detected Ing recursion.
by a subsequent violation of (11). However, differing from [6], i) Initiation:
the situationfi,,,jo = 0 does not affect the recursion because 3 3 3
division by fi,.;o has been eliminated. F_1(3,2) =(z = 1)(D(3,2) — D(5, 2))
Remark 2: In the forthcoming 2-D stability testing task, Fo(5,2) =D(3,2) + D (3, 2). (13)
p(z) and hence allf,,(z) will assume coefficients dependent . ) R
on s € T. The fact that the recursion moves intactly through 1) Recursion:Form = 0,1,---,n — 1 obtain F,,11(3, 2)
Jimjo = 0 situations is valuable for this application because

table. The algorithm below uses polynomial notation in which
the matrices appear as coefficients of the sequence of polyno-
mials. Polynomial interpretation is needed for derivation of the
method. It is possible afterwards to convert such an algorithm
into operation on vectors for more obvious programming in
a matrix environment, as demonstrated for the final form of
the 2-D table.

The advantage of usind)(s, z) rather thanD(s,z) fol-

ws from the fact that the complex conjugate of balanced
polynomials for valuess € 1 retains the length of their co-
efficient vectors. Using the 1-D stability witB(s, 2) instead,
would have doubled the row sizes 6t ; and F, and, as a
rJr%nsequence, all the matrices in the sequence associated with
D.

it will test to wheth I ials i < NfE (s

it will save tests as to whe efimjo @s a polynomials in hon(3) If[m_uo(S)f[m]o(S)

s vanishes onZ. Another useful property of the test in .

this context (shared also with the original form) is that no Tm(5) = fim)o () f50(5)

requirement orp,, # 0 is posed. A polynomial of degree 2Fmi1(3, 2) = hin(8)Fin (3, 2) + 5, (3)2Fm (3, 2)

with p,, = 0 has (at least one) zero at infinity which implies
it is not stable. Were this test used directly for testing 1-D
stability, observation op,, = 0 is sufficient to determine the - »
polynomial as not stable (or the lower degree polynomial wifd- Stability Conditions for the F Table
not vanishing leading coefficient may be taken, if [6] is used In order to supplement Algorithm 2 with stability conditions
to determine the distribution with respect to the unit circleve associate it with two auxiliary sequences of (conjugate)
of the remaining zeros). For the current use, the fact thegmmetric (balanced) polynomials
the test is not obstructed by vanishing leading coefficients is I
?hgam valuable._ The |mp_I|_ed instability shows as a V|olat!on pf om(3) = Fn(3,1) = Z o (5),

e stated stability condition. Indeed, the following relation is Py
easily derivedp; = 2(|pn|” — [po|®)¢o from which it is seen

— rm(8)F_1(8, 2). (14)

that if p,, = 0 then¢; /¢y < 0, i.e., (11) is not satisfied. Gm(8) = i’;"((;)) m=-1,0,--,n. (15)
[ll. PRELIMINARY 2-D STABILITY TEST FORM A recursion that the sequende,,,(s)} obeys is obtained
Our intention is to apply the division-free 1-D stability tesPY Settingz = 1 in (14)
pf the previqus section to test (7). It is noticed that (7) holds mp1(3) = B (3)m(3) — T () @m—1(3) (16)
if and only if
D(5,2) 40 Y(s,2) €T x V. (1z) form =0,---,n—1where

As a consequence, it is possible to test (7) by applying h"’(S? = h"’§3)+h;"(3?’
the division-free 1-D stability test td)(3, z) rather than to po(8) =I(3,1), v-1(5) = 0.
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The second sequende,,(s)} obeys a similar recursion for Finally, we show that conditions b) and)tare equivalent.
m=20,---,n—1 Clearly, the conditiong,,(s) > 0 on 7T is equivalent to
¢m(5) # 0 on T plus positivity at one point orl, say
Gt (3) = B (3)Pm(3) — T (3)Pm—1(5) (17) $m(1) > 0. Therefore the conditions in b) are replaceable
by the next pair of conditions?)i ¢,,(1) > 0,m =1,---,n
and if) ¢,,(8) # 0,m = 1,---,n. 1') holds if and only if
D(1, z) is stable by Theorem 1, and)iiand ii) are obviously
equivalent.m
Remark 3: Condition B) is more practical than b). The 1-D
stability testing ofD(1, ») is relatively simple and may precede
acterized by unit circle or reciprocal pairs of zero (i.e ii;he construction of the table. If it is found not to be stable
" then D(x,22) is not stable and the construction of the 2-D

