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IMMITTANCE-TYPE TABULAR

STABILITY TEST FOR 2-D LSI
SYSTEMS BASED ON A ZERO

LOCATION TEST FOR 1-D
COMPLEX POLYNOMIALS*

Yuval Bistritz1

Abstract. A new algebraic test is developed to determine whether or not a two-variable
(2-D) characteristic polynomial of a recursive linear shift invariant (LSI, discrete-time)
system is “stable” (i.e., it does not vanish in the closed exterior of the unit bi-circle). The
method is based on the original form of a unit-circle zero location test for one variable
(1-D) polynomials with complex coefficients proposed by the author. The test requires
the construction of a “table”, in the form of a sequence of centrosymmetric matrices or
2-D polynomials, that is obtained using a certain three-term recursion, and examination
of the zero location with respect to the unit circle of a few associated 1-D polynomials.
The minimal set necessary and sufficient conditions for 2-D stability involves one 1-D
polynomial whose zeros must reside inside the unit circle (which may be examined before
the table is constructed), and one symmetric 1-D polynomial (which becomes available
after completing the table) that is required not to have zeros on the unit circle. A larger set of
intermediate necessary conditions for stability (which may be examined during the table’s
construction) are also given. The test compares favorably with Jury’s recently improved
2-D stability test in terms of complexity and munerical stability.

1. Introduction

An important consideration in the design and analysis of multidimensional linear
discrete systems and filters is their stability. Two-dimensional (2-D) and higher-
dimensional digital signals and systems arise in digital processing and modeling
of images, waveforms from several sensors, and other applications: [11], [18].

The paper considers the problem of determining whether the 2-D polynomial

D(z1, z2) =
n1∑

i=0

n2∑
k=0

di,k zi
1zk

2 (1)
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is stable, i.e., whether it satisfies the condition

D(z1, z2) �= 0, for (z1, z2) ∈ V̄ × V̄ , (2)

where

T = {z : |z| = 1}, U = {z : |z| < 1}, V = {z : |z| > 1} ,
are used to denote the unit circle, its interior, and its exterior, respectively, and the
bar denotes closure, V̄ = V ∪ T .

A stable D(z1, z2) is the key for stability of a discrete-time system described
by a 2-D recursive difference equation. In a strict mathematical sense, a stable
2-D polynomial presents a sufficient condition for stability that becomes neces-
sary only if the transfer function obtained by the Z -transform of the difference
equation has no nonessential singularities of the second kind (NSSK) [12]. NSSK
represents a peculiarity that is admitted in 2-D polynomials and has no counterpart
in 1-D polynomials. Unlike 1-D polynomials, 2-D polynomials are not factorable
in general. Consequently, two polynomials N (z1, z2) and D(z1, z2) that compose
the transfer function H(z1, z2) = N (z1, z2)/D(z1, z2) may be coprime and still
admit N (z1, z2) to have zeros on T 2 that coincide with zeros there of D(z1, z2).
NSSK corresponds to the possibility that at times such zeros may stabilize a
system with an unstable D(z1, z2). However, as pointed out in [20], a design of
a filter is not likely to end with a D(z1, z2) having NSSK zeros on T 2 and at the
same time D(z1, z2) �= 0 anywhere else in V̄ × V̄ . In addition, such a situation
may be argued not to present a system with acceptable robust stability for practical
purposes. The fact that polynomials in more than one variable are not factorable
is known to complicate the theory and design of multidimensional systems in
additional ways. Most pertinent to stability testing is the fact that numerical cal-
culation of the zeros (which for some applications is an adequate alternative to the
algebraic stability test in the 1-D case) cannot be used to determine the stability
of D(z1, z2) (its set of zeros is not composed in general of a finite number of
isolated zeros). More general discussions of stability of multidimensional systems
are available in several texts, e.g., [20], [10], [11], [15].

This paper presents an algebraic 2-D stability test that aims to solve the prob-
lem in a finite count of operations. The method has been reported before in a
conference paper [4], but without derivation details and proofs. The current paper
brings all the derivation details and proofs required to establish the method. It also
adds a certain simplification overlooked in the conference version that reduces by
a factor of 4 the number of operations required to complete the test.

The test is based on the method for determining the distribution of the zeros of a
1-D polynomial with complex coefficients with respect to the unit circle in [3] that
extends the real version in [2]. This 1-D test requires that the tested polynomial
be real valued at z = 1, a requirement that may be fullfilled by a prescaling
p(z) → p(1)� p(z). However, the implementation of this scaling in the context
of applying the algorithm to 2-D stability testing causes a doubling of the row
sizes of the initial matrices and consequently may quadruple the total cost of
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computation. A related alternative immittance-type 2-D tabular test in [7] does
not encounter this problem because it is based instead on a modified form of
the 1-D test [6] that does not need prescaling. The current paper incorporates an
added measure to recover from the inferior initiation caused by this prescaling
and consequently it leads to a test that has a simpler setting and requires less
computation than the test in [7]. The organization of the paper follows that of the
paper in [7]. Similarities between the two tests are used, when appropriate, to omit
proofs and instead give reference to counterpart theorems proved in [7]. However,
situations that involve differences are given independent full proofs.

The first tabular test for 2-D stability was proposed by Maria and Fahmy in [19].
It was based on an early version of a 1-D stability table by Jury. Anderson and Jury
proposed to solve the problem by a polynomial Schur-Cohn matrix in [1]. To this
end, Siljak showed in [21] that for testing 2-D stability via positive definiteness
of the Schur-Cohn polynomial matrix over the unit circle, it suffices to test its
definiteness at a single point and the positivity over T of the determinant (that is,
the positivity on T of lower principal minor polynomials need not be examined).
Jury designed a modified form of his 1-D stability test that produces explicitly the
principal minors of the Schur-Cohn matrix [16], [17] that may be used for 2-D
stability to combine the manageability of a tabular test with the computational
saving offered by Siljak’s simplification. More recently, Hu and Jury in [13]
improved the test by removing from its implementation redundant factors. The
Maria and Fahmy 2-D test and all subsequent 2-D tabular tests up until this
improvement are of exponential order of complexity. To realize this, it suffices
to observe that the degrees of the polynomials whose positivity over T is to be
tested grow exponentially with n (say n = n1 = n2) [20]. The truth is (a fact that
has been overlooked in past studies) that the computation of the “tables” used to
obtain these polynomials generally requires many more operations than the testing
of the last or even all the positivity conditions. The tests in [13] and those here will
be shown to be of just a polynomial complexity of order n6. The current test and
the test in [7] may be regarded as the immittance counterpart to the scattering test
in [13] (using terms suggested and motivated in [9] and other references therein).
The classification is manifested by the properties that [13] involves a two-term re-
cursion of 2-D polynomials or matrices with no particular structure, whereas here
and in [7] the tests use a three-term recursion to propagate 2-D polynomials or
matrices with a special symmetry (the matrices are centrosymmetric). A count of
operations for the current test is also performed (and it also applies approximately
to the test in [7]). The symmetry of the matrices in the immittance tabular tests
gives them an edge over the scattering tabular test in [13], with regard to both cost
of computation and numerical accuracy.

