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Stability Testing of 2-D Discrete Linear Systems by
Telepolation of an Immittance-Type Tabular Test

Yuval Bistritz, Senior Member, IEEE

Abstract—A new procedure for deciding whether a bivariate to check whether the table’s last polynomial, a symmetric
(two-dimensional, 2-D) polynomial with real or complex coeffi- one-dimensional (1-D) polynomial of degrée,n., has no

cients does notvanish in the closed exterior of the unit bi-circle (IS ;e15 on the unit-circle. The complexity of this tabular test is
2-D stable”) is presented. It simplifies a recent immittance-type O(nf . . B f . It t t
tabular stability test for 2-D discrete-time systems that creates (” )_(assumlng_z - n __”2 or convenience). _urns ou
for a polynomial of degree (1, n2) a sequence ofno (or my) thatthis complexity is dominated by the effort required for the

centro-symmetric 2-D polynomials (the “2-D table”) and requires ~ construction of the 2-D table. The complexity of testing the last
the testing of only one last one dimensional (1-D) symmetric 1-D polynomial is onlyO(n*). The new stability test avoids the
polynomial of degree2r,7n for no zeros on the unit circle. It ¢qngiryction of the table and shows that it is possible instead to

is shown that it is possible to bring forth (to “telescope”) the . .
last polynomials by interpolation without the construction of telescopes (bring forth) the last 1-D polynomial of the 2-D table

the 2-D table. The new 2-D stability test requires an apparently DY intempolation. This approach, hence calle@lepolation,
unprecedentedly low count of arithmetic operations. It also shows replaces the construction of the 2-D table by testing the stability

that stability of a 2-D polynomial of degree (21, nz) is completely  of a finite number of 1-D polynomials of degree (or n;)
determined by n,1nz 4 1 stability tests (of specific form) of 1-D - 5jng 3 certain associated 1-D stability testing algorithm. The
polynomials of degreesn; or n. for the real case (or2n;n, + 1 overall complexity of the resulting new rocedure@$ 4)
polynomials in the complex cases). P y . g p RN
(n = n1 = n2). A more detailed count of operations and

its comparison to other available solutions indicates that the
new procedure has apparently an unprecedented low count of
arithmetic operations.

The paper is organized as follows. The next section cites the
. INTRODUCTION tabular 2-D stability test from [14] and argues why it can be

TABILITY of two-dimensional (2-D) linear discrete-time Simplified into anO(n*) solution. Section IlI presents a new
shift-invariant) systems arises in many applications. It 5D stability tests that may be used to sample this 2-D tab-

Index Terms—DPiscrete-time systems, immittance algorithms,
multidimensional digital filters, multidimensional systems, sta-
bility, stability criteria.

communication, medicine and more fields. The key for testinf’€ 2-D stability testing procedure that results from combining
stability of 2-D discrete systems, and the subject of this paperfsé components is presented in Section V. Section VI eval-
to determine whether a 2-D (bivariate) polynomial has no zerdgtes the computational cost of the procedure and compares it
in the closed exterior of the unit bi-circle. Background on st&¥ith other available solutions. Various comments, including a
bility of multidimensional systems and related issues is avalfvealing comparison with an early numerical solution called
able in several texts, including [1]-[4]. These texts also co#f?® mapping method, conclude the paper.

tain comprehensive lists of references to earlier solutions for

this problem. More recent contributions to this problem include [l. PRELIMINARIES

[5]-[12], that will referenced again later in this work, and refer- The problem considered in this paper is defined as follows.

ences there in. _ Problem StatementGiven a 2-D (bivariate) polynomial
This paper will present a new algebraic procedure that solves

this problem in a very low count of arithmetic operations. The D(z1, 22) =[1, 21, ooy 27" 1D[L, 22, .y 252]0 (1)
new procedure profits on the advantages of a recent immit-

tance-type tabular 2-D stability test proposed for this probleai degree(n;, no), whereD = (d, ), the matrix of coeffi-

in [13], [14] and simplifies it into an even more efficient 2-Dcients, is a real or complex valued matrix, determine whether it
stability test. The above tabular test builds for a polynomial éfoes not vanish in the closed exterior of the unit bi-circle, viz.,
degree(nq, n2) a sequence ot (or n1) 2-D polynomials or o

matrices (the 2-D table) with certain symmetry. It then requires D(z1, 22) #0  V(z1, 22) €V x V. 2

where? = {z: 2| =1}, V = {z: |2| > 1}, V =V UT.
Manuscript received March 12, 1999; revised November 28, 2000. This paperA D(z1, z2) that satisfies (2) will be called stable. (Other con-
was recommended by Associate Editor P. Rentrop. ventions for defining stability are also used in the literature on
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D, cf. [1].) A 1-D polynomialp(=) (with real or complex coef-  Theorem 1: D(z;, z2) is stable if, and only if, the following
ficients) such that three conditions hold.
. — 1) D(2,1) #0V2 €V,
p(z) =11, 2 ..., 2"[po, ..., pu]' #0  VzeV (3) 2) D(1,2) #0Yz € V.

