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ABSTRACT
The use of feature vectors obtained by concatenation of
different features for text independent speaker
identification from clean and telephone speech is studied.
The composite feature vectors are examined with GMM
and VQ models used to classify speakers. Linear
discriminant analysis (LDA), a statistical tool designed to
select a reduced set of features for best classification, is
applied to enhance performance. The use of LDA for
reducing the size of composite feature vector was found
satisfactory for clean speech but not for telephone speech.
On the other hand, using LDA in the not conventional
manner – as a nonsingular transformation (i.e. without size
reduction) - improved the performance of composite
features in both clean and the telephone speaker
identification experiments.

1. INTRODUCTION

The performance of an automatic speaker recognizer in
distinguishing between different speakers depends on the
combined power of the classifier and feature vectors that
are used. An important property of feature vectors in this
task is its ability to discriminate between speakers.

Different speech features relate to different aspects of the
speech signal. For example, features obtained using linear
prediction pertain to spectral envelope of the signal, while
filter-banks follow the energy distribution in specific
spectral bands. Some features are extracted independently
from each frame while others also contain inter-frame
information. Speaker recognizers admit a tradeoff between
using longer feature vectors with simpler models or using
shorter feature vectors with models of richer structure.
The need for speaker recognizers with short training and
testing periods limits the size of the feature vector that the
model may possess, and increases the requirement on the
ability of the selected feature vector to discriminate
between speakers.

One reasonable approach to improve speaker
identification, based on little training and testing data, is to

extract from the data several feature vectors (assumedly
independent) and then extract from the concatenated
features a reduced size vector of enhanced separability.
Linear discriminant analysis (LDA) presents a statistical
tool designed for this kind of approach.  It aims to derive
from a set of features a set of reduced size that best meets
a separability criterion (e.g. [1]). LDA has been introduced
to speech processing by Hunt and was since then applied
mostly to speech recognition [2],[3]. Openshaw et al [4]
used LDA also for speaker identification in experiments
that combined a few composite vectors to a new reduced
size vector used in VQ classifier of speakers from speech
with varying levels of additive noise.

In the currently reported study we apply LDA
transformation to concatenation of a selection of feature
vectors that includes MFC and LPC based cepstra and LSP
(e.g. [5],[6]). The concatenated vectors are used in speaker
recognition experiments based on simple VQ and
Gaussian Mixture Model (GMM) [7] classifiers. The
experiments were performed using short training and
testing data of clean and telephone speech (taken from
TIMIT and NTIMIT). We show that LDA may be used
without size reduction to improve speaker identification
rates for composite and even for single features.  In fact, in
our experiments, using of LDA in the conventional
manner of reducing dimension of concatenated features
worked satisfactory for only clean speech.

2. LINEAR DISCRIMINANT ANALYSIS

Linear Discriminant Analysis (LDA) considers measures
for class separability, and linear transformations of feature
vectors to optimize these measures for classifying feature
vectors x  (say of length N ) into one of L  classes,

Lii ,...,1    , =ω  [1]. There exists more than a single way to

define a criterion to measure class separability and to
obtain the linear transformation. We selected the method
most commonly used in the speech recognition literature.
It is based on defining a within-class scatter matrix and a
between-class scatter matrix as follows. The within-class
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matrix expresses the scatter of sample vectors around
their respective class expected vectors and is defined by
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where )( iP ω , iM  and iΣ  are the a-priori probability,

expected vector and covariance matrix of the i -th class,
respectively.  The between-class scatter matrix is defined
as the scatter of expected vectors around the global mean
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where 0M  is the global mean vector defined by the

global average of all expected vectors,

∑
=

==
L

i
ii MPEM

1
0 )(}{ ωx  .

These two matrices are used to define the discrimination
matrix bw SS 1− , which may be used to define a

discrimination measure

)( 1
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This measure increases when the between-class scatter is
larger or the within-class scatter is smaller.  Thus higher
value of J corresponds to better discrimination ability of
the feature vector, and hence lower error rate in the
classification task. It may be regarded as a
multidimensional extension of the F-ratio [8].  Consider
now the application of a linear transformation to the
classified feature vectors Axx → . A nonsingular linear
transformation can not improve the discrimination power
of the feature vector because this measure is invariant to
such transformation. Linear discriminant analysis
becomes effective when used to select a linear
transformation that reduces dimension of feature vectors.
If A  is a NRNR <×    ,  matrix, then different matrices get
different separability measure scores. Let

) ..., 2, 1,( and  i Nii =Φ λ  denote the eigenvectors and

eigenvalues of the discrimination matrix bw SS 1−  and

assume that the eigenvalues are distinct and ordered

Nλλλ >>> L21 .  Then the best discriminant score that a

reduced vector of size R , obtained by linear combination
of entries of the original vector, may achieve is
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This value is attained by choosing the rows of A  to be the
eigenvectors that correspond to the R largest eigenvalues,
viz.,
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In the following we use the term LDA transformation to a
so chosen NR   ×  matrix A .

In the current application each class (i.e. speaker) was
given equal a-priori probability. In other words all )( iP ω
assumed the value 1/L.  We examined in our experiments
also nonsingular LDA transformation. The reason for
considering also this case, is that even though a
nonsingular A  does not improve separability, it may still
improve classification performance by rotating the
decision hyperplanes of the classifier operating to
positions perpendicular to the feature axes. This
possibility is supported by the fact that the LDA
transformation performs simultaneous diagonalization of
both wS  and bS  [1]. Consequently the transformation

affect recognition performance also via “diagonalization
on average” of the covariance of each speaker and the
covariance of the speakers means.