©m(s,) = 0 then alsoyp,,(1/s%) = 0). Another consequence ; : . o
of this symmetry is that all,(3) andg,.(3) are reals € 7. t:elble is not needed. Testing by algebraic means the condition

The polynomialsp,,,($) celebrate in the following stability #m(5) > 0 or the conditiong,,(s) # 0 on T (the latter is

ot real valued orl") is of equal complexity. Therefore, in
theorems. The recursions they obey are brought because the &Y following theorems we leave stabilit d(1, ) as part
will be used in the proofs of these theorems. Note th g Y P

h” (5) andr,, () in these recursions require the polynom|als the requirement, even if it appears to be adding an extra

{F (3,)} and once the latter are available it is simpler toondmon to the number of acompanying conditions that we
ob':elun {om(3)} from their definition (15). Strive to reduce. We shall refer to both forms b) and ii) as

o " . ositivity conditions.
Theorem 2: F Table’s Stability ConditionsD(z1,22) is P . o :
stable if and only if the following conditions (a) and (b) or Here is a further characterization for the recursions (16) and

(t) hold. (17) that we shall need at a later stage.
_ Corollary from Theorem 2:If D(z, z2) is stable then
b) m o i) rm(8) >0VseTform=0,---,n—1.
. — Proof: If condition b) of Theorem 2 holds then condition
') DA(l’Z) FOVzeV i) is implied via (17) because, by definition,,(s) > 0 on T.
i) ¢m(s) #0VseTform=1,--.n In turn, i) implies ii). Indeed, a negation of ii) means that
where,,(s) are obtained from the F table @¥(zy, 22). rm(3,) = 0 for somes, € 7. This implies fjj0(3,) = 0,
Proof: It is necessary to show that condition b) here anghich in turn impliesh’, (s,) = 0: a contradiction to i). m
in the Lemma 1 are equivalent. Assub®s, z) # 0 V(s, z) €
7 x V holds, then condition (12) holds. Assume first value o o
of s € T such thatpo($) = 2Re{D(5,1)} # 0. For each such €. Reduced Stability Conditions
s € T Algorithm 2 is an implementation of Algorithm 1 for Let £;(m) be the degree of alfj,,;.(s) and of p.(s) =
P,(2) = D(3,2) = % d,.(3)2™. Therefore, by Theorem 1, £m(s,1) (i.e., the row size of’,, is £;(m)+1). The three-term
m(3) > 0 for all m > 0 if and only if D(3, %) is 1-D stable recursion (14) induces the relation
as a polynomial inz, i.e., D(5,2) #0Vz € V.
Next, consider values, € T for which ¢q(3,) = 0. They
need special attention because they represent values for which

the requirement in (8) does not hold. Note that they may occircl0S€d form expression fof;(m) can be easily obtained
whether or notD(z1, z) is stable. (In fact for oddh ©o(3) by solving this difference equation for the initial conditions

must vanish ats = —1.) Assume thatpo(3,) = 0 for a L;(—1) = £;(0) = n,. It suffices to realize that the solution
certains, € T. We have to show that the stated condition§ & linear combination of the two modes, 2 = 1+ \/5

are necessary and sufficient for stability@f () = D(3o, 2) that increases exponentially with due to the\”* term with .

as well. Let us focus on a vicinity,, C T such thats, isin » = 1+ V2(= 2.414). As a consequence, the table size
its interior andpq(s) # 0 for s, # s € V,_ . Consider the part increases exponen_tlally_ with = ny and positivity te_sts of

of the root location ofP,(z) = D(3, z) = 0 that corresponds polynomials of rapidly increasing degrees are required. The
to s € V,.. As has been shown alreadg,.(5) > 0 ¥m > 0 next theorem offers some simplification. Accordingly, while
for all S'“;é s €V, if and only if the roots ofP. (2) lie in all ny positivity conditions are necessary for stability, only

U. Therefore no roots may be # also for P, (z). It remains the 1ast positivity test must be examined.

to negate the possibility that a branch of this mapping mﬁTheorem 3: Refined F Table’s Stability Conditions
touchT’, i.e., thatP, (z) has zeros off". In the context of the L(#1,72) is stable if and only if conditions i), ii), and iii)
underlying 1-D stability test, zeros dfi were discussed under®" 1ii") hold.

the category of structural or type | singularity [6] and they were i) D(z,1) # 0¥z € V

shown to imply, and be implied by, a latgy, (z) = 0 for i) D(1,2) #0Vz e V

somem, > 0. Since all,,(3) are continuous for alt € V,,, i) @n(s) #0 Vs €T

this latter situation is possible if and only g, (3,) = 0 for i) @n(5) >0Vs eT

that m, which is inconsistent with condition b). where g, is obtained from the F table ab(z1, 22).