will too be called stable. 3)
The condition (2) is the key problem in testing stability of 2-D E,(s, 2)
discrete systems. Its solution will not be restricted to assuming e(s) = —Eo(s 1) #0 VseT (6)

thatD is real but simplifications that the real case admits will be
specified. Presentation of a 1-D stable polynomials in a manner where¢(s) is a symmetric polynomial irs of degree
similar to the definition of 2-D stable polynomials, as above, 2n1n2 that becomes available at the end of applying Al-
is constructive for the solution of the stated problem. It how- gorithm 1 toD(z1, 22).
ever hides significant differences between stability of 1-D and The polynomial E_;(s, z) in Algorithm 1 has degree
2-D systems. Most importantly, the fundamental theorem of dl1, n2 + 1), and the subsequent polynomials, (s, z),
gebra, according to whichz) hasn zeros (and therefore itism = 0, 1, ..., no, are of degree¢/(m), no — m), where
stable if and only if they all reside inside the unit-circle), doe§m) = (2m + 1)n;. The divisions byg,,_1(s) are exact.
not hold for polynomials with more than one variable. This defNamely, the (symmetric) polynomiad,,—i(s) divides the
ciency complicates and limits the means available for handlimgmerator polynomial with no remainder such that the result
stability as well as other issues in the design of multidimensionalindeed a 2-D polynomial. This division is responsible for
systems, [1]-[4]. attaining linear growth as function ef for the row sizes of
This paper follows the convention and notation ithe matricesE,,, instead of an otherwise exponential growth
[14]. Accordingly, polynomials and arrays may be interf14]. The polynomials E,,,(z1, z2) are centro-symmetric
changed, as demonstrated in (1). The more compact notatioh,, = E;,). The variablegz;, z;) were replaced bys, z)
D(z1, 20) = 2zt Dzy,wherez .= [1, z, ..., 2*, ...]"isavector for convenience. The first variable will be most often regarded
of length depending on context, may also be used. Similars taking values on the unit circle, € 1. The polynomial
a vectorp is associated with a 1-D polynomials(z) = z'p «(s) that celebrates in condition iii) is a symmetric 1-D
as in (3). The balanced polynomial is defined for a polynomigiolynomial obtained by exact division &, (s, z) [of degree
p(z) = [1, s, ..., s™|p by p(3) = s ™/?p(z) = &'p, where (2nina + n1, 0)] by Eo(s, 1) (of degreen,). It follows from
§=[s"™2 ...,1,..., s™/?]" having an appropriate length.its symmetry that(s) = s~""2¢(s) (its so called “balanced”
Reversion of matrices and vectors are defined and denotedftym) is real on7'. In fact, it has been shown in [14] that it is
D? .= JD*J for a matrix ano|g§C := Jej for a vector, where possible to replace condition iii) in Theorem 1 by the positivity
J is the reversion matrix (a square matrix with 1's on its maigondition
anti-diagonal and zeros elsewhere), andlenotes complex
conjugate. A vector and a polynomial are called symmetric if «($)>0 VseT. (1)
p = p* or p(z) = p*(z). A matrix with the propertyD = D-
and a 2-D polynomial such thd®(z1, z2) = D*(z1, 22) are

called centro-symmetric. A matrik,,, has an index to indicate ogfrr?gr?]?asl fn Thglre; élaQS)e I?gr L?i)r(:;ngle,rg;(?n:gi%ng? ?;;?'S
its position in the 2-D table. The columns of such a matrigo. q bp 3

carry this index in brackets, = [jmo, Cfm. 1 - - - multiplications using the method in [15]. However, the overall

- . : . cost of this 2-D stability test is dominated by a higher cost in-
The tabular 2-D stability testin [14], consists of thefOIIOVv'”%olved in the construcﬁon of the table. A cgunt c?f arithmetic
algorithm and theorem. '

Algorithm 1: Obtain for D(z1, z») a sequence of Centro_operations can be carried out assisted by the following facts.
. ' . "L 22 - _ Them-th recursion step consists of two convolutions and one
symmetric 2-D polynomial$E,,.(s, z), m=—-1,0, ..., n = .
na?} as follows. : deconvolution per colummy,,(s) of degreef(m — 1) + £(m)
2 multipliese|,,.jx (s) of degre€(m), g (s) of degree2¢(m) mul-
E_1(s, 2) =(z — 1)(D(s, 2) — D*(s, 2)) (4a) tipliesecy, 1. (s) of degree/(m — 1), and the resulting numer-
_ . _ ator polynomials of degree§m — 1) + 2/(m) are divided by
Eo(s, 2) = D(s, 2) + D(s, 2), ¢-1(s) =1 (4b) gm—1(s) of degree2¢(m—1). Multiplication of two 1-D polyno-

The testing of the condition (6) can be carried outitm?)

