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Stability Testing of 2-D Discrete Linear Systems by
Telepolation of an Immittance-Type Tabular Test

Yuval Bistritz, Senior Member, IEEE

Abstract—A new procedure for deciding whether a bivariate
(two-dimensional, 2-D) polynomial with real or complex coeffi-
cients does not vanish in the closed exterior of the unit bi-circle (is
“2-D stable”) is presented. It simplifies a recent immittance-type
tabular stability test for 2-D discrete-time systems that creates
for a polynomial of degree ( 1 2) a sequence of 2 (or 1)
centro-symmetric 2-D polynomials (the “2-D table”) and requires
the testing of only one last one dimensional (1-D) symmetric
polynomial of degree2 1 2 for no zeros on the unit circle. It
is shown that it is possible to bring forth (to “telescope”) the
last polynomials by interpolation without the construction of
the 2-D table. The new 2-D stability test requires an apparently
unprecedentedly low count of arithmetic operations. It also shows
that stability of a 2-D polynomial of degree ( 1 2) is completely
determined by 1 2 + 1 stability tests (of specific form) of 1-D
polynomials of degrees 1 or 2 for the real case (or2 1 2 + 1

polynomials in the complex cases).

Index Terms—Discrete-time systems, immittance algorithms,
multidimensional digital filters, multidimensional systems, sta-
bility, stability criteria.

I. INTRODUCTION

STABILITY of two-dimensional (2-D) linear discrete-time
(shift-invariant) systems arises in many applications. It is

required for the design of digital filters and processing of image,
seismic, radar and other types of data, in multimedia, geography,
communication, medicine and more fields. The key for testing
stability of 2-D discrete systems, and the subject of this paper, is
to determine whether a 2-D (bivariate) polynomial has no zeros
in the closed exterior of the unit bi-circle. Background on sta-
bility of multidimensional systems and related issues is avail-
able in several texts, including [1]–[4]. These texts also con-
tain comprehensive lists of references to earlier solutions for
this problem. More recent contributions to this problem include
[5]–[12], that will referenced again later in this work, and refer-
ences there in.

This paper will present a new algebraic procedure that solves
this problem in a very low count of arithmetic operations. The
new procedure profits on the advantages of a recent immit-
tance-type tabular 2-D stability test proposed for this problem
in [13], [14] and simplifies it into an even more efficient 2-D
stability test. The above tabular test builds for a polynomial of
degree a sequence of (or ) 2-D polynomials or
matrices (the 2-D table) with certain symmetry. It then requires
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to check whether the table’s last polynomial, a symmetric
one-dimensional (1-D) polynomial of degree , has no
zeros on the unit-circle. The complexity of this tabular test is

(assuming for convenience). It turns out
that this complexity is dominated by the effort required for the
construction of the 2-D table. The complexity of testing the last
1-D polynomial is only . The new stability test avoids the
construction of the table and shows that it is possible instead to
telescopes (bring forth) the last 1-D polynomial of the 2-D table
by interpolation. This approach, hence calledtelepolation,
replaces the construction of the 2-D table by testing the stability
of a finite number of 1-D polynomials of degree (or )
using a certain associated 1-D stability testing algorithm. The
overall complexity of the resulting new procedure is
( ). A more detailed count of operations and
its comparison to other available solutions indicates that the
new procedure has apparently an unprecedented low count of
arithmetic operations.

The paper is organized as follows. The next section cites the
tabular 2-D stability test from [14] and argues why it can be
simplified into an solution. Section III presents a new
1-D stability tests that may be used to sample this 2-D tab-
ular test at desirable values along the unit circle. Section IV de-
rives a simple solution of the required interpolation problem.
The 2-D stability testing procedure that results from combining
these components is presented in Section V. Section VI eval-
uates the computational cost of the procedure and compares it
with other available solutions. Various comments, including a
revealing comparison with an early numerical solution called
the mapping method, conclude the paper.