There exists in the literature on 2-D stability variations on the convention that
we use in defining the problem in (1) and (2). Sometimes the polynomial in (1) is
defined in negative powers of the variables and/or is regarded as stable if it does
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not vanish in Ū × Ū . Adaptation to such alternative conventions may be reached
by reversion of the coefficient matrix D = (di,k) [7].

The paper is organized as follows. Section 2 introduces the notation, cites a
widely used simplification to condition (2), and derives a modification for the
stability test in [3] that better suits the current application. Section 3 derives a
preliminary form of the test, called the “F-table”, and simplifies its initial large set
of stability conditions. The F-table, can be shown to be of exponential complexity
like the aforementioned older tabular tests. Section 4 reduces the row sizes of the
F-table matrices by elimination of redundant polynomial factors and obtains sim-
ple stability conditions for the resulting reduced-size “E-table”—the final form
of the table. Section 5 summarizes the new 2-D tabular stability test, carries an
approximate count of operations, and illustrates the method by a simple numerical
example. The paper ends with some concluding remarks.

2. Preliminaries

This section introduces the notation that will be used in this paper. It then provides
a division-free version for the 1-D stability test in [6] that we shall use to test
condition (2) in conjunction with the Huang-Strintzis simplification cited below
in Lemma 1.

2.1. Notation

We shall use P = (pi,k) to denote the coefficients matrix of a 2-D polynomial
P(s, z) =∑n1

i=0

∑n2
k=0 pi,ksi zk . Similarly, p will denote the vector of coefficients

of a 1-D polynomial p(z). In correspondence to the polynomial variables z, z will
denote a vector whose entries are powers in ascending degrees of the variable,
z = [1, z, . . . , zi , . . .]t (of length determined by context). The notation admits
reference to the above 2-D polynomial in several ways, including

P(s, z) =
n2∑

k=0

pk(s)z
k = [p0(s), p1(s), . . . , pn2(s)]z = st Pz.

Here pk is the (k + 1)th column of P and pk(s) = st pk is the (polynomial)
coefficient of zk when P(s, z) is regarded as a 1-D polynomial in the variable
z. This notation does not explicate the row indices of the entries of P = (pi,k),
which may be added as follows, pk = [p0,k, p1,k, . . . , pn1,k]t , but mostly we shall
manipulate vectors as a whole and act on columns of matrices. The superscript 


will denote (conjugate-) reversion, defined for a matrix and a vector by

P
 = J P� J, p
 = J p�,

respectively, where J denotes the reversion matrix with 1’s on the main antidiag-
onal and zeros elsewhere, and � denotes complex conjugation.
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Convolution will be denoted by ∗, e.g.,

h = f ∗ pk ←→ h(s) = f (s)pk(s).

Convolution of a vector by a matrix will mean column-by-column convolution,
i.e.,

G = f ∗ P = [ f ∗ p0, f ∗ p1, . . . , f ∗ pn] = [g0, g1, . . . , gn]
←→ G(s, z) = f (s)P(s, z) = [g0(s), g1(s), . . . , gn(s)]z

The converse operation of columnwise deconvolution (division with no remain-
der) will be denoted by

P = G / f = [p0, p1, . . . , pn]
←→ P(s, z) = G(s, z)

f (s)
= [p0(s), p1(s), . . . , pn(s)]z

and it will represent extraction of a factor f (s) common to all the polynomials
gk(s). Notation like [0, G] or [G, 0, 0] will denote pre- or post-padding of G by
the depicted number of columns of zeros.

In the process of developing the new method (and only for this sake), it will
be convenient to think of the coefficient matrix of P(s, z) as associated with a
“balanced polynomial,” rather than pk(s). Accordingly, P will be associated with
the next alternative function,

P(s̃, z) = s−n1/2 P(s, z) =
n2∑

k=0

pk(s̃)z
k = s̃t Pz, (3)

where s̃ := [s−m/2, s−(m/2−1), . . . , s(m/2−1), sm/2]t , and s̃, as a function argu-
ment, denotes a power series to equal extent in the two variables (s−1, s) (in the
current method, in contrast to [7], only the even integer m will be encountered).

We shall construct for the polynomial D(z1, z2) a sequence of centrosymmetric
matrices (the “2-D table”) {Em , m = 0, 1, . . . , n(= n2)}, E


m = Em . These
matrices may also be referred to as the polynomials Em(s, z) or Em(s̃, z).
Each polynomial Em(s, z) will be of degree n2 − m in z and of a certain
degree in s that increases exponentially as a function of m in the initial form
and only linearly in the final form of the sequence. When using the matricial
notation, the sequential index m will be set in brackets and precede other
indices. For example, Em(s̃, z) = [e[m] 0(s̃), e[m] 1(s̃), . . . , . . . , e[m] n−m(s̃)]z =
s̃t [e[m] 0, e[m] 1, . . . , e[m] n−m]z, where e[m] k =[e[m]0,k, e[m]1,k, . . . , e[m]�e(m),k]t
is the (k + 1)th column of Em .

2.2. Huang-Strintzis stability conditions

The most commonly used starting point for 2-D stability tests is the following
lemma. It was introduced by Huang for a = ∞ [14], [20] and set by Strintzis [22]
into its next more general form.
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Lemma 1. D(z1, z2) is stable if and only if

(a)

D(z, a) �= 0 for all z ∈ V̄ and some a ∈ V̄ (4)

(b)

D(s, z) �= 0 for all (s, z) ∈ T × V̄ . (5)

Remark 1. It is desirable to choose a real a in order not to introduce unnecessary
complex arithmetics when D is real. We shall use this lemma with a = 1. This
value integrates nicely with the special role that z = 1 plays in our underlying
1-D stability test.