Form =0, ..., ny—1do mials of degree; andk, requiregk; + 1)(k2 + 1) arithmetic
T operations. Dividing out a factor of degrée from a polyno-
gm(s) = @[nz—l]o(s)@fmm(s) (5a) mial of degreés; + k, (sayks > ki) requires(ky — k1 )(k2 —
B . 5 k1+1)/2 arithmetic operations. The above counts can be halved
0m(5) = pmio(5)¢fn0(5) (5b) by using the centro-symmetries toc calculate polynomials in

(the columns of the coefficient matrices) till only half of their
full degree. Following this guide, an exact count for for the real
2Em11(s, 2) and complex case can be obtained but the weary details will be
_ Im()Em(s, 2) + g5,()2Em(s, 2) — gm(s)Em_1(s, 2)  skipped. It is enough to realize that the cost 8§ ,) com-
o Im—1(8) ~ plexity, whereO(nf ,)"is used here and after to denote a poly-
(5¢) nomial expression with terms n3* such thaty; + oo < k.
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This paper aims to obtain from this tabular test, a solutidform =0, ..., n — 1 do
of O(n*) overall complexity (returning for convenience to the
n = n1 = ne assumption) anticipated according to the fol- Gm = Cm_1.0¢5 o) Gm = €m.0¢h o (10a)
lowing observations. The above over@in®) cost is caused by ’ \

. . . rn+ ;lz Cm %) — qmCm—1\Z
the computation required for the construction of the 2-D table. zemi1(z) = (g Im#)em(2) — 1(2) (10b)

However, according to Theorem 1, the construction of the 2-D N Gm—1

table is required only in order to gets) at its end. It is well Tl = (gm + 9m)0m — dmOm—1
known that a polynomial of degre® can be determined from gm—1

its value atV + 1 distinct points. Itis also known that this inter- ] o ]
polation problem, that amounts to solving a Vandermonde set of'90rithm 2 may be regarded as the projection of Algorithm 1
equations, can be solved@(IV2) complexity, (see for example (W!th balanced polynomlals in the first van_abl_e)szoj z) for
[16]). Consequently, (wittV' = n2), ¢(s) can be obtained from afixeds, €~T obtained through the substltut|or~i§,n(s, z) —

a finite set ofO(n?) known value inO(n*) operations. Since em(2), gm(3) = Gm = em—1,007, 0 ANAG(5) — g =
then, as already said, the condition (6) can be teste@(ist) m.0¢m,0- The assumption op(z) in (8) will hold in its fol-

operation, an overaid(n*) solution is possible if sample values©Wing application. ,
of ¢(s) can be obtained it)(n?) operations per value. The next The comparison with Algorithm 1 reveals that a parallel and

section will show an efficien(n2) algorithm to obtain sample SeParate recursion that produces a sequence of scedar$,
values ofe(s). It subsequent section will then bring a simple anfi@s Peen added to Algorithm 2. These scalars play an important

direct formula to recover(s) from these sample values. role in the next two theorems. Setting= 1 in Algorithm 1
reveals that the,,,’s correspond, for a fixed € 7', to

(10c)

lIl. COMPANION 1-D STABILITY TEST En(5,1)
EO(§7 1)

— Om-

This section begins by singling out an algorithm that can be

used to obtain sample values«k). Afterwards, the new algo- |t also confirms the form of the recursion (9¢) and its initiation
rithm is turned into a 1-D stability test by posing on it necessaygc). Furthermore, setting = 1 into Algorithm 2 shows that
and sufficient conditions for 1-D stability. normally the recursion (8c) provides an alternative way to obtain

The sought algorithm is obtained basically by reverting th@e valuesr,, = em(1)/eo(1) that requires less computation
manner used to derive the tabular test in [14] from the 1-D Stiren summing the coefficients @fn(z)_ The more important
bility test of [17]. Itis possible to regard Algorithm 1 as a recurreason for producing,,,'s with a separate recursion is for cases
sion of 1-D polynomial in the variable with coefficients that whenRe{p(1)} = 0impliese,,(1) = 0for all m. In such cases
are polynomials irs. The degree i of E,,(s, 2) is £(m) =  the separate recursion for the,’s circumvents the otherwise
(2m + 1)ni. Multiplying the two sides of the recursion (5¢)ambiguous 0/0 expression.
by 5~¢(+1)/2 and breaking this factor properly among poly- Theorem 2: Assume Algorithm 2 is applied ta(z) (8). Then
nomials ofs in the right hand side leads to an equivalent algq;(z) is stable if and only if
rithm (in the sense of propagating the same arrays) that amounts
to replacing everywhere in Algorithm 4 by 3, i.e., E,,,(s, z)
by E..(3, 2) = §'E,,7, gm(s) by g(58) = sg and ¢,,(s) by
q(5) = sg¢. A balanced polynomial satisfigg(s) = [p(5)]*
for valuess € 7. Thus, fors € 1, reversion is implemented
by conjugation. Presenting Algorithm 1 by the balanced pol%;[
nomials helps to realize that, for any fixed valgie € 7, the
action of Algorithm 1 onD(5, =) corresponds to applying to
p(z) = D(s,, z) the next algorithm.