II. PRELIMINARIES

The problem considered in this paper is defined as follows.
Problem Statement:Given a 2-D (bivariate) polynomial

(1)

of degree , where , the matrix of coeffi-
cients, is a real or complex valued matrix, determine whether it
does not vanish in the closed exterior of the unit bi-circle, viz.,

(2)

where , , .
A that satisfies (2) will be called stable. (Other con-

ventions for defining stability are also used in the literature on
this topic. Bringing them to terms with the current notation may
require some simple adjustment, e.g., reversion of the matrix
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, cf. [1].) A 1-D polynomial (with real or complex coef-
ficients) such that

(3)

will too be called stable.
The condition (2) is the key problem in testing stability of 2-D

discrete systems. Its solution will not be restricted to assuming
that is real but simplifications that the real case admits will be
specified. Presentation of a 1-D stable polynomials in a manner
similar to the definition of 2-D stable polynomials, as above,
is constructive for the solution of the stated problem. It how-
ever hides significant differences between stability of 1-D and
2-D systems. Most importantly, the fundamental theorem of al-
gebra, according to which has zeros (and therefore it is
stable if and only if they all reside inside the unit-circle), does
not hold for polynomials with more than one variable. This defi-
ciency complicates and limits the means available for handling
stability as well as other issues in the design of multidimensional
systems, [1]–[4].

This paper follows the convention and notation in
[14]. Accordingly, polynomials and arrays may be inter-
changed, as demonstrated in (1). The more compact notation,

, where is a vector
of length depending on context, may also be used. Similarly,
a vector is associated with a 1-D polynomials,
as in (3). The balanced polynomial is defined for a polynomial

by , where
having an appropriate length.

Reversion of matrices and vectors are defined and denoted by
for a matrix and for a vector, where

is the reversion matrix (a square matrix with 1’s on its main
anti-diagonal and zeros elsewhere), anddenotes complex
conjugate. A vector and a polynomial are called symmetric if

or . A matrix with the property
and a 2-D polynomial such that are
called centro-symmetric. A matrix has an index to indicate
its position in the 2-D table. The columns of such a matrix
carry this index in brackets, .

The tabular 2-D stability test in [14], consists of the following
algorithm and theorem.

Algorithm 1: Obtain for a sequence of centro-
symmetric 2-D polynomials ,

as follows.

(4a)

(4b)

For do

(5a)

(5b)

(5c)

Theorem 1: is stable if, and only if, the following
three conditions hold.

1) .
2) .
3)

(6)

where is a symmetric polynomial in of degree
that becomes available at the end of applying Al-

gorithm 1 to .
The polynomial in Algorithm 1 has degree

, and the subsequent polynomials ,
, are of degrees , where

. The divisions by are exact.
Namely, the (symmetric) polynomial divides the
numerator polynomial with no remainder such that the result
is indeed a 2-D polynomial. This division is responsible for
attaining linear growth as function of for the row sizes of
the matrices , instead of an otherwise exponential growth
[14]. The polynomials are centro-symmetric
( ). The variables were replaced by
for convenience. The first variable will be most often regarded
as taking values on the unit circle, . The polynomial

that celebrates in condition iii) is a symmetric 1-D
polynomial obtained by exact division of [of degree

] by (of degree ). It follows from
its symmetry that (its so called “balanced”
form) is real on . In fact, it has been shown in [14] that it is
possible to replace condition iii) in Theorem 1 by the positivity
condition

(7)

The testing of the condition (6) can be carried out in
operations ( ). For example, the testing of this
polynomial in the real case requires approximately real
multiplications using the method in [15]. However, the overall
cost of this 2-D stability test is dominated by a higher cost in-
volved in the construction of the table. A count of arithmetic
operations can be carried out assisted by the following facts.
The -th recursion step consists of two convolutions and one
deconvolution per column. of degree
multiplies of degree , of degree mul-
tiplies of degree , and the resulting numer-
ator polynomials of degrees are divided by

of degree . Multiplication of two 1-D polyno-
mials of degrees and requires arithmetic
operations. Dividing out a factor of degree from a polyno-
mial of degree (say ) requires

arithmetic operations. The above counts can be halved
by using the centro-symmetries toc calculate polynomials in
(the columns of the coefficient matrices) till only half of their
full degree. Following this guide, an exact count for for the real
and complex case can be obtained but the weary details will be
skipped. It is enough to realize that the cost has com-
plexity, where ” is used here and after to denote a poly-
nomial expression with terms such that .
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This paper aims to obtain from this tabular test, a solution
of overall complexity (returning for convenience to the

assumption) anticipated according to the fol-
lowing observations. The above overall cost is caused by
the computation required for the construction of the 2-D table.
However, according to Theorem 1, the construction of the 2-D
table is required only in order to get at its end. It is well
known that a polynomial of degree can be determined from
its value at distinct points. It is also known that this inter-
polation problem, that amounts to solving a Vandermonde set of
equations, can be solved in complexity, (see for example
[16]). Consequently, (with ), can be obtained from
a finite set of known value in operations. Since
then, as already said, the condition (6) can be tested in
operation, an overall solution is possible if sample values
of can be obtained in operations per value. The next
section will show an efficient algorithm to obtain sample
values of . It subsequent section will then bring a simple and
direct formula to recover from these sample values.