with different initiation ¢o(3) = 1,¢$_1 = 0. It becomes
apparent thatpo(5) is a factor of ally,,($) and thatg,,(s)
are polynomials. Furthermore, all,,,(s) and all ¢,,,(5) are
(conjugate ) symmetric balanced polynomidls, = ¢,,. A
polynomial ¢,,(s) = s'¢,,, with such symmetry, is char-

Kf(m+2)—2£f(m+1)—£f(m):0. (18)
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Proof: These conditions are necessary because they forrLemma 2: Consider a sequencgl,,, (s, z)} produced by
a subset of the conditions of Theorem 2. the recursion (14).

To prove sufficiency, we proceed to show that the current1) For any four consecutive polynomials? (3, z),
conditions i)—iii) imply the larger set of sufficiency conditions G1(3,2), Ga(3,2), G3(3,z) in the recursion (14)
in Theorem 2¢,,,(§) # 0 for m < n as well. In the fo!lowing 9[110(5)9[:1]0(5) is a factor ofG3(3,2) = 3 gp(8)#".
argument we shall refer to the closeness of a pejne T
to s = 1 through the distance of its real paf := Re{s,}
to s = 1.

Assume that conditions i)—iii) hold but that, nevertheless,
there exists one (or severah),,(5), m < n that vanish at one

Namely, 9[110(5)9[:110(5) divides, with no remainder,
each gpg:(s).

2) If f(s) is a factor ofF,,,(s, z), m > 0, then it is a factor
of all subsequent’,,,.(5,2) i > 1.

(or several) values of € 7. By Theorem 1, condition ii) Proof: To prove property &), write two legitimate con-

implies that,,,(5) > 0 ats = 1 for all m > 0. Let $,(5) be S€cutive matrices of the F table as

the earliestp,,, () (i.e., k is the leastn) such thatp,(3) :~0 Go =[910j0- gpoj1- - ’9[:011’9[:010] (20)

for somes € 7. And let s; denote the zero off’ of ¢(5) .

closest tos = 1. ¢x(5;) = 0 implies, via (17), G1 =900 90115 9y Yol (21)
. R o R whered; has one less column tha#,. The next two matrices
Prt1(51) = —mr(51)¢r-1(51) <0 that recursion (14) will then generate are

becauseri(3) > 0 Vs € T (by its definition) and [0, G2, 0] = gpojo * 97330[G1 0] + 950 * 9130[0, G1]

‘f’“—l(fl) >0 (b)_/ the assumed choice df). Therefgrg, _9[110*9[:110G0

$r+1(8) must vanish for some € 7" whose real part is in 3 3

the interval in[s®,1). Let s, be the root ofp,,1(3) = 0 on = [0, 9200, 91211+ > 91 Iy O (22)

T closest tos = 1, i.e., with maximalsZ, thensf < s& < 1. [0,0,Gs3,0,0]

Repeating this reasoning, = n — k£ + 1 times implies that
¢, (§) must vanish for some € T with the real part in a )
subinterval [sF ,1) where sf < 1. This conclusion is in + 9130 * 91210[0, 0, G2, 0]
contradiction to assumption iii). Therefore, conditions i)—iii) -

imply ¢,,(3) # 0 Vs € T for all m < n as well. The + 91210 % 9310 * [0, G, O] (23)
sufficiency of i)—iii) for stability of D(z1, z2) follows now where columns of zeros are padded to bring all matrices to the
from the sufficiency of the conditions in Theorem 2. m column size ofGy. For the proof,Gs has to be expressed in
terms of columns of7, and G;. For simplicity, we may drop
from the resulting sum of terms, terms that are already seen to
. contain the factomjo * g[:uo. The justification follows from

It turns out that the polynomiald’,(s,z) produced by fact that the three-term recursion has the property that any

= Jgl1]o * g[:210[07 G27 0, 0]