Algorithm 2: Consider the polynomial

Om > 0, m=1, ..., n (12)

Furthermore, if are,,, o = 0 occurs therp(z) is not stable.
The combination of Algorithm 2 with Theorem 2 forms a new
ability test for 1-D polynomials in its own right. It will be cur-
rently referred as the “companion 1-D stability test.” One way to
prove Theorem 2 is through relations between respective poly-
nomials here and in [17]. In the current context, Theorem 2 can
be more readily deduced from the proof brought for Theorem 1
in [14]. One delicate point that may need attention concerns a
" X p(z) forwhichRe{p(1)} = 0. For this situation, it is reminded
p(z) = Zpkz ’ p(1) #0 ®)  that Algorithm 2 may be regarded as the effect of Algorithm 1
k=0 on D(3, z) at any fixeds € T. However, in the context of Al-
gorithm 1,0,,(s) := E,.(s, 1)/Eo(s, 1) are polynomials [14]
wherep,, are complex scalars. Obtain a sequence of polynomialad therefore continuous ferc 7 in the vicinity of as, € T’
{em(2) = D020 em, k2", m=—1,0, 1,..., n} and scalars for which Ey(s,, 1) = 0. In the course of the proof for The-
{0m, m =—=1,0,1,..., n} as follows: orem 1 in [14] it was shown that stability of 1-D polynomials
ps(z) = D(3, z) for s in the vicinity of such as, € T is not
” obstructed in the limits — s,. It follows that the recursion
(z) =(z - 1)(1?(2) — (%) (92) (9¢), that circumvents the 0/0 in such situations, produces as
eo(2z) =p(z) +p(2), -1 =1 (90) 5 s, the same value that Algorithm 1 assigns to the polyno-
c.1=0, og=1 (9c) mial E,,.(3, 1)/Fo(8, 1) ats = s,.
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The next theorem summarizes how Algorithm 2 may be us@this interpolation problem is known to be solvable(@iN?)
to obtain sample values efs) at desirables € T without con- for a polynomial of degre&V (e.g., the algorithm in [16], that
struction of the 2-D stability table. works also for complex polynomials, may be used). However, a
Theorem 3: Assume Algorithm 1 assigns tB(z;, z2) the more efficient solution can be obtained as shown below paying
polynomiale(s) = s'e defined in (6) and let(s) = s'e denote attention to the specifics of the current interpolation problem.
the corresponding balanced polynomial. For a fixgde 7" de- A solution of reduced complexity is attainable by minimizing
noteb,, := «(5,,) and define the 1-D polynomial of degree the number of required sample values (in order to minimize the
ps,, (2) = D(5m, z). Apply to p,_ (z) the companion 1-D sta- number of times Algorithm 2 is applied) and by exploiting the
bility test. If ps,_(z) is determined as not stable thér{z;,2,) fact that the sample values are dn
is not stable. Ifp; (=) is determined as stable then Algorithm Since the polynomial(s) = s'e has degre@}, it can be
1 producesr,,, = b, atits end. determined from knowing its value af/ + 1 distinct points.
The validity of this theorem has been clarified in the courseherefore, the balanced polynomidl;) = s~# ¢(s) can too be
of establishing Theorem 2. Algorithm 2 may provide sampléetermined from valuds,, = <(5,,) at2M + 1 distinct points
values fore(3) also whenp,,_ (2) = D(3,,, z) is not stable. s,, € T. A collection of2M + 1 values ofe(§,,) at distinct
However, ifps, (z) is not stable the(zy, ;) is not stable and points produces the next set of equations
its testing may already be terminated. Note also that & 2)

[henceD(~, )] can be declared as not stable as soon as a NeCrg—M =M+l o=l g g sM=l sMle—p

essary condition for stability, according to Theorem 2, is found = "~ ™ 7 7o o m ot o ’

o toyhold. y 9 m=0,1,..., 2M. (12)
Remark 1: The new testing procedure will use Algorithm ,