2.3. Division-free 1-D stability test

As is well known, stability of a 1-D discrete-time linear system of order n cor-
responds to the requirement that its system polynomial p(z) has its n zeros in U
(is “stable”). This condition may be brought to closer terms with (2) by writing it
as p(z) �= 0 for all z ∈ V̄ . We intend to apply the test in [3] to (5), by regarding
D(s, z) as a 1-D polynomial in z with coefficients dependent on s. However doing
so in a direct manner would lead to the manipulation of a sequence of polynomials
in z with coefficients that are rational functions of s. In order to avoid rational
functions, we derive here a division-free version for the 1-D stability test of [3].

The stability of a 1-D polynomial p(z)

p(z) =
n∑

k=0

pk zk, p(1) �= 0 (6)

may be tested using the following algorithm and Proposition 1.

Algorithm 1. 1-D Table.
Construct for the 1-D polynomial (6), the following sequence of symmetric

polynomals { fm(z) =∑n−m
k=0 f[m]k zi , m = 0,1, . . . , n}, fm(z) = f 


m(z).

(i) Initiation. Form p̃(z) = p(1)� p(z) and obtain

f0(z) = p̃(z)+ p̃
(z), f1(z) = ( p̃(z)− p̃
(z))/(z − 1) (7)

(ii) Recursion. For m = 1, . . . , n − 1:

z fm+1(z) = ( f[m−1]0 f �[m]0 + f �[m−1]0 f[m]0z) fm(z)− f[m]0 f �[m]0 fm−1(z) .

(8)

Proposition 1 (Stability Conditions for Algorithm 1). Assume that Algorithm 1
is applied to the polynomial (6). Then p(z) is stable if and only if

fm(1) > 0 m = 1, . . . , n. (9)
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Proof. The polynomials in Algorithm 1 and those used in [3] differ by scaling
factors, say fm(z) = ψmtm(z), where tm(z) = ∑n−m

k=0 t[m]k zi . (Note that the
polynomials in [3] Tm(z) were indexed in reversed order, tm(z) = Tn−m(z).) A
comparison of the recursions in Algorithm 1 with the recursion in [3] reveals
the relations ψ0 = 1, ψ1 = 1, ψm = | f[m−1]0|2ψm−2 = |t[m−1]0|2ψ2

m−1ψm−2,

m ≥ 2. The current necessary and sufficient conditions follow from corresponding
stability conditions in [3] via the fact that all the ψm are real and positive. ✷

Remark 2. The conditions f[m]0 �= 0 for all m are necessary conditions for sta-
bility and they correspond to “normal conditions” in [3]. However, currently they
need no special care because the algorithm avoids the division operation. The in-
stability that a vanishing f[m]0 implies is detected as a subsequent violation of (9).
All the polynomials fm(z) are symmetric, fm,n−m−i = f �

m,i , i = 0, . . . , n − m.
This fact implies in particular that all fm(1) are real, so that writing fm(1) > 0
makes sense.

3. An intermediate test form

In order to apply the above 1-D stability test to D(z1, z2), we define

M(s̃, z) := D(s−1, 1)D(s, z) = s̃t Mz. (10)

Note that condition (b) of Lemma 1 holds if and only if M(s̃, z) �= 0∀(s, z) ∈
T × V̄ . So, the division-free 1-D stability test is applicable to ps(z) = D(s, z)
regarding it as a polynomial in z with coefficients dependent on s ∈ T . It involves
Algorithm 1, using p̃s(z) = M(s̃, z) in (7), and Proposition 1. Also note that
meeting the requirement D(s, 1) �= 0 implies that p̃s(1) is real and positive (=
|D(s̃, 1)|2 > 0). Also we draw attention to the fact that for balanced polynomial
coefficients, complex conjugation for values of s ∈ T amounts to reversion of the
column vectors. The important advantage of using the balanced polynomial view
is that complex conjugation in Algorithm 1 is implemented in the following Al-
gorithm 2 by reversion of rows without increasing the row sizes of the coefficient
matrices.

3.1. Table construction

The first form for the 2-D stability table (which will serve as a basis for further
improvements) follows from the application of Algorithm 1 to M(s̃, z). Here
and through most of the derivation we shall use polynomial rather than matricial
notation. However, the introduced notation convention allows a simple translation
of the polynomial algorithm to a matricial form. At the end of the derivation, in
Section 5, the method will be summarized using matricial notation.



252 BISTRITZ

Algorithm 2. The F-table (an intermediate 2-D table form). Construct for the
tested D(z1, z2) a sequence of polynomials {Fm(s̃, z) =∑n−m

k=0 f[m] k(s̃)zk, m =
0, 1, . . . , n (= n2) } by the following recursion.

(i) Initiation.

M(s̃, z) := D(s−1, 1)D(s, z)

F0(s̃, z) = M(s̃, z)+M
(s̃, z), F1(s̃, z) = M(s̃, z)− M
(s̃, z)

z − 1
(11)

(ii) Recursion. For m = 1, 2, . . . , n − 1, obtain Fm+1(s̃, z) by

hm(s̃) = f[m−1] 0(s̃) f 

[m] 0(s̃)

rm(s̃) = f[m] 0(s̃) f 

[m] 0(s̃)

zFm+1(s̃, z) = hm(s̃)Fm(s̃, z)+h

m(s̃) z Fm(s̃, z)−rm(s̃)Fm−1(s̃, z). (12)

It follows from the symmetry of the polynomials in Algorithm 1 that the 2-D
polynomials Fm(s, z) are centrosymmetric, by which we mean that their coeffi-
cient matrices satisfy the symmetry Fm = F


m .

3.2. Stability conditions

Define for Algorithm 2 the sequence

ϕm(s̃) := Fm(s̃, 1) =
n−m∑
k=0

f[m] k(s̃), m = 0, . . . , n. (13)

ϕm(s̃) are (balanced) symmetric polynomials, ϕ

m = ϕm . This implies in particular

that ϕm(s̃) is real ∀s ∈ T .

Proposition 2 (Stability Conditions for F-Table). D(z1, z2) is stable if and only
if the following conditions (a) and (b) or (b’) hold.