III. COMPANION 1-D STABILITY TEST

This section begins by singling out an algorithm that can be
used to obtain sample values of . Afterwards, the new algo-
rithm is turned into a 1-D stability test by posing on it necessary
and sufficient conditions for 1-D stability.

The sought algorithm is obtained basically by reverting the
manner used to derive the tabular test in [14] from the 1-D sta-
bility test of [17]. It is possible to regard Algorithm 1 as a recur-
sion of 1-D polynomial in the variable with coefficients that
are polynomials in . The degree in of is

. Multiplying the two sides of the recursion (5c)
by and breaking this factor properly among poly-
nomials of in the right hand side leads to an equivalent algo-
rithm (in the sense of propagating the same arrays) that amounts
to replacing everywhere in Algorithm 1by , i.e.,
by , by and by

. A balanced polynomial satisfies
for values . Thus, for , reversion is implemented
by conjugation. Presenting Algorithm 1 by the balanced poly-
nomials helps to realize that, for any fixed value , the
action of Algorithm 1 on corresponds to applying to

the next algorithm.
Algorithm 2: Consider the polynomial

(8)

where are complex scalars. Obtain a sequence of polynomials
, and scalars

as follows:

(9a)

(9b)

(9c)

For do

(10a)

(10b)

(10c)

Algorithm 2 may be regarded as the projection of Algorithm 1
(with balanced polynomials in the first variable) on for
a fixed obtained through the substitutions,

, , and
. The assumption on in (8) will hold in its fol-

lowing application.
The comparison with Algorithm 1 reveals that a parallel and

separate recursion that produces a sequence of scalars,,
has been added to Algorithm 2. These scalars play an important
role in the next two theorems. Setting in Algorithm 1
reveals that the ’s correspond, for a fixed , to

It also confirms the form of the recursion (9c) and its initiation
(8c). Furthermore, setting into Algorithm 2 shows that
normally the recursion (8c) provides an alternative way to obtain
the values that requires less computation
then summing the coefficients of . The more important
reason for producing ’s with a separate recursion is for cases
when implies for all . In such cases
the separate recursion for the ’s circumvents the otherwise
ambiguous 0/0 expression.

Theorem 2: Assume Algorithm 2 is applied to (8). Then
is stable if and only if

(11)

Furthermore, if an occurs then is not stable.
The combination of Algorithm 2 with Theorem 2 forms a new

stability test for 1-D polynomials in its own right. It will be cur-
rently referred as the “companion 1-D stability test.” One way to
prove Theorem 2 is through relations between respective poly-
nomials here and in [17]. In the current context, Theorem 2 can
be more readily deduced from the proof brought for Theorem 1
in [14]. One delicate point that may need attention concerns a

for which . For this situation, it is reminded
that Algorithm 2 may be regarded as the effect of Algorithm 1
on at any fixed . However, in the context of Al-
gorithm 1, are polynomials [14]
and therefore continuous for in the vicinity of a
for which . In the course of the proof for The-
orem 1 in [14] it was shown that stability of 1-D polynomials

for in the vicinity of such a is not
obstructed in the limit . It follows that the recursion
(9c), that circumvents the 0/0 in such situations, produces as

the same value that Algorithm 1 assigns to the polyno-
mial at .
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The next theorem summarizes how Algorithm 2 may be used
to obtain sample values of at desirable without con-
struction of the 2-D stability table.

Theorem 3: Assume Algorithm 1 assigns to the
polynomial defined in (6) and let denote
the corresponding balanced polynomial. For a fixed de-
note and define the 1-D polynomial of degree

. Apply to the companion 1-D sta-
bility test. If is determined as not stable then
is not stable. If is determined as stable then Algorithm
1 produces at its end.

The validity of this theorem has been clarified in the course
of establishing Theorem 2. Algorithm 2 may provide sample
values for also when is not stable.
However, if is not stable then is not stable and
its testing may already be terminated. Note also that a
[hence ] can be declared as not stable as soon as a nec-
essary condition for stability, according to Theorem 2, is found
not to hold.