2 repeatedly, therefore its cost of computation affects noticEdis set has to be solved fer:= [eo, ..., e2p]". For the case

ably the overall complexity of the 2-D stability test. Algorithmof @ real D, it is of advantage, as will become apparent in
2 may be carried out ith.5n2 + O(n) real multiplications and @ moment, to chooseM interpolation points in conjugate
2n2 + O(n) additions for a complex polynomial of degredy Pairs. Choosing the points equally spaced aldhgcquires
regarding it as a recursion with just two multipliess, /¢m_1 the process with a discrete Fourier transform (DFT)-like
andg,, /qm—1. Itis possible to obtain a sample valbyg in even orthogonality property that simplifies the solution of the set
n2 4+ O(n) multiplications by using the original recursion formof equations. An adequate choice of interpolation points that
of [17] that has only one multiplier per recursion step. It has thé&dtisfies both requirements is given by

to be used with a correcting post-multiplying factor that requires

only O(n) operations. This scheme achieves better “squeezing” g .— 27 W= I s = MAm
of the final overall cost of computation but it does so at the ex- 2M +1 " ’
pense of obtaining thi,, in a less desirable manner. m=0,1,...,2M (13)

Remark 2: The author has found the study of 2-D stability
and 1-D stability to keep fertilizing each other. The tabular stg; = \/—1). For this choice, the set of equations (12) becomes
bility testin [14] stems from the modified 1-D stability test[17].Qc = b whereb = [by, ..., baps] is the vector of known
Considerations made there to improve the efficiency of the 2dample values, an@ has the form as in the matrix shown at the
tabular are seen now to lead to a new 1-D stability test thatdettom of the next page. The matiiXis symmetricQ* = Q,
different from the test in [17] in several interesting ways. Ongs well as centro-symmetrid@Q.J = Q. The columns ofp =
difference is in the initial requirement posedg(x) in the two  [v_,,, ..., v_1, vo, v1, - .., vr] are given by the vectors
tests. The requirement in [17] was tH&e{p(1)} # 0 while
here it is relaxed t@(1) # 0. The former assumption poses no o = [w—J\ik’w—(Al—l)k’ N
difficulty on a stand-alone test [(1) # 0 andRe{p(1)} =0 (M—1)k, Mkt
then jp(z) can be tested instead]. However, exception for an w w T
s, € T forwhichp(z) = D(5,, ) is such thaRe{p(1)} = 0
is currently not tolerated. The relaxed conditionygih) admits  The inner product of two vectors in this set reveals the next
a uniform treatment of all 1-D polynomials that is crucial in th@rthogonality
current application. Itis possible to relax the assumptiop(ai
also in [17] to justp(1) # 0 by adding there too aseparatere-, o1 —w@MEDGE=D fopr g f=y
cursion for ‘o,,,” scalars to circumvent ambiguous sign varia¥—iV* = % 1 — ki - { 0, k#4.
tion rule in cases whea,, (1) = 0 for all m.

CwTR 1wk
E=0,+1,..., £M.

It follows that
IV. THE INTERPOLATION PROBLEM 1

Q= Q.J.
This section brings a simple way to determine the vector of 2M +1
coefficientse = [eo, ..., cam]’, M = niny, Of ¢(s) = s’c  Therefore, an explicit solution t§¢ = b is given by
from known values of(s,,) = s'¢ at a set of samples € 7.
[Required values of(s) at points,,, € T will be provided by 1

the companion 1-D stability test as described in Theorem 3] “T oM +1 QJb.
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Using the symmetry = .J¢*, it suffices to read only the upper

half rows of the this solution. The result is the expression

M-1

1
EM—m = m {b}u + ; [(bj\4+k + bjw_k) COS(ka)

+ J(Ork — bar—i) Sin(ka)]} ,

m=0,..., M

m=1,..., M. (14)

ey
EM+m = M —mo

If, in addition D is real, ther is real. Therefore the valug,,
of €(3) at s,, is equal to the valuéap;_,,, atsops_, = st
The resulting relationgip4x = bpr—, m =0, ..., M —1

simplifies (14) to

M
1
EM—m = M1 {bM + QkZ_le_k Cos(mkﬂ)} ,
m=0,..., M

m=1,..., M. (15)

EM+m —€M—m

V. THE NEw 2-D STABILITY TEST
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Step 3.Obtain the polynomial(s) = Zfﬁf’l €ms' fromthe

valuesh,,, (> 0), using (15) for a reaD [or (14) for
a complexD].

Step 4.Examine the condition€{s) # 0 Vs € T.
D(z,z) is stable if and only if this condition is
true and the current step has been reached without
an earlier “exit.”

Step 1 corresponds to condition i) of Theorem 1. Condition
2) of this theorem is examined in step 2rat= 0. Step 2 ob-
tains sample values using the companion 1-D stability test and
Theorems 2 and 3. Note that once the test passed step 1, all 1-D
stability tests in step 2 satisfy the assumption hat(1) # 0
required for Algorithm 2. Step 3 construetss) using the for-
mulas developed in Section Ill. Finally, step 4 implements con-
dition iii) of Theorem 1. Clearly, it is always possible to test
z D'z, instead ofz Dz,. It will become apparent from the
count of arithmetic operations in the next section, that to reduce
computation, it is better to use a matrix with less columns than
rows. Namely, if in (1)n; < ng, it is preferable to apply the
procedure t@ D'za.