IV. FINAL FORM OF THE 2-D STABILITY TEST

Algorithm 2 are separable into two polynomials term that contains a certain factor, contributes to subsequent
polynomials terms that also contain that factor.
Fo(s,2) = aom(s)En(s, 2) (19)  Thus, we replace (22) with

where eachu,(s) is a polynomial ins only, which is therefore  [0: G2,0] = gpojo * 970G, 0] + ggro * 910, G1] - (24)

a common factor for all the polynomial coefficienfs, . (s) 'k” where we use the symbeb to mean that the right-hand side
the presentation of;,,(s, z) asF.(s, z) = ZEZ0" fimik($)2".  (r.h.s) is what remains after evaluating the left hand side and
This section proves this property and characterizes it. Afropping terms seen to contain the facigry * 9[:110- By

terwards, an algorithm to obtain the sequenc&gf matrices, comparing the second column in the two sides of the above
referred to as the E table, is presented. The row size @fpression, obtain

each E,, is lower than the corresponding size &f, by ) )

an amount equal to the degree @f,(s). The row sizes of (210 7 9[ojo * G[yjo * 9i1l1 T Gjojo * 9[1]0 * Y[1]o-

the new sequence of matrices will then be shown to increagge this expression fojz;, (and its conjugate reversion) to

only linearly with . Finally, stability conditions for this E prepare the next two auxiliary results

table are established. It will be shown that the reduction In . . .

size of the table does not complicate the simple form of tH#110 * (210 7 J[ojo * 91110 * 9(1jo * Iy

stgbyllty conditions found S far for the F table. Therefore, th§[210 * G0 ™ 91010 * 9010 * 9110 * 910 * Ifajo * Il

eliminatedw.,,(s) are and will be called redundant factors. The ) ; ;

simplified E table and its stability conditions will constitute the + Jjojo * 9jojo * l1lo * 911)o * 9(1jo * Y11 -

new 2-D stability test proposed in this paper. Substitute the first of them and (24) into the first term in

the r.h.s of (23) to obtain for it alone

A. Redundant Fact : : :

edundant Factors _ 911j0 * 9j230[0, G2, 0, 0] = gi10 * Gjopo * 1210 * 9[tlo * Iiajo
The next Lemma exposes the above mentioned cominon . .G 0

factors and features their rapid accumulation. *9[111[ ,G1,0].



BISTRITZ: STABILITY TESTING OF 2-D DISCRETE LINEAR SYSTEM POLYNOMIALS 673

Add to the second term in the r.h.s of (23) the conjugate. Stability Conditions

reversion of this expression. Then, substitute the auxiliary\ye want to obtain stability conditions for the E table from
result for gjg10 * g7y, into the third term in the right-hand ¢ responding conditions for the F table. For this, we first
s@e of (23). A(_jdmg up these thrge terms, the third exactgg(pmre the exact relation between the sequerdés(s, =)}
wipes out the first two. In conclusion and{E,,(3,2)}. It is clear that they are related by a relation
[0,0,G3,0,0] — 0. of the form (19) and thaty,,(s) are (conjugate) symmetric
_ _ , o, (s) = am(s). So the balanced polynomiats,,(5) are real
It follows from here, together with the convention assigned 9.~ 7 and the degree af,, () represents the amount of row
=, that Gs is composed: of a sum of terms, each of whichyq,,ction achieved by moving fro,, to E,,. Substitution of
contains the factog,jo * g7, PIUS terms that sum up t0 Zero.ig rejation (19) into one table recursion, and then comparing
This concludes the proof of a). , it to the other table recursion, reveals the next recursive rules
Property b) follows at once from the observation that, the cwn (5)'s. The initiation isao(3) = au(3) = 1 and then

in the three-term recursion (14) each ndw,;(s,z) is a they may be determined, given the sequefiEg, (s, =)}, by
combination of terms that either contaff},,;;—1($,%) as a ' '

whole or contain the ternfy,,;_1j0(3). ] a1 (3) = &2, (8) tm—1(8) g1 (3), m>1 (27)
It follows from Lemma 2 that each Fy2(3,2),
k = 0,1,---,n — 2 is divisible by each of the factorsor given the sequencgF,,(s,z)}, by

f[i]0(§)f[:i]0(§),i =0,---,k and that these factors accumulate
and increase their multiplicity as the recursion goes on. 2 (3
P Y g anl+l(§) = M‘z{) 7’771,1(5), m 2> 1 (28)
Q11 S

B. Construction of the E Table

One obvious way to eliminate the common factors spottércpe next relation that may also be obtained

by Lemma 2 is to divide them out after the F table has 1
been completed. This approach has some merit, as it can Cmy1(3) = H r(E), m>1 (29)
be shown to reduce the degree of the polynomials whose bl ' B

positivity is to be examined, but it does not elevate the main

computational burden presented by the construction of thedemonstrates the rapid accumulation of common factors. We
table. In terms of both computation and numerical stabilit@lso define for the E table the (conjugate) symmetric (bal-
it is more desirable to produce directly the reduced-size @ced) polynomial sequences.,(s)} and {&,(s)},m =

table. A closer inspection on Lemma 2 reveals that it hasl;0,---,n

not just exposed the existence of common factors, but it also .

indicates the mechanism that may be used to remove them em(3) = Em(3,1), &n(3) = Cm(f). (30)
as soon as they are created. The next algorithm implements co(S)

this insight and derives directly the sequeddg,, (s, z), m =
—1,0,---,n}. Namely, eacht,, (s, ») produced by Algorithm
3 corresponds td,,(s, z) stripped from all common factors
revealed by Lemma 2.