Remark 1: The new testing procedure will use Algorithm
2 repeatedly, therefore its cost of computation affects notice-
ably the overall complexity of the 2-D stability test. Algorithm
2 may be carried out in real multiplications and

additions for a complex polynomial of degreeby
regarding it as a recursion with just two multipliers
and . It is possible to obtain a sample value in even

multiplications by using the original recursion form
of [17] that has only one multiplier per recursion step. It has then
to be used with a correcting post-multiplying factor that requires
only operations. This scheme achieves better “squeezing”
of the final overall cost of computation but it does so at the ex-
pense of obtaining the in a less desirable manner.

Remark 2: The author has found the study of 2-D stability
and 1-D stability to keep fertilizing each other. The tabular sta-
bility test in [14] stems from the modified 1-D stability test [17].
Considerations made there to improve the efficiency of the 2-D
tabular are seen now to lead to a new 1-D stability test that is
different from the test in [17] in several interesting ways. One
difference is in the initial requirement posed on in the two
tests. The requirement in [17] was that while
here it is relaxed to . The former assumption poses no
difficulty on a stand-alone test [if and
then can be tested instead]. However, exception for an

for which is such that
is currently not tolerated. The relaxed condition on admits
a uniform treatment of all 1-D polynomials that is crucial in the
current application. It is possible to relax the assumption on
also in [17] to just by adding there too a separate re-
cursion for “ ” scalars to circumvent ambiguous sign varia-
tion rule in cases when for all .

IV. THE INTERPOLATION PROBLEM

This section brings a simple way to determine the vector of
coefficients , , of
from known values of at a set of samples .
[Required values of at point will be provided by
the companion 1-D stability test as described in Theorem 3.]

This interpolation problem is known to be solvable in
for a polynomial of degree (e.g., the algorithm in [16], that
works also for complex polynomials, may be used). However, a
more efficient solution can be obtained as shown below paying
attention to the specifics of the current interpolation problem.
A solution of reduced complexity is attainable by minimizing
the number of required sample values (in order to minimize the
number of times Algorithm 2 is applied) and by exploiting the
fact that the sample values are on.

Since the polynomial has degree , it can be
determined from knowing its value at distinct points.
Therefore, the balanced polynomial, can too be
determined from values at distinct points

. A collection of values of at distinct
points produces the next set of equations

(12)

This set has to be solved for . For the case
of a real , it is of advantage, as will become apparent in
a moment, to choose interpolation points in conjugate
pairs. Choosing the points equally spaced alongacquires
the process with a discrete Fourier transform (DFT)-like
orthogonality property that simplifies the solution of the set
of equations. An adequate choice of interpolation points that
satisfies both requirements is given by

(13)

( ). For this choice, the set of equations (12) becomes
where is the vector of known

sample values, and has the form as in the matrix shown at the
bottom of the next page. The matrix is symmetric, ,
as well as centro-symmetric, . The columns of

are given by the vectors

The inner product of two vectors in this set reveals the next
orthogonality

It follows that

Therefore, an explicit solution to is given by
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Using the symmetry , it suffices to read only the upper
half rows of the this solution. The result is the expression

(14)

If, in addition is real, then is real. Therefore the value
of at is equal to the value at .
The resulting relations,
simplifies (14) to

(15)

V. THE NEW 2-D STABILITY TEST

The proposed method for testing whether the 2-D polynomial
of (1) satisfies condition (2) is based on Theorem 1

and the components prepared in the previous sections to obtain
more efficiently. It is summarized in the next procedure. In

the following, “exit” is used to mark points which, if reached
allow early termination of the procedure with the conclusion
“ is not stable.”

A Procedure for Testing :

Step 1.Determine whether is 1-D stable. If not
stable—“exit.”

Step 2.Let , , (
). For for a real (and also

for for a complex ) do:
Set . Apply the companion 1-D

stability (Algorithm 2 Theorem 2) to
. If is not 1-D stable (as soon as a
, or ,

is observed)—“exit.” Otherwise, retain as
.

Step 3.Obtain the polynomial from the
values , using (15) for a real [or (14) for
a complex ].

Step 4.Examine the condition “ .”
is stable if and only if this condition is

true and the current step has been reached without
an earlier “exit.”