(a) D(z, 1) �= 0 for all z ∈ V̄ ,
(b) ϕm(s̃) > 0, m = 1, . . . , n for all s ∈ T ,

(b’) (i) D(1, z) �= 0 for all z ∈ V̄ ,
(ii) ϕm(s) �= 0, m = 1, . . . , n for all s ∈ T ,

where ϕm(s̃) are defined in (13) for the F-table of D(z1, z2).

Proof. We need to show that conditions (b) here and in Lemma 1 are equivalent.
If D(z1, z2) is 2-D stable, then (a) holds, and Algorithm 2, regarded, for each
s ∈ T , as a 1-D test by Algorithm 1 for p̃s(z) := D
(s̃, 1)D(s̃, z), implies
the conditions in (b), by Proposition 1. Conversely, if (a) and (b) hold then,
reversing the argument, (a) admits the application of Algorithm 1 to p̃s(z), and
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Proposition 1 implies the D(s, z) �= 0 ∀z ∈ V̄ . Therefore, D(z1, z2) is (2-D)
stable by Lemma 1.

It remains to show that (b) is replaceable by (b’). Clearly, condition (b) is
equivalent to the following two conditions: (1) ϕm(s̃) �= 0, m = 1, . . . , n plus
positivity at one point on T , say (2) ϕm(1) > 0, m = 1, . . . , n. However, (2) is by
Proposition 1 equivalent to 1-D stability of M(1, z) = D(1, 1)D(1, z) and is well
presented by (i) of (b’). Also (1) is equivalent to (ii) of (b’) because for s ∈ T ,
ϕm(s̃) �= 0 if and only if ϕm(s) �= 0. ✷

Remark 3. A difference between the test here and the one in [7] is notable from
this proposition and on. The stability conditions here are posed on Fm(s̃, 1) di-
rectly. In contrast, in [7] they are posed on Fm(s̃, 1)/F0(s̃, 1). Similar differences
will exist between all subsequent stability conditions here and their counterparts
in [7]. The above proof is simpler than the proof of the corresponding property
in [7] (because there additional care was needed to account for F0(s, 1), which
may have there zeros on T without implying instability).

Remark 4. Condition (b’) is preferable over (b). The 1-D stability test for D(1, z)
may be carried out before starting the construction of the table. This way, in a case
when D(1, z) is found not to be stable, the table construction may be avoided. An
equal computational effort is required to test algebraically the condition ϕm(s)
(not real valued on T ) for no zeros on T and the condition ϕm(s̃) > 0 ∀s ∈ T .
The stability of D(1, z) will be stated as part of all subsequent stability conditions
with both ϕm(s) �= 0 or ϕm(s̃) > 0 ∀s ∈ T (and they both will be referred to as
positivity conditions).

The sequence {ϕm(s̃)} obeys the next recursive relation, which will be instru-
mental in subsequent proofs:

ϕm+1(s̃) = hr
m(s̃)ϕm(s̃)− rm(s̃)ϕm−1(s̃), where hr

m(s̃) := hm(s̃)+ h

m(s̃) .

(14)
It is obtained by setting z = 1 in Algorithm 2. Note that this recursion is not
enough by itself to derive the sequence {ϕm(s̃)} because it requires {Fm(s̃, z)} for
hr

m(s̃) and rm(s̃). The next corollary states properties of hr
m(s̃) and rm(s̃) that will

be needed in forthcoming proofs. They can be shown using the definition of these
functions, the above recursion, and Proposition 2 (the proof is detailed in [7]).

Corollary from Proposition 2. If D(z1, z2) is stable, then

(i) hr
m(s̃) > 0 for all s ∈ T and all m = 0, . . . , n − 1.

(ii) rm(s̃) > 0 for all s ∈ T and all m = 0, . . . , n − 1.

3.3. Refined stability conditions

The next proposition simplifies Proposition 2 by showing that it suffices to carry
out only the last positivity test. This is a simplification of the kind introduced to
the 2-D stability literature by Siljak [21].
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Proposition 3 (Refined Stability Conditions for F-Table). D(z1, z2) is stable if
and only if the three following conditions (i), (ii), and (iii) or (iii′) hold:

(i) D(z, 1) �= 0 for all z ∈ V̄
(ii) D(1, z) �= 0 for all z ∈ V̄

(iii) ϕn(s) �= 0 for all s ∈ T
(iii′) ϕn(s̃) > 0 for all s ∈ T

Proof. These are evidently necessary conditions because they form a subset of
the conditions in Proposition 2. Sufficiency can be proved by using the recursion
for ϕm(s̃) (14) and proof by contradiction. Assume that conditions (i)-(iii) hold
and that nevertheless there exist ϕm(s̃) m < n that vanish for s ∈ T . Proposition 1
implies that for all m, ϕm(1) > 0. Let k be the least m for which ϕm(s̃) = 0 and
let s1 ∈ T be the closest point to s = 1 such that ϕk(s̃1) = 0. Then by (14),
ϕk+1(s̃1) = −rk(s̃1)ϕk−1(s̃1) ≤ 0 because rk(s̃) ≥ 0 ∀s ∈ T (by definition) and
ϕk−1(s̃1) > 0 (by the assumed choice of k). Therefore, ϕk+1(s̃) must vanish for
some s ∈ T closer to s = 1 than s1. Let s2 be the root of ϕk+1(s̃) = 0 on T closest
to s = 1, i.e., with maximal s R

2 , s R
1 ≤ s R

2 < 1, where s R
i = Re{si }. Repeating

this reasoning enough times implies that ϕn(s̃) must vanish for some s ∈ T whose
real part is in a subinterval [s R

no
, 1) such that s R

no
< 1. This is a contradiction to

the assumption that condition (iii) holds. Therefore, conditions (i)–(iii) imply the
larger set of conditions of Proposition 2, and therefore are sufficient for stability.
✷

4. The 2-D stability test (final form)

In this section we first show that the F-table is of size higher than necessary. We
then obtain a modified recursion that produces matrices of lower row size and
finally derive stability conditions for the reduced-size table.

4.1. Redundant factors

The next two lemmas reveal that each Fm(s̃, z) m ≥ 2 contains separable poly-
nomial in s̃ factors (i.e., factors that divide Fm(s̃, z) with no remainder) that are
passed to all subsequent Fm+i (s̃, z), i > 0, and causes a rapid growth of the
degrees in s of these polynomials.