They correspond to the F table polynomigls (5) and@,,,(3).
The sequencéé,, ()} obeys the recursion

I AC RO R RO IC R

Algorithm 3: The E Table (Final Table Form)Construct €m+1(8) —
for D(z1,2) a sequence of polynomial§E,,(5,z) = Im—1(3)
ShZy epmn(8)2¥ m = —1,0,--- n(=n2)} as follows: m =0, .n— 1 where

i) Initiation:

‘ T (3) = gn(3) + G (5), Go(3)=1, é1=0

E_1(3,2) = (2 — 1)(D(3, 2) — D*(3, 2)) Im(3) 3= 9m(8) + g (3, €ol8) !
Eo(3,2) =D(5,2) + D*(3, 2). (25) as may be verified by setting = 1 in (26). [The sequence

{em(3)} obeys a similar recursion with the initiatien; = 0,

ii) RecursionForm = 0,1,---,n — 1 obtain Ey,11(3, 2) ¢o(5) = E(3,1)] Once again, the recursion requires the

by: construction of the E table and is brought to serve the proofs
Gm(3) = @[m—1]0(§)@fm]o(§) of the following stability conditions.
) The next theorem is the E table counterpart of Theorem 2.
@m(5) = €pmio(5)€],0(5) Theorem 4: E Table’s Stability Conditiof2(z;, z;) is sta-
ble if and only if conditions a) and b) orohold.
2E41(3, 2) a) D(z,1) £#0Vz € VG.
_ gm(3)En(3,2) + :1(3)2Em (3, 2) — qu(3) Em—1(3,2) t;/)) ém(3) >0VseTform=1, - n
m—1S
m-1(8) (26) ) D(1,z) #0Vz e V.

i) &n(s)Z0VseTform=1,---,n.

where g1 (3) = 1. where{¢,,} are obtained from the E table @ (2, 22).
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Proof: If D(z1,22) is stable then by Theorem 2 and itamplies for £.(m) the equation

corollary all ¢,,,(5) andr,,(3) are positive oril’. Therefore,
all an(3) > 0 on T by (28) or (29). Conditions b) and’)o Le(m+2) = 2(m+ 1) +£(m) =0 (32)
follow now from their Theorem 2 counterparts via (19).

Conversely, assume the conditions a) and b)’dhbld. If
so, we show thag,,(§) > 0m =0,---,n—10onT is implied
where, by definition, al,,.($) > 0 onT. Assume the contrary.
Namely, ¢,,(s,) = 0 for somem ands, € T. This implies
ermjo(s,) = 0 which then impliesg,,,(s,) = 0. Together they
imply, via (31), thaté,,,+1(s,) = 0 in contradiction to b) and
b'). Thereforeg,,(3) > 0form =0,---,n—1o0on7. Then, by
(27) all &, (5) > 0 on T and b) implies that al,,,(5) > 0 on
T. Consequently, the assumed conditions imply f&t;, z3)

whose solution for the initial value& (0) = n; and/.(1) =

3nyisf.(m) = (2m+1)n;1. S0,L.(m) increases only linearly

with m. The amount of saving in computation for the E table

compared to the F table increases rapidly with cf (29). All

ém(s) are also of lower degrees than corresponding(s).

In particular, é,(s), the only polynomial obtained from the

table that has to be examined, is a symmetric polynomial

of degree2n;n,. The stepping down from exponential to

linear orders is remarkable already at low values:pfand

: = no. As an illustration, forn; = ny = 4 the F table row

is stable by the sufﬁuency part of Theorem 2. ~® polynomials have degreefl ;(m)}é = {4,12,28, 68,164}
The last and main theorem states that a more concise seg,qg@n(s) is of degree 160, while the E table has the degrees

stability conditions, similar to Theorem 3, holds also for th?&(m)}é = {4,12,20, 28,36} and the degree of,(s) is 32.
reduced size E table. T T