3. EXPERIMENTAL EVALUATION

The speech database was extracted from the TIMIT (clean
speech) and NTIMIT (telephone speech) databases. We
selected a subset of the TIMIT/NTIMIT corpora, that
includes 32 male speakers, 4 from each dialect. The 2 “sa”
sentences, 3 “si” and 2 of the “sx” sentences were used for
training. This experimental setup results in a training
session with a length of approximately 12 to 20 seconds,
depending upon the speaker’s typical rate of speech. The
remaining 3 “sx” sentences were used for testing. This
experimental setup includes 96 test utterances (3 for each
speaker); each of them 1 to 3 seconds long, resulting in a
binomial significance interval of 4.75%. The same
preprocessing procedure was used for training and for
testing. The speech samples are downsampled to 8KHz
sampling rate, segmented into 25ms frames with 50%
overlap, and multiplied by a Hamming window. Only
voiced frames are selected for further use. Three types of
features were used: Line Spectra Pairs (LSP), Linear
Predictive Cepstra (LPCep) and Mel Frequency Cepstra
(MFC). For LSP and LPCep computation, 10th order LPC
analysis was performed. The resulting LPC filter was then
subject to a 15Hz bandwidth expansion. For computation
of the MFC, 18th order Mel Cepstra Coefficients were
derived, using the triangle filter banks suggested in [9].
LPCep and LSP that originate from a common linear
prediction analysis were not combined but each of them
was paired separately with MFC to form a new set of



features. The resulting 28th order feature vector was used
both in its original form and after applying LDA. To
compare performance of LDA with composite features to
its performance when applied to a single feature we also
bring the results of LDA transformation applied to the
MFC feature vector alone.

The VQ classifier was trained using the K-means
algorithm [10] for codebook construction with random
initial values. On each training iteration, “empty” clusters
for which no training vectors were allocated were assigned
half the training vectors originally assigned to the largest
cluster. This procedure prevents the creation of unchanged
codebook vectors. The VQ codebook was also used to
initialize the EM iterations for training the GMM model.
The initialization involved setting the means of the
Gaussian components equal to the codebook vectors, and
setting the initial variances and weights to be the sample
variances and relative number of training vectors in each
cluster, respectively. Each Gaussian component was
assumed to include a diagonal covariance matrix, and
different variance vectors were assumed for different
components. The experiments were performed with VQ
codebook and GMM componenets of sizes ranging from 2
to 64.

Figure 1. Results for Clean Speech, GMM

The identification rates that were achieved for clean
speech and telephone speech, using GMM and VQ
classifiers are presented in Figures 1–4. The abscissae in
these figures are the number of parameters that participate
in the classifier.  Fig. 1 and Fig. 2 depict the performance
of GMM and VQ speaker modeling in clean speech for the
indicated set of feature vectors that included raw,
concatenated and LDA transformed features.  Fig. 3 and
Fig. 4 bring corresponding results using telephone speech.

The labels in the figures use Lda(⋅) to denote LDA
transformation without size reduction, and Lda10(⋅) to
denote LDA transform with reduction to a vector of length
10. The first 10 eigenvalues accounted for 85-90% of the
discrimination measure of the full length vectors.

Figure 2. Results for Clean Speech, VQ

Examining the results for clean speech reveals that LDA
substantially boosts performance in the low parameter
range compared to using the same feature vectors without
this discrimination transformation. The differences in
performance in the high range of parameters are too small
to be counted significant. The use of concatenated features
seems to contribute for speaker models only in the low
range of parameters. In the higher range of parameters,
LDA transformed MFC performed better alone than in
combination with additional features. Another important
observation concerns dimensionality reduction. It is seen
that for both GMM and VQ, LDA admitted feature vector
reduction (from 28 to 10) without performance
degradation.

The results for telephone speech (Figures 3 and 4) are
more widely spread and thus allow more significant
conclusions. Again, feature concatenation by itself (i.e.
without LDA) did not improve performance. In fact it even
may degrade performance, an observation that was in
particular evident for VQ. Non-singular LDA
transformation improved identification rates significantly
for both concatenated features as well as for MFC alone
and provided the best attained scores for both the VQ and
the GMM classifiers. However, in remarkable departure
from the results for clean speech, the use of LDA to reduce
dimension of feature vectors provided very poor
performance for telephone speech. This is a surprising
outcome because the reduced vectors achieved the same
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portion of the full separability measure as in the case of
clean speech. The usefulness of the nonsingular LDA
transformation on single and concatenated features may be
explained by the tendency of this transformation to also
diagonalize the covariance of the transformed features.

Figure 3. Results for Telephone Speech, GMM

Figure 4. Results for Telephone Speech, VQ

4. CONCLUSIONS

We have carried out speaker identification experiments
with VQ and GMM based classifiers to examine the
performance of compositions of a few pairs of feature
vectors, combined by the use of the LDA transformation.
The experiments were held on clean and telephone speech.
They demonstrate LDA as a viable technique for
improving identification rates for concatenated features.
For clean speech LDA was also successful in obtaining
reduced size feature vectors from concatenation of features
to improve performance of models with relatively low
number of parameters. For telephone speech LDA kept
boosting performance of transformed feature vectors when
used without size reduction but performed poorly as a tool
for reducing the size of composite vectors.
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