Lemma 2. ϕ0(s̃) divides F2(s̃, z).

Proof. Note that ϕ0(s̃) = F0(s̃, 1) = 2D(s, 1)D(s−1, 1). Using the notation

D(s̃, z) =
n∑
k

dk(s̃)z
k, δ(s̃) =

n∑
k=0

dk(s̃) ,
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M(s̃, z) = δ(s̃)
 D(s̃, z) and ϕ0(s̃) = 2δ(s̃)δ
(s̃). It is easy to see that

f[0] 0(s̃) = δ(s̃)d

n(s̃)+ δ
(s̃)d0(s̃)

f[1] 0(s̃) = δ(s̃)d

n(s̃)− δ
(s̃)d0(s̃).

In the following discussion, we shall use the notation �→ to mean that the right-
hand side is what remains after evaluating the left-hand side and dropping, from
a sum of terms, terms already seen to contain the factor δ(s̃)δ
(s). Evaluate h1(s̃)
and r1(s̃),

h1(s̃) = f[0] 0(s̃) f 

[1] 0(s̃) �→ −δ(s̃)2d


0(s̃)d


n(s̃)+ δ
(s̃)2d0(s̃)dn(s̃) =: ĥ1(s̃)

r1(s̃) = f[1] 0(s̃) f 

[1] 0(s̃) �→ −δ(s̃)2d


0(s̃)d


n(s̃)− δ
(s̃)2d0(s̃)dn(s̃) =: r̂1(s̃).

Therefore,

zF2(s̃, z) �→ (ĥ1(s̃)+ zĥ

1(s̃))F1(s̃, z)− r̂1(s̃)F0(s̃, z) =

−ĥ1(s̃)(δ

(s̃)D(s̃, z) − δ(s̃)D
(s̃, z))− r̂1(s̃)(δ


(s̃)D(s̃, z)+ δ(s̃)D
(s̃, z)),

where the �→ convention allows the substitutions h1(s̃) �→ ĥ1(s̃) and r1(s̃) �→
r̂1(s̃). The second equality follows from the definition of F0(s̃, z) and F1(s̃, z)
and from using ĥ


1(s̃) = −ĥ1(s̃) to cancel out the (z − 1) in the denominator of
the definition of F1(s̃, z). Now we insert the expressions for ĥ1(s̃) and r̂1(s̃) and
continue the evaluation process using �→ to drop factors of δ(s̃)δ
(s̃) from the
sum of terms,

�→ −δ(s̃)3d

0(s̃)d



n(s̃)D
(s̃, z) − δ(s̃)


3
d0(s̃)dn(s̃)D(s̃, z)

+δ(s̃)3d

0(s̃)d



n(s̃)D
(s̃, z) + δ(s̃)


3
d0(s̃)dn(s̃)D(s̃, z) = 0 .

We have therefore obtained that F2(s̃, z) is composed of a sum of terms that
contain the factor δ(s̃)δ(s̃)
 plus terms that sum up to zero. This completes the
proof. ✷

Lemma 3. Consider a sequence {Fm(s̃, z)}n0 produced by the recursion (12).

(a) If f (s̃) is a factor of Fm(s̃, z) m ≥ 0, then it is a factor of all subsequent
Fm+i (s̃, z), i ≥ 1.

(b) For any four consecutive polynomials G0(s̃, z), G1(s̃, z), G2(s̃, z), G3(s̃, z)
in this sequence, g[1] 0(s̃)g



[1] 0(s̃) is a factor of G3(s̃, z) = ∑

g[3] i (s̃)zi .

Namely, g[1] 0(s̃)g


[1] 0(s̃) divides exactly (with no remainder) each g[3] i (s̃).

The assertion in Lemma 3 is a property of the recursion (12). The requested
proof has already been given in [7] because the two tests use the same recursion
form (12). It follows from property (b) that any Fk+2(s̃, z), k = 0, 1, . . . , is
divisible by each of the factors f[i] 0(s̃) f 


[i] 0(s̃), i = 0, . . . , k. By property (a),
such factors build up as the recursion goes on and their multiplicity increases.
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The factor in Lemma 2 was not observed in [4]. It is of a different nature than
the factors in Lemma 3. It stems from the multiplication by D(s−1, 1) of D(s, z)
in forming M(s̃, z). The factor ϕ0(s̃) is by definition nonnegative on T , and for
a stable D(z, 1), it is strictly positive, ϕ0(s̃) > 0 ∀s ∈ T . By property (a) of
Lemma 3, the 2n1 degree polynomial ϕ0(s) is a factor of all Fm(s, z), m ≥ 2. It is
important to realize that its elimination from F2(s̃, z) does not interfere with the
mechanism that builds up the factors figured in Lemma 3.

4.2. Table construction

The next algorithm shows how to produce efficiently a sequence of matrices
{Em(s̃, z), m = 0, . . . , n} in which each Em(s̃, z) presents the result of removing
from Fm(s̃, z) all common factors that it accumulates according to Lemmas 2
and 3. The efficiency is manifested in obtaining the Em’s directly rather than the
more obvious alternative of removing the common factors after completing the
F-table. Specifically in the following algorithm, the division by q0 takes care of
the factor revealed in Lemma 2, and subsequent qm(s̃), m ≥ 1, remove the factors
of Lemma 3 as soon as possible.

Algorithm 3. E-table (final form).
Construct for D(z1, z2) a sequence of polynomials {Em(s̃, z) = ∑n−m

k=0 e[m] k

(s̃)zk, m = 0, 1, . . . , n(= n2)}, where Em = E

m ∀m, as follows.