VI. EVALUATION

An approximate count of arithmetic operations for the pro-
posed procedure will now be carried out. Counts are in terms of
real multiplications and additions. Multiplication of two com-

The proposed method for testing whether the 2-D polynomiglex numbers are counted as four real multiplications and two

D(z1, z2) of (1) satisfies condition (2) is based on Theorem fea| additions, multiplication of a real number by a complex
and the components prepared in the previous sections to obt@ifnber as two real multiplications, and the symmetry of the
¢(s) more efficiently. It is summarized in the next procedure. Igolynomials is used to compute only half of the coefficients.
the following, “exit” is used to mark points which, if reachedrhe count is approximate in that it retains only the leading terms
allow early termination of the procedure with the conclusiom polynomial expressions of the precise count. The count will

“D(z, z2) is not stable.”
A Procedure for Testind)(z1, z2):

also assume that the last step is performed by the methods in
[15] and [18] or [17], which are the procedures of least count of

Step 1.Determine whetherD(z,1) is 1-D stable. If not operations available to determine zero location of a 1-D poly-

stable—"exit.” ’
Step 2.Let M = ning, 6 = 2x/(2M + 1), w = ¢/ (j =

nomial with respect to the unit circle.
Step 1 is a 1-D stability test for a real polynomial of degree

v—1).Form =0, 1, ..., M forarealD (and also n = n;. It can be carried out if.25n% 4+ O(n) multiplications

form=M+1, ..., 2M for a complexD) do: and0.5(n?)+O(n) additions for a real polynomial and lay +
Sets,, = w~M*+™ Apply the companion 1-D O(n) multiplications and?»? + O(n) additions for a complex

stability (Algorithm 2+ Theorem 2) top,._(z) = polynomial using [15] and [18] or [17]. The€&(n?) counts are

D(3, 2). If p,, (2) is not 1-D stable (as soon as anegligible compared to the overal(n*) complexity.

ego =0, -1 < i <mnyoro; < 0,1 <@ <y Step 2 involves in the real casgn, companion stability tests

is observed)—“exit.” Otherwise, retaim,,(>0) as of complex 1-D polynomials [and one real polynomighs—(s)]

by 1= Oy each of degreea.;. The number of complex 1-D tests that is
I oMM wM(M—1) wM 1 w—M w—(M—1)M w—MM 7
wM—1DM wM—1(M~1) wM—1 1 wM-D w—M-D(M-1) o —(M-1)M
Q= 1 1 1 1 1 1 1
w—(M=DM o —(M—=1)(M~1) w-M=-1) 1 wM—1 wM—1(M~-1) wM=1DM
w—MM w— MM -1) w—M 1 wM wM—1)M wMM
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required doubles wheP is complex valued. Algorithm 2 can method that obtains the determinant of the polynomial matrix
test a complex polynomial of degreein 1.572 + O(n) real using DFT and hasD(n®) complexity. Barret and Benidir
multiplications, and2n? + O(n) real additions. Thus, step 2suggested in [9] a solution that uses a generalized Levinson
requires in the real cade5n;n3 real multiplications andn n3  algorithm to interpolate the resultant matrix and showed that
real additions +O(n? ,) (in principle, as pointed in Remark 1it requires approximatel23n* + O(n?) real multiplications

the count of multiplication can be squeezed even further). Thad23.5n* + O(n?) real additions. The author is not aware of

counts double for a compleR. any other solution of lower complexity for the real case and of
Step 3 requires3n3 real multiplications and additions for ano other solutions at all for the complex case by other authors.
real D. The count doubles for a compleéx. Therefore, the procedure presented here is considered to be

Step 4 may be tested by the zero location tests of [15] or [1fffe solution of least count of operations available at this time
in n¥n3 multiplications an®nin3 additions+O(n? ,) whenD  for testing stability of 2-D polynomial with real or complex
and therefore(s) is real. If D is complex ther(s) is complex coefficients.
and step 4 requirén?n3 multiplications andn?»3 additions It has been rightly said already in [1] that 2-D stability tests
+O(n§’72) using the tests in [18] or [17]. should be evaluated in terms of algorithmic and computational

Summing the counts for the four steps yields the overalbmplexity and in terms of accuracy and numerical effects. The
cost of computation for the procedure. The procedure requisove comparison indicates that the current procedure excels
2n2n3 + 1.5n,n3 real multiplications an@nin3 + 2n,n3 real in computational complexity. The programming of the current
additions O(niQ) for arealD and it require$nin3 + 3n;n3  procedure is also quite simple—it involves the repeated use of a
real multiplications and10n?n3 + 4nin3 real additions single routine—algorithm 2 (this algorithm can also be extended
+O(n§’72) for a complexD. to solve the zero location problem of step 4). The significant