Theorem 5: Main TheorenD(2, z2) is stable if and only
if conditions i), ii), and iii) or iii") hold.
) D(z,1) #0Vz €V

V. IMPLEMENTATION ISSUES AND
A NUMERICAL |LLUSTRATION

iy D(1,2) £0V2 €V A possible procedure for performing the proposed 2-D sta-
ii) €n(;) £OVseT bility test has been summarized in Section I-C. The proposed
ii') én(3) > 0VseT procedure there may now be recognized as consisting of a

wherez, is obtained from the E table db(z1, z). translation qf Algorithm 3 |nt<_) a more matricial form (usmg
) g the conversion and notation in Section I-A) plus the stability

Proof: The stated conditions form a subset of the nec- ~ .. . .
conditions of Theorem 5. It also incorporates, as optional

feosrsz;\gbﬁ(i)t;dmons in Theorem 4 and are therefore necessse}ré/ps, 1-D stability conditions and positivity conditions that,

A proof that i), i), iii), or ii’) imply the larger set of according to Theorem 4, are necessary for 2-D stability.

T . ; Matrix presentation makes the programming of the test more
conquns a), b), or in T_h(_eorem 4 can be carried out bytransparent in matrix-oriented programming languages. For a
extending the proof of sufficiency for Theorem 3 from the

ull matrix presentation, the convolution or deconvolution may

table to the E table. To this end it suffices to show that the, itten as multiplication of one vector by a lower triangular
difference between the F table and the E table recursions dqgg/it, matrix defined by the other vector or by its simple-to-
not affect the argument on the migration of hypothetical zeragcate inverse matrix. (Matlab has built-in fast routines for
of ¢,(5) on T" downward in the recursion, used 0 Provenoiytion and deconvolution.) The optional 1-D polynomial
Theorem 3. A repetition of the argument there with(s) tests may prove useful for determining stability constraints on
replacing ¢,.(3) is possible after the following observationjiiera| parameters and/or may save computation in repetitive
A zero onT of ¢(3) affects immediately the next.+1(5).  application by detecting earlier that the 2-D polynomial is not
In contrast, a factor,,(3) that is formed at the recursiongigple.
stepm = k divides the right-hand side of (26) only at step The examination of a 1-D polynomial of degree for
m = k4 2. Consequently, a (hypothetical) zero ®rof é.(s)  stability or for no zeros orf” can be carried out in order2
is passed to subsequeijt(s)'s before the division by (s),  operations using either classical Marden—Jury and Schur—Cohn
added in the E table, has a chance to cancel it out. Thus, #)8sses of tests [7], including [12] and [13], or the immittance
line of the proof for Theorem 3 can be repeated to also prowssts [19], [20], including the test on which the current 2-D
the sufficiency part of the current theorem by showing that aRyapility test was based [6]. The use of the Schur—Cohn and
€m(3,) = 0forans, € T"and anm < n contradicts condition Marden—Jury (SCMJ) stability tests requires adaptation to
ii). B the singular situation caused by the symmetry of the tested
This theorem proves at last that the common factors th&lynomial and extension to the zero location, with respect to
were eliminated in the process of replacing the F table e unit circle not widely available for all versions [7]. The
the E table are indeed redundant. Their removal redug@entioned immittance test references handle the singular cases
significantly the computation cost of the table’s constructioand the count of zeros inside, on, and outside the unit circle,
without complicating the associated stability conditions. Ass currently required. They also exceed the efficiency of all
a matter of fact, the single positivity condition of the laspossible alternative versions in the SCMJ class of methods
theorem benefits in itself from the general reduction in sizby factors of two to four. Specifically, the methods in [19]
because the polynomial to be tested has a lower degree. &atl [6] require0.252% + O(n) multiplications for testing a
£y(m) + 1 and £.(m) + 1 be the row sizes forf},, and 1-D real polynomial of degree. for no zeros inV or on
E.,, respectively. It was shown in (18) thég(m) increases T. Corresponding versions for complex 1-D polynomials are
exponentially withm. For comparison, the recursion (26)available in [20] and [6].
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TABLE |
ZERO LOCATION TABLE FOR €2(s)

0.5000 2.2500 7.1250 12.750 16.625 (12.750)
~6.2500 ~30.000 ~81.000 ~130.25 (—130.25)
1.7500 3.2500 7.7500 5.0000 (7.7500)
12.143 41.714 84.714 (84.714)
45118 10.471 19.418 (10.471)
—1.3911 —4.2783 (—4.2783)
7.9021 8.3041 (7.9021)
1.4207 (1.4207)
7.5000