(i) Initiation. M(s̃, z) = D(s−1, 1)D(s, z)

E0(s̃, z) = M(s̃, z)+M
(s̃, z), E1(s̃, z) = M(s̃, z)− M
(s̃, z)

z − 1
(15)

q0(s̃) = E0(s̃, 1)

(ii) Recursion. For m = 1, . . . , n − 1, obtain Em−1(s̃, z) by

gm(s̃) = e[m−1] 0(s̃)e


[m] 0(s̃)

qm(s̃) = e[m] 0(s̃)e


[m] 0(s̃)

zEm+1(s̃, z) = gm(s̃)Em(s̃, z)+ g

m(s̃)zEm(s̃, z)− qm(s̃)Em−1(s̃, z)

qm−1(s̃)
. (16)

4.3. Stability conditions

For the derivation of stability conditions for the E-table, we shall need the relation
between the sequences {Fm(s̃, z)} and {Em(s̃, z)}. They evidently are of the form

Fm(s̃, z) = αm(s̃)Em(s̃, z), (17)
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where αm(s) are symmetric, α


m(s) = αm(s). The degree of αm(s) represents the

amount of row reduction achieved by replacing Fm by Em . Substituting the above
relation into one three-term recursion and then comparing it to the other gives the
next set of recursive rules for αm(s). α0(s̃) = α1(s̃) = 1, and

αm+1(s̃) = α2
m(s̃)αm−1(s̃)qm−1(s̃), m ≥ 1, (18)

or

αm+1(s̃) = α2
m(s̃)

αm−1(s̃)
rm−1(s̃), m ≥ 1. (19)

In correspondence to the definition of ϕm(s̃) for the F-table, we define for the
E-table the (balanced) symmetric polynomial sequences {εm(s̃)} by

εm(s̃) := Em(s̃, 1), m = 0, . . . , n (20)

Setting z = 1 in Algorithm 3 shows that εm(s̃) obey the recursion: ε0(s̃) =
E0(s̃, 1) = 2D(s̃, 1)D
(s̃, 1), ε1(s̃) = E1(s̃, 1),

εm+1(s̃) = gr
m(s̃)εm(s̃)− qm(s̃)εm−1(s̃)

qm−1(s̃)
, m = 1, . . . , n − 1, (21)

where we define gr
m(s̃) := gm(s̃)+ g


m(s̃).
The next stability conditions are the E-table counterpart of Proposition 1.

Proposition 4 Stability condition for the E-table. D(z1, z2) is stable if and only
if the three conditions (i), (ii), and (iii) or (iii′) hold.

(i) D(z, 1) �= 0 for all z ∈ V̄ .
(ii) D(1, z) �= 0 for all z ∈ V̄ .

(iii) εm(s̃) �= 0, m = 1, 2, . . . , n, for all s ∈ T
(iii′) εm(s) �= 0, m = 1, . . . , n, for all s ∈ T ,

where {εm(s̃)} are defined in (20) for the E-table of D(z1, z2).

Proof. If D(z1, z2) is stable, then by the corollary from Proposition 2, all ϕm(s̃)
and rm(s̃) are positive on T . Therefore, all αm(s̃) > 0 on T by (19). Therefore,
the conditions follow from Proposition 2. via (17).

Assume that the three conditions hold. We have by definition that qm(s̃) ≥ 0 on
T and want to show that they are strictly positive there. Assume the converse, that
qm(s̃o) = 0 for some m and s̃o ∈ T . Then e[m] 0(so) = 0 and in turn gm(so) = 0.
The latter leads via (21) to the contradiction εm+1(s̃o) = 0. Therefore, qm(s̃) > 0
on T for m = 0, . . . , n−1. It follows via (18) that all αm(s̃) > 0 on T . Therefore,
all ϕm(s̃) > 0 on T by (17). Consequently, the conditions here imply the sufficient
conditions for stability in Proposition 2. ✷

The main theorem shows that the single positivity condition of Proposition 3
for the F-table also remains valid for the reduced size E-table.

Main Theorem. D(z1, z2) is stable if and only if the following three conditions
(i), (ii), and (iii) or (iii′) hold:
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(i) D(z, 1) �= 0 for all z ∈ V̄ ,
(ii) D(1, z) �= 0 for all z ∈ V̄ ,

(iii) εn(s) �= 0 for all s ∈ T ,
(iii′) εn(s) > 0 for all s ∈ T ,

where εn is defined in (20) for the E-table of D(z1, z2).

Proof. The stated conditions form a subset of the necessary conditions in Propo-
sition 4 and are therefore necessary for stability.

Sufficiency follows by showing that the proof for Proposition 3 is extendable to
the E-table. It is possible to repeat the argument there and show that any assumed
εk(s̃1) = 0 for k < n would imply the contradiction that εn(s̃o) = 0 for some
so ∈ T by using this time recursion (21). The same proof still works because
a zero on T of εk(s̃) immediately affects the next εk+1(s̃). In difference, a qm(s̃)
factor that is formed at step k divides the right-hand side of (16) only at step k+2.
Consequently, a zero on T of εk(s̃) will pass to subsequently indexed εm(s̃) before
division by qm(s̃) may possibly cancel it out. So once again, any εm(s̃o) = 0 for
so ∈ T and m < n contradicts condition (iii) of this theorem. Therefore, the
three conditions here imply the three conditions in Proposition 4, which imply
that D(z1, z2) is stable. ✷

The main theorem shows that the simplification of replacing the F-table by the
E-table does not complicate the simplicity of the associated stability conditions.
As a matter of fact, the single positivity test of εn(s) is simpler than testing ϕn(s)
because εn(s) has a much lower degree than ϕn(s). The complexity reduction in
the construction of the E-table is even more impressive. Let � f (m) and �e(m)

denote the degree of Fm(s, z) and Em(s, z) in s, respectively. � f (m) is seen from
the recursion form (12) to satisfy the difference equation

� f (m + 2)− 2� f (m + 1)− � f (m) = 0. (22)

A closed-form expression for � f (m) can be obtained by solving it for the initial
conditions � f (−1) = � f (0) = n1. The solution is a linear combination of λm

1 and
λm

2 with λ1,2 = 1 ±√2. Therefore, the solution increases exponentially with m.
In difference, �e(m) is seen from recursion (16) to obey the equation

�e(m + 2)− 2�e(m + 1)+ �e(m) = 0 (23)

whose solution for the initial values �e(1) = 2n1 and �e(2) = 4n1 is �e(m) =
2mn1. Therefore, the number of rows in the matrices of the E-table increases only
linearly with m. We skip the count of operations for the F-table but will carry
out in the next section an approximate count for the E-table. Note that the degree
of εn(s) = En(s, z), the last and only polynomial whose positivity needs to be
tested, is 2n1n2.

It is interesting to look into the effect of missing the factor depicted in Lemma 2
in [4]. Not dividing E2(s̃, z) by q0(s̃) leaves the algorithm and stability condi-
tions equally valid, but the following changes occur. The degree of E2(s, z) in
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s becomes �e(2) = 6n1 (instead of 4n1). The solution of (23) for �e(1) = 2n1,
�e(2) = 6n1 becomes �e(m) = (4m − 2)n1. This would imply the (almost) dou-
bling of the row sizes of subsequent matrices and an almost factor of 4 increase in
the amount of computation required for the construction of the table (see the count
in Section 5.2). The final positivity test would involve a symmetric polynomial of
degree 2n1(2n2 − 1) instead of just 2n1n2.