Step 1 corresponds to condition i) of Theorem 1. Condition
2) of this theorem is examined in step 2 at . Step 2 ob-
tains sample values using the companion 1-D stability test and
Theorems 2 and 3. Note that once the test passed step 1, all 1-D
stability tests in step 2 satisfy the assumption that
required for Algorithm 2. Step 3 constructs using the for-
mulas developed in Section III. Finally, step 4 implements con-
dition iii) of Theorem 1. Clearly, it is always possible to test

instead of . It will become apparent from the
count of arithmetic operations in the next section, that to reduce
computation, it is better to use a matrix with less columns than
rows. Namely, if in (1) , it is preferable to apply the
procedure to .

VI. EVALUATION

An approximate count of arithmetic operations for the pro-
posed procedure will now be carried out. Counts are in terms of
real multiplications and additions. Multiplication of two com-
plex numbers are counted as four real multiplications and two
real additions, multiplication of a real number by a complex
number as two real multiplications, and the symmetry of the
polynomials is used to compute only half of the coefficients.
The count is approximate in that it retains only the leading terms
in polynomial expressions of the precise count. The count will
also assume that the last step is performed by the methods in
[15] and [18] or [17], which are the procedures of least count of
operations available to determine zero location of a 1-D poly-
nomial with respect to the unit circle.

Step 1 is a 1-D stability test for a real polynomial of degree
. It can be carried out in multiplications

and additions for a real polynomial and by
multiplications and additions for a complex

polynomial using [15] and [18] or [17]. These counts are
negligible compared to the overall complexity.

Step 2 involves in the real case companion stability tests
of complex 1-D polynomials [and one real polynomial— ]
each of degree . The number of complex 1-D tests that is

...
...

...

...
...

...
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required doubles when is complex valued. Algorithm 2 can
test a complex polynomial of degreein real
multiplications, and real additions. Thus, step 2
requires in the real case real multiplications and
real additions + (in principle, as pointed in Remark 1
the count of multiplication can be squeezed even further). The
counts double for a complex .

Step 3 requires real multiplications and additions for a
real . The count doubles for a complex.

Step 4 may be tested by the zero location tests of [15] or [17]
in multiplications and additions when
and therefore is real. If is complex then is complex
and step 4 require multiplications and additions

using the tests in [18] or [17].
Summing the counts for the four steps yields the overall

cost of computation for the procedure. The procedure requires
real multiplications and real

additions + for a real and it requires
real multiplications and real additions

for a complex .
The following account on the computational requirement of

previous solutions will use for simplicity. All
references cited below considered a real 2-D polynomial a case
for which the current procedure requires (or even just

) multiplications and additions . The author is
not aware of previous solutions by other authors for the case of
complex 2-D polynomials. [The immittance tabular tests
in [14], [20] were proposed for also the complex case.]

The methods for solving this problem algebraically (i.e., in
finite number of operations) may be classified into tabular and
determinant methods [1], [4]. The first tabular test of Maria
and Fahmy [19] can be shown to be of complexity.
This can be shown to be also the complexity of all tabular
tests proposed in the following two decades till and including
[8]. (A tabular test is bound to have this order of complexity
if it ends with a polynomial of degree or a symmetric
polynomial of double degree). The determinant methods were
based on testing determinants of various “stability” matrices
(Schur–Cohn Bezuotian, Sylvester resultants, Inner matrices
and more) with polynomial entries, e.g., [7] and earlier works
surveyed in [4]. These determinant solutions are too of expo-
nential complexity. O’Connor and Huang commented in [1]
that a solution of must exist for the problem (though
not necessarily in a simple to manage form) because they were
aware of the existence of an algorithm to determine
the determinant of a matrix of size whose entries are
polynomials of degree up to. However, only recently have
tabular tests stepped down from exponential complexity to
polynomial complexity. As shown here already, the complexity
of the tabular test [13], [14] has complexity. This can
be shown to be also the complexity of the test by Hu and Jury
in [10] and an alternative immittance-type tabular test in [12],
[20]. Gu and Lee proposed in [6] to interpolate the determi-
nant of the Schur-Cohn matrix using Cholesky factorization
pointing on the availability of efficient software packages
for the required factorization. However, they do not detail a
specific procedure and do not provide a count of operations.
Kurosawa, Yamada and Yokokawa proposed in [11] a similar

method that obtains the determinant of the polynomial matrix
using DFT and has complexity. Barret and Benidir
suggested in [9] a solution that uses a generalized Levinson
algorithm to interpolate the resultant matrix and showed that
it requires approximately real multiplications
and real additions. The author is not aware of
any other solution of lower complexity for the real case and of
no other solutions at all for the complex case by other authors.
Therefore, the procedure presented here is considered to be
the solution of least count of operations available at this time
for testing stability of 2-D polynomial with real or complex
coefficients.