The test has been described such that a table ef n, (7.3750), (1.6875), (0.2500)]¢. Then divide it by (deconvolve
matrices is built forD(zy,22). It is always possible to let it with) ¢, to obtain

n = n; by preceding the test with the replacemént— D?*. - 0.5000
To reduce computatiom should be chosen as the lower of 2 6250
ny andny. A computationally efficient implementation of the 9.3125
proposed 2-D stability test should also exploit the symmetries 20.344
in the arrays to compute and handle only half of their entries. 33.312
In the following numerical illustration, entries that become E, = | 37.969
available by structural symmetries are put in parentheses. (33.312)
_ (20.344)
A. Numerical Example (9.3125)
For illustration, consider the polynomid@b(z;, z2) used as (2.6250)
an example in several papers [1, p. 129], [16], [12] 1(0.5000) |
0.0000 0.0000 0.2500 For the positivity test obtainéa(s) = s'Ex/eo(s) =
D = 10.0000 0.2500 0.5000 | . [0.2500, 1.1250, 3.5625,6.3750, 8.3125, (6.375), (3.5625),
0.2500 0.5000 1.0000 (1.1250), (0.2500)]s. It remains to examine the condition

_ _ _ _ é(s) £0Vs € T. We do this by the 1-D zero location test
D(z,1) = D(1,z) = [0.2500, 0.7500, 1.7500]z are easily for real polynomials in [19]. Following the procedure there,

determined to be stable obtain for é,(s) the stability table in Table I. (Uncompleted
[1.0000 —0.5000 (—0.5000) (0.0000) rows contain entries that form mirror reflection of their left
E ;1 =105000 —0.5000 (—0.5000) (0.5000) half side.) According to the rules there, the information on
0.0000 —0.5000 (—0.5000) (1.0000) zero location with respect t&' is contained in the number of
:1'0000 0.5000  (0.5000) sign variations of_ the ordered sequence formed by the sum
Eo = |0.5000 0.5000  (0.5000) of the rows in this table
0.5000 (0.5000) (1.0000) Var{61.875, —495.00, 30.500, 277.14,49.382, —11.330,
co(s) = Eo(s, 1) = [2.000,1.500, (2.000)]s 24.108,2.8415, 7.5000} = 4.
r0.5000  (0.5000) 7 Four sign variations mean that the tested polynomial has four
1.7500 (1.5000) zeros inV. Being a symmetric polynomial of degree eight, it
4.1250  (3.7500) has then also four zeros i (the reciprocals of the zeros in
By = |4.3750  (4.3750) | . V) and therefore no zeros df, i.e., éx(s) Z0Vs € T. Itis
3.7500  (4.1250) concluded that the examined(z;, z;) is stable.
1.5000 (1.7500)
L0.5000  (0.5000) - VI. CONCLUDING REMARKS

The elimination of redundant factors appears first in the nextThe paper has developed a new method for testing stability
recursion step. For this low, = 2 case, the nexk; is already of 2-D discrete system polynomials. It constructs for a 2-D
the last matrix in the 2-D table and has only one columgystem polynomial a 2-D table, a sequence of matrices (or
Therefore, the low degree of the example inhibits a properp polynomials), in a manner similar to the way that a 1-
illustration of the fact that the eliminated factor is common tg tapular stability test associates the 1-D system polynomial

all columns of matrices fronk; and on. with a sequence of row vectors (or 1-D polynomials). The
To obtaing take the first column o, ¢jjo = [1.000,  algorithm for the construction of the proposed 2-D table has a
0.500,0.500]* and form go = epjo * oo = [0.5000, simple recursive form that is readily implemented in a matrix-

0.7500, 1.5000, (0.7500), (0.5000)]s. Obtain the right-hand oriented environment, and the stability conditions for a 2-D
side of (26) [0.2500, 1.6875,7.3750,21.46,48.102,82.781, polynomial of degre€n;,n>) require in their minimal form
115.02, 127.27, (115.02), (82.781), (48.102), (21.469), one 1-D stability test of degree; or n, before the table
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is started and, after its completion, a test of one symmetrifg] Y. Bistritz, H. Lev-Ari, and T. Kailath, “Immittance type three-term

polynomial of degreeannQ for having no zeros on the unit Levir_lson and Schur repursions for quasi-Toeplitz complex Hermitian
. . Matrices,” SIAM J. Matrix Anal. Appl.vol. 12, pp. 497-520, 1991.
circle. In contrast to the previous 2-D tabular tests that ar@ . A. Maria and M. M. Fahmy, “On the stability of two-dimensional

based on the SCJM 1-D tests, and obey two-term recursions, digital filters,” IEEE Trans. Audio and Electroacoustol. AU-21 pp.