5. Summary and illustration

The proposed 2-D stability test is summarized in this section. The next summary
uses the alternative matrix notation shown in Section 2.1. This way of presentation
enlightens the simple implementation of this tabular test by an array-oriented
language. Also in this section, we evaluate the computational cost of the method
and illustrate it by a numerical example.

5.1. The proposed 2-D stability tabular test

In the next presentation of the procedure, we add in brackets optional steps (steps
that are suggested but may be skipped). They present a collection of necessary
conditions for 2-D stability beyond the minimal set of necessary and sufficient
conditions that were asserted in the route to the main theorem. If observed, they
may help to detect earlier instability and consequently save the remaining com-
putation.

To test whether D(z1, z2) (1) is stable, i.e., (2) holds, proceed as fol-
lows. (In the following, ‘exit’ marks points at which the conclusion that
D(z1, z2) is not stable is reached and therefore the procedure may be
terminated.)
1. Preliminary 1-D tests:
Test whether D(z, 1) is 1-D stable.
False - ‘exit’, True - continue.
Test whether D(1, z) is 1-D stable.
False - ‘exit’, True - continue.
[Optionally, perform additional tests for 1-D polynomials whose stability
are necessary for 2-D stability, e.g., D(s, z) and D(z, s) at s = ∞,−1 or
D(z, z) and ‘exit’ if any of them is not stable.]
2. Table Construction: Form (n = n2)

δ =
n∑

k=0

dk , M = δ
 ∗ D

E0 = M + M
, E1 = (M − M
)/[−1, 1]t

q0 =
n∑

k=0

e[0] k .
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For m = 1, . . . , n − 1 do:
[Optional (for m ≥ 1): compute εm =∑n−m

k=0 e[m] k ,
Test whether st εm �= 0 ∀s ∈ T
False - ‘exit’ , True - continue.]

qm = e[m] 0 ∗ e

[m] 0; gm = e[m−1] 0 ∗ e


[m] 0; Ẽm := gm ∗ [Em , 0]

[0, Em+1, 0] =
(

Ẽm + Ẽ

m − qm ∗ Em−1

)
/qm−1

3. Positivity Test:
Test whether st e[n] 0 �= 0 ∀s ∈ T
False - ‘exit’ , True - D(z1, z2) is stable.

As is well known, convolution may be regarded as the algebraic operation of
premultiplying a vector by a lower triangular Toeplitz matrix defined by the other
vector. Similar implementation of the deconvolution is possible using instead the
(simple-to-calculate) inverse of that matrix. The centrosymmetry of the matrices
should be used to compute only half of their entries. The best way to exploit
this symmetry is to calculate the upper half of the rows (and not the half of the
columns). Each convolution should be carried out until only half of its full length.
As is explained in the next subsection, this manner benefits both the amount and
the accuracy of the computation more than the alternative approach of computing
half of the columns.

5.2. Computational cost

A count of operations for the construction of the table involves the following
observations. The symmetry of the matrices Em allows the computation of only
half of the entries of each matrix. Using this symmetry to compute the upper
half of the rows requires less computation and is numerically more robust than
using the symmetry to compute the left half of the columns. The reason is that
convolution of all columns (multiplication of two polynomials in s) halfway (until
half of the full degree of the product polynomial) requires less computation and
accumulates less numerical error then convolution of half of the columns to full
extent. The degree of Em(s, z) is (�(m), n2−m), where �(m) = 2mn1 for m ≥ 1
(�(0) = 2mn1). The mth step of the recursion consists of three convolutions
per column; gm(s) of degree (4m − 2)n1 multiplies e[m] k(s) of degree 2mn1,
qm(s) of degree 4mn1 multiplies e[m−1] k(s) of degree (2m − 2)n1, the resulting
numerator polynomial (of degrees (6m − 2)n1) is finally divided by qm−1(s) of
degree (2m − 2)n1. Multiplication of two 1-D polynomials of degrees k1 and k2
requires (k1 + 1)(k2 + 1) arithmetic operations. (The same count is also required
for dividing them when one is a factor of the other.) Carrying the multiplication to
only half degree of the product polynomial (as our case admits) requires only 1/4
of the mentioned count. Avoiding the more lengthy details of a full exact count
of operations, it is easy to conclude from these guidelines that the 2-D table’s
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construction requires approximately 5
6 n2

1n4
2 + O(n5

1,2) flops, where +O(n5
1,2) is

used to denote that other additive terms with powers nα1
1 nα2

2 such that α1+α2 ≤ 5
are neglected. The test also involves two 1-D tests of degree n1 and n2 in step
1 and a unit circle test in step 3 for a polynomial of degree 2n1n2. Using the
1-D stability test that underlies this 2-D tabular test, i.e., the test in [2], [3],
the zero location of a polynomial of degree n with respect to the unit circle
requires 0.25n2 + O(n) multiplications. Thus the cost requirement of the three
1-D tests culminates in step 3, which requires n2

1n2
2 + O(n3

1,2). This count is
negligible compared to the complexity of the table’s completion. (As a matter
of fact, carrying out all n positivity tests of Proposition 4 still involves one order
of magnitude less computation than the cost of the table’s construction.)

The above count of operations also approximates the other immittance tabular
test in [7]. However, the two tests create different sequences of matrices (or 2-
D polynomials) for the tested polynomial and differ in details. The test in [7]
is based on the modified 1-D stability test in [6] and assigns to the tested 2-D
polynomial a sequence that begins with an E−1(s̃, z). The degree of each Em(s̃, z)
there is �e(m) = (2m + 1)n1 in s (higher by n1 than here) and degree n2 − m
in z. It terminates with En2(s̃, z) of degree 2n1(n2 + 1). The final positivity test
is applied again to a symmetric polynomial of degree 2n1n2 that is obtained by
dividing En2(s̃, z) by E0(s̃, 1). Thus, approximately, neglecting O(n5

1,2) counts,
the test here and in [7] are of comparable cost of computation. However, a more
detailed comparison reveals that the current test form wins by comparison with [7]
in count of operations and simplicity of its setting.