It has been rightly said already in [1] that 2-D stability tests
should be evaluated in terms of algorithmic and computational
complexity and in terms of accuracy and numerical effects. The
above comparison indicates that the current procedure excels
in computational complexity. The programming of the current
procedure is also quite simple—it involves the repeated use of a
single routine—algorithm 2 (this algorithm can also be extended
to solve the zero location problem of step 4). The significant
lower computational complexity attained by telepolation and
exploiting the symmetries in the current procedure is expected
to improve numerical accuracy of the procedure compared to
other 2-D stability tests of higher complexity. An alternative to
the procedure presented here is possible by applying telepola-
tion to the immittance 2-D tabular in [12], [20]. The resulting
algorithm, that has been described in [21], has a comparable
count of operations. The two procedures differ in fine details
that may affect their relative numerical accuracy or other merits
that have not yet been investigated. An experimental study of
the numerical accuracy of several earlier 2-D stability tests that
has been carried out in [22], as well as our less exhaustive nu-
merical experience so far with the method proposed here, sup-
port expectation for improved numerical accuracy compared to
more complex algorithms. The relative merits of the emerging
new solutions and the developing of numerically robust stability
tests remain subjects for further study.

VII. CONCLUDING REMARKS

A new procedure for testing the stability of 2-D discrete-time
systems has been developed. The procedure determines whether
a two-variable polynomial has no zeros in the closed exterior
in apparently unprecedented low count of operations. The new
2-D stability test profits on the efficiency of the immittance-type
tabular test of [13], [14] (that has lower complexity than earlier
tabular tests) and its simple stability conditions (testing only one
last polynomial for no zeros on the unit circle). It accomplishes
further reduction in complexity by realizing that the burden of
computation of the tabular test is dominated by the cost of com-
putation of the table and then shows that further significant re-
duction in computation is attainable by using a collection of
(properly designed) 1-D stability tests of low degree to bring
forth the last entry of the table without its full construction.

The new approach, called telepolation contributes to the
theory of multidimensional stability an important observation
that was not known for it before. It shows that testing the sta-
bility of a two-dimensional system polynomial can be carried
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out by a well defined finite number of 1-D stability tests of a
common specific form. Since the major gap in the mathematics
for -D ( ) systems occurs upon moving from 1-D
to 2-D systems, the extension of the approach demonstrated
here for the 2-D case to stability testing of higher dimensional
systems poses no conceptual obstacles.

It is interesting to compare the current approach with one of
the earliest solutions to the problem called the mapping method.
It is based on a simplification proposed first by Huang [1]
that admits replacement of the condition (2) by the condition

and (plus a 1-D stability). This
simplification, that is cited and was used also in [14], has
become the starting point of virtually all 2-D stability tests. The
mapping method, proposed by O’Connor and Huang [1, Sec.
4.10], suggested to test the above condition by considering a
set of 1-D polynomials obtained by sampling at grid
of values and then test their stability by finding their
roots (called then the root mapping method) or by any algebraic
1-D stability test. The mapping method is a numerical method
that does not carry a cost tag of finite number of arithmetic
operations. It provides an approximate answer whose reliability
increases with increasing the number of 1-D stability tests (the
density of the grid). The similarity of the mapping and the
telepolation methods is in that they both examine the stability
of 1-D polynomials obtained by sampling along the unit circle
one of the variables of . The contrast between the two
solutions highlights the innovation in the telepolation approach
from one more perspective. It shows that 2-D stability can be
determinedexactlyand by using just afinite number of sample
1-D polynomials, if only they are obtained and tested by a
qualifying 1-D stability tests.

The solution proposed in this paper is apparently the method
of least count of operations for 2-D stability testing of dis-
crete-time system polynomials known today. The fact that the
procedure consists of a collection of 1-D stability tests makes
its programming very simple. It also makes the procedure pass
a path dense with necessary conditions for stability that is
useful to reduce even further the computational effort wasted
on an unstable 2-D polynomial.
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