The following account on the computational requirement ddwer computational complexity attained by telepolation and
previous solutions will use; = n». = n for simplicity. All  exploiting the symmetries in the current procedure is expected
references cited below considered a real 2-D polynomial a cdaeemprove numerical accuracy of the procedure compared to
for which the current procedure requir@$n* (or even just other 2-D stability tests of higher complexity. An alternative to
3nt) multiplications andsn* additions+0O(n?). The author is the procedure presented here is possible by applying telepola-
not aware of previous solutions by other authors for the casetimi to the immittance 2-D tabular in [12], [20]. The resulting
complex 2-D polynomials. [The immittane@(»°) tabular tests algorithm, that has been described in [21], has a comparable
in [14], [20] were proposed for also the complex case.] count of operations. The two procedures differ in fine details

The methods for solving this problem algebraically (i.e., ithat may affect their relative numerical accuracy or other merits
finite number of operations) may be classified into tabular aridat have not yet been investigated. An experimental study of
determinant methods [1], [4]. The first tabular test of Marithe numerical accuracy of several earlier 2-D stability tests that
and Fahmy [19] can be shown to be @fn?4™) complexity. has been carried out in [22], as well as our less exhaustive nu-
This can be shown to be also the complexity of all tabulamerical experience so far with the method proposed here, sup-
tests proposed in the following two decades till and includingort expectation for improved numerical accuracy compared to
[8]. (A tabular test is bound to have this order of complexitynore complex algorithms. The relative merits of the emerging
if it ends with a polynomial of degree2”~* or a symmetric new solutions and the developing of numerically robust stability
polynomial of double degree). The determinant methods wemsts remain subjects for further study.
based on testing determinants of various “stability” matrices
(Schur—Cohn Bezuotian, Sylvester resultants, Inner matrices
and more) with polynomial entries, e.g., [7] and earlier works
surveyed in [4]. These determinant solutions are too of expo-A new procedure for testing the stability of 2-D discrete-time
nential complexity. O’Connor and Huang commented in [Idystems has been developed. The procedure determines whether
that a solution ofO(n®) must exist for the problem (thougha two-variable polynomial has no zeros in the closed exterior
not necessarily in a simple to manage form) because they war@pparently unprecedented low count of operations. The new
aware of the existence of af(n®) algorithm to determine 2-D stability test profits on the efficiency of the immittance-type
the determinant of a matrix of size x n whose entries are tabular test of [13], [14] (that has lower complexity than earlier
polynomials of degree up ta. However, only recently have tabular tests) and its simple stability conditions (testing only one
tabular tests stepped down from exponential complexity tast polynomial for no zeros on the unit circle). It accomplishes
polynomial complexity. As shown here already, the complexifurther reduction in complexity by realizing that the burden of
of the tabular test [13], [14] ha®(n%) complexity. This can computation of the tabular test is dominated by the cost of com-
be shown to be also the complexity of the test by Hu and Juputation of the table and then shows that further significant re-
in [10] and an alternative immittance-type tabular test in [12{iuction in computation is attainable by using a collection of
[20]. Gu and Lee proposed in [6] to interpolate the determ{properly designed) 1-D stability tests of low degree to bring
nant of the Schur-Cohn matrix using Cholesky factorizatidiorth the last entry of the table without its full construction.
pointing on the availability of efficient software packages The new approach, called telepolation contributes to the
for the required factorization. However, they do not detail theory of multidimensional stability an important observation
specific procedure and do not provide a count of operatioribat was not known for it before. It shows that testing the sta-
Kurosawa, Yamada and Yokokawa proposed in [11] a similaility of a two-dimensional system polynomial can be carried

VIl. CONCLUDING REMARKS
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out by a well defined finite number of 1-D stability tests of a [5] ——, “Modified stability table for 2-D digital filter,"|lEEE Trans. Cir-

common specific form. Since the major gap in the mathematics__ cuits Syst.vol. 35, pp. 116-119, Jan. 1988. N ,
f D > 9 t . from 1-D [6] G.GuandE.B. Lee, “A Numerical algorithm for stability testing of 2-D
or m-D (m > 2) systems occurs upon moving recursive digital filter, JEEE Trans. Circuits Systvol. 37, pp. 135-138,

to 2-D systems, the extension of the approach demonstrated Jan. 1990.

here for the 2-D case to stability testing of higher dimensional[7] A. Kanellakis, S. Tzafestas, and N. Theodoru, “Stability tests for 2-D
systems using the Schwarz form and the inners determind&B&E

SySt_emS pose_s no conceptual obstacles. ) Trans. Circuits Systvol. 38, pp. 1071-1077, Sept. 1991.
It is interesting to compare the current approach with one of[g] X. Hu and H. Yee, “Polynomial array foF (z;, z;) on|z;| = 1 and

the earliest solutions to the problem called the mapping method. ~ 2:D filter stability tests,"IEEE Trans. Signal Processingol. 40, pp.
1579-1581, June 1992.