It is also possible to similarly carry out a count of operation for the scattering
tabular test in [13]. The matrices there do not possess any symmetry. Therefore
convolutions have to be carried out fully. The count of operations for the method
there can be shown to be approximately 4

3 n2
1n4

2 + O(n5
1,2), [8]. This indicates

a 1.6 factor of advantage for very large n (letting n = n1 = n2). Following
an exact count of operations for the two tests shows (after setting into it again
n = n1 = n2) that the cost ratio is higher than 2 for degree values of practical
interest (3 ≤ n ≤ 10).

Clearly, the 2-D stability can be equally determined by carrying out the test for
the 2-D polynomial with transposed coefficient matrix (D → Dt ). According to
the above expression for the count of operations, it is preferable to apply the test
to the 2-D polynomial with transposed coefficient matrix when n1 < n2.

5.3. Numerical example

For illustration, consider the polynomial used as an example in several
papers [14], [16], [20, p. 129], [7]:

D(z1, z2) = [1z1
1z2

1]



0 0 0.2500
0 0.2500 0.5000
0.2500 0.5000 1.0000







1
z1

2
z2

2


 .
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D(z, 1) = D(1, z) = [0.2500 0.7500 1.7500]z are easily determined to be
stable. (The entries in parentheses reflect structural symmetry.)

M =




0 0 0.4375
0 0.4375 1.0625
0.4375 1.0625 2.1875
0.1875 0.4375 0.8750
0.0625 0.1250 0.2500




E0 =




0.2500 0.1250 0.5000
0.8750 0.8750 1.2500
2.6250 2.1250 (2.6250)

(1.2500) (0.8750) (0.8750)

(0.5000) (0.1250) (0.2500)




E1 =




0.2500 0.3750
0.8750 0.8750
1.7500 (1.7500)

(0.8750) (0.8750)

(0.3750) (0.2500)




Set m = 0: g1 = [0.0938, 0.5469, 2.1875, 4.5156, 6.7031, 5.1406, 2.6250, 0.7500,
0.1250]t and q1 = [0.0938, 0.5469, 1.8594, 3.6094, 4.7969, (3.6094), (1.8594),
(0.5469), (0.0938)]t . Obtain the right hand side numerator polynomial’s
matrix coefficient; in this case the matrix has one column [0.0547, 0.4336,
2.0840, 6.3281, 14.066, 22.301, 26.447, (22.301), (14.066), (6.3281), (2.0840),
(0.4336), (0.0547)]t . Obtain q0 by summing the columns of E0,

q0 = [0.8750, 3.0000, 7.3750, (3.0000), (0.8750)]t ,
and deconvolve the numerator with q0. The row size is reduced by 4(= 2n1), and
the result is

E2 =




0.0625
0.2812
0.8906
1.5938
2.0781
(1.5938)

(0.8906)

(0.2812)

(0.0625)




.

The degree n2 = 2 of this example is too low to allow an E2 with several
columns and show that they all are obtained after deconvolution with q0. A higher
degree of n2 is also needed to illustrate the division that stems from Lemma 3.
It remains to examine whether ε2(s) = st E2 �= 0 ∀s ∈ T . This test may be
carried out with the 1-D zero location test for real polynomials in [2]. Following
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the method there, the next stability table is formed.

0.1250 0.5625 1.7813 3.1875 4.1562 (3.1875) . . .

−1.5625 −7.500 −20.250 −32.562 (−32.562) . . .

0.4375 0.8125 1.9375 1.2500 (1.9375) . . .

3.0357 10.429 21.179 (21.179) . . .

1.1279 2.6176 4.8544 (2.6176) . . .

−0.3478 −1.0684 (−1.0684) . . .

1.9755 2.0760 (1.9755)

0.3552 (0.3552)

1.8750

(Right halves of the symmetric rows are partly truncated.) According to the
rules there, the information on zero location with respect to T is extracted from
the number of sign variations of the ordered sequence formed by the sum of the
rows in this table:

V ar {15.468,−123.75, 7.6250, 69.286, 12.346,−2.8325, 6.0271, 0.7104,

1.8750} = 4

4 sign variations means that the tested polynomial has 4 zeros in V . Being a
symmetric polynomial of degree 8; it then also has 4 zeros in U (the reciprocals
of the zeros in V ) and no zeros on T , i.e., ε2(s) �= 0 for all s ∈ T . Therefore, the
examined D(z1, z2) is stable.

6. Concluding remarks

This paper has developed a method for testing the stability of 2-D discrete-time
system polynomials. The test consists of the construction of a sequence of cen-
trosymmetric polynomials or matrices (the table) and stability conditions posed
on it. The stability conditions are posed on 1-D polynomials and require in the
minimal form one stability test of degree n1 (or n2) and testing a symmetric poly-
nomial of degree 2n1n2 for no zeros (or positivity of the balanced polynomial) on
T .

This test is not limited to real-valued D. It can also equally be used for 2-D
polynomials with complex coefficients. The validity of this assertion becomes
apparent from the following facts. The test was developed using a 1-D test for
complex coefficient polynomials and using Lemma 1 which aslo holds for com-
plex D. Then, the subsequent derivation used nowhere any assumption that limts
it to a real D. In the complex case; the 
 operation also includes conjugation.
This symmetry and centrosymmetry stands for conjugate-symmetry and centro-
Hermitian symmetry. For the common case of real D, the test is presented such
that it encounters no complex number arithmetics.
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The current test has many parallels with the immittance tabular test in [7], but
there are also some important differences. The test here is based on the original
complex 1-D stability test in [2], [3] whereas the test in [7]: is based on the
modified 1-D test in [6]. Close examination of the two tests reveals that the current
test requires a little less computation and poses the positivity conditions more
directly than the other. Both tests may be regarded as the immittance counterpart
of the scattering 2-D stability test of Hu and Jury [13]. The centrosymmetry of
the matrices makes the immittance-type 2-D stability tests more efficient than
jury’s scattering-type 2-D test. The symmetry also makes the immittance tabular
tests more stable numerically than their scattering counterpart. The latter property
stems from the fact that because of the symmetry it suffices to carry out convolu-
tions to only half of their full length and so reduce the accumulation of numerical
error. More work on the 2-D stability testing problem that aims to reduce further
cost of computation and increase numerical accuracy is currently in progress.
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