; i ; - il 470-472, Aug. 1973.
the current test is based on an immittance type 1-D stabili 0] B. D. Anderson and E. I. Jury, “Stability test for two-dimensional

test and involves a three-term recursion of centro-symmetric" recursive filters,”IEEE Trans. Audio Electroacoustvol. AU-21, pp.
matrices. This symmetry allows the actual computation of 366-372, Mar. 1973.

- : D. D. Siljak, “Stability criteria for two-variable polynomials,[EEE
only half pf the entries of Fhe arrays. Unlike the commo Trans. Circuits Systvol. CAS-22, pp. 185-189, Mar. 1975.
approach in 2-D tabular stability tests to seek relations betwegp] E. I. Jury, “Modified stability table for 2-D digital filter,JEEE Trans.
1-D stability tests and the Schur-Cohn matrix minors in _ Circuits Syst.vol. CAS-35, pp. 116-119, Jan. 1988.

. . " . . 13] , “A note on the modified stability table for linear discrete time
order to obtain extensions to 2-D stability tests with a smgl[e system,”|EEE Trans. Circuits Systvol. 38, pp. 221-223, 1991.

positivity test condition [12]-[14], [21], the single positivity [14] X. Hu and E. I. Jury, “On two-dimensional filter stability testFEE

test arises currently from intrinsic properties of the three-terp g_a,r\‘/ls_'ggggEfaﬁyﬁg‘é%e“;a‘éﬁi‘t;%z;ggﬁiei“'g’f L mensional shift

2-D polynomials recursion with no reference to extraneous " invariant digital filters,”IEEE Trans. Circuits Systvol. CAS-24, pp.
relationships. Connections between the underlying 1-D test 201-208, Apr. 1977.

_ -116] T. S. Huang, “Stability of two-dimensional recursive filterdBEEE
and the Schur-Cohn test are tractable [8], [6], but they provnkje6 Trans. Audio Electroacoustvol. AU-20, pp. 158163, June 1972,

a more complex, if not impenetrable, route to discover the7] M. G. Strintzis, “Test of stability of multidimensional filters/EEE
simplicity of the current 2-D test. The current approach alsg  Trans. Circuits Systvol. CAS-24, pp. 432-437, Aug. 1977.

. . L . " ] P. Delsarte, Y. Genin, and Y. Camp, “A simple proof of Rudin’s
enabled us to obtain a Smgle positivity Stab'“ty condition fOL multivariable stability theorem,IEEE Trans. Acoust., Speech, Signal

other immittance 2-D stability tests whose underlying 1-D  Processing vol. ASSP-28, pp. 701-704, Dec. 1980. _ _
stability test is related in an even more complicated mann@?] Y Bistritz, “Zero Iocatlo_n with respect to the unit circle of discrete-time
L . linear system polynomials,Proc. IEEE vol. 72, pp. 1131-1142, Sept.
to the Schur-Cohn minors [22], [23]. The relative advantage 19ga. Y po . PP P
of different 2-D stability tests and the possibility of lowering20] Y. Bistritz, “A circular stability test for general polynomials3yst.

; ; ; Control Lett, vol. 7, pp. 89-97, 1986.
further their computational cost are subjects for further StUdPétL] K. Premaratne and FI)Ep I. Jury, “On the Bistritz Tabular form and its

It is worth noting that the current method for testing the ~ relationship with the Schur-Cohn minors and inner determinats,”

condition (1) may be used also for the complex valued coeffi- \F(rag_kltlntlnﬁk vol. 3%0, pp-t165—%8bZ_i_ é9t93-tf oo onal di

. . T . blstritz, n immittance-type stablll est Tor two-dimensional aig-
cient 2-D polynom|al. The validity of the test for a comp@( ital filters,” in Proc. 28th Asilomar Conf. Signals, Systems, Computers
follows from the facts that the method was developed from a 1994, pp. 918-922. _ o
1-D test for complex coefficient polynomials and that LemmE&3l , “Stability test for 2-D LSI systems via a unit circle test for
1 is not restricted to reaD. For complexD. the E..'s are complex polynomials,” in Proc. 1995 Int. Symp. Circuits Systems

A1 . -0mp ' m S Seattle, WA, pp. 789-792, 1995.

complex and exhibit symmetry with respect to reversion plus
complex conjugate. In the more ordinary application, wiien

is real, the test involves only real arithmetic and arrays.
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