It is baS(?:'d on a simplification propgged first by Huang_[ll [9] M. Barretand M. Benidir, “A new algorithm to test stability of 2-D dig-
that admits replacement of the condition (2) by the condition ital recursive filters,”Signal Processvol. 37, pp. 255-264, 1994.
D(s, z) £0VseT andz ¢ V (plus al-D stability). This [10] X. Hu and E. I. Jury, “On two-dimensional filter stability testEEE

. L . . . Trans. Circuits Systvol. 41, pp. 457-462, July 1994.
simplification, that is cited and was used also in [14], has[ll] K. Kurosawa, |. Yamada, and T. Yokokawa, “A fast 2-D stability test

become the starting point of virtually all 2-D stability tests. The procedure based on FFT and its computation complexEBEE Trans.
mapping method, proposed by O’Connor and Huang [1, Setllz] Circuits Syst. lj vol. 42, pp. 676-978, Oct. 1995.

. . . Y. Bistritz, “Stability test for 2-D LS| systems via a unit circle test
4-1O]= SUQQESted to test the above condition by ConS'de”ng for complex polynomials,” ifProc. IEEE Int. Symp. Circuits Systems

set of 1-D polynomials obtained by samplidig s, z) at grid Seattle, WA, 1995, pp. 789-792.

of valuess € 7" and then test their stability by finding their [13] - "ﬁtab“ity t?Sting ?f 2-D digita'l Sys“im polyrom';?ls “Si”ﬁl a
. . modified unit circle test for 1-D complex polynomials,” Proc. 29t
roots (called then the root mapping method) or by any algebraic  sqjiomar cont. Signals, Systems & Computé@95, pp. 617—621.

1-D stability test. The mapping method is a numerical methodii4] ——, “Stability testing of 2-D discrete linear system polynomials by a
that does not carry a cost tag of finite number of arithmetic iﬁ;albguggr form,"IEEE Trans. Circuits Syst, ol. 46, pp. 666-676,
pperatlons. I_t pr_owdes _an approximate answer Wh_o_se reliabilit 5] ——, “Zero location with respect to the unit circle of discrete-time linear
increases with increasing the number of 1-D stability tests (the  system polynomials,Proc. IEEE vol. 72, pp. 1131-1142, Sep. 1984.
density of the grid). The similarity of the mapping and the[16] G. H. Golub and C.'F. Varj LoaMatrix Computations Baltimore,
| |ati hods is in th hev both . h bili MD: The John Hopkins Univ. Press, 1983.
telepolation me.t ods Is _'n that they Qt examine the _Sta_ I I'(3['17] Y. Bistritz, “A modified unit-circle zero location test|EEE Trans. Cir-
of 1-D polynomials obtained by sampling along the unit circle cuits Syst. Ivol. 43, pp. 472475, June 1996.
one of the variables dD(zl, 22)_ The contrast between the two [18] ——, “A circular stability test for general polynomials3yst. Control
Iuti hiahliahts the i fi in the tel lati Lett, vol. 7, no. 2, pp. 89-97, 1986.
solutions highlignts the 'r_‘nova on in the telepola |or_1_approacqlg] G. A. Maria and M. M. Fahmy, “On the stability of two-dimensional dig-
from one more perspective. It shows that 2-D stability can be  italfilters,” IEEE Trans. Audio Electroacoustol. AU-21, pp. 470-472,
determinecexactlyand by using just &inite number of sample Aug. 1973. y
1-D | ials. if v th btained d d b a{20] Y. Bistritz, “Immittance-type tabular stability test for 2-D LS| Systems
- _pq ynomials, '_ _On y they are obtained and teste y based on a zero location test for 1-D complex polynomial&ttuits
qualifying 1-D stability tests. Syst. Signal Processcol. 19, no. 3, pp. 245-265, 2000.
The solution proposed in this paper is apparently the metho@1l —— “A stability test of reduced complexity for 2-D digital system
£l H . for 2-D bili . f di polynomials,” inProc. IEEE Int. Symp. Circuits Syster@\, May 1998.
0 eas_t count o operatlon_s or 2-D stability testing ot dis- [22] M. Barret and M. Benidir, “Behavior of stability tests for two-dimen-
crete-time system polynomials known today. The fact that the  sional digital recursive filters when faced with rounding errotEEE
procedure consists of a collection of 1-D stability tests makes ~ Trans. Circuits Syst. Jivol. 44, pp. 319-323, 1997.
its programming very simple. It also makes the procedure pass
a path dense with necessary conditions for stability that is
useful to reduce even further the computational effort wast

on an unstable 2-D polynomial.
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