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Abstract. Stability testing of two-dimensional (2-D) discrete-time systems requires decision on whether a 2-D

(bivariate) polynomial does not vanish in the closed exterior of the unit bi-circle. The paper reformulates a tabular

test advanced by Jury to solve this problem. The 2-D tabular test builds for a real 2-D polynomial of degree

(n1, n2) a sequence of n2 matrices or 2-D polynomials (the ‘2-D table’). It then examines its last polynomial - a

1-D polynomial of degree 2n1n2 - for no zeros on the unit circle. A count of arithmetic operations for the tabular

test is performed. It shows that the test has O(n6) complexity (assuming n1 = n2 = n)- a significant improvement

compared to previous tabular tests that used to be of exponential complexity. The analysis also reveals that, even

though the testing of the condition on the last polynomial requires O(n4) operations, the count of operations

required for the table’s construction makes the overall complexity O(n6). Next it is shown that it is possible to

telescope the last polynomial of the table by interpolation and circumvent the construction of the 2-D table. The

telepolation of the tabular test replaces the table by n1n2 + 1 stability tests of 1-D polynomials of degree n1 or n2
of certain form. The resulting new 2-D stability testing procedure requires a very low O(n4) count of operations.

The paper also brings extension for the tabular test and its simplification by telepolation to testing 2-D

polynomials with complex valued coefficients.
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1. Introduction

Two-dimensional and higher multidimensional linear discrete-time systems arise in

modeling sampled data of images, signals from several sensors and other applications.

Stability is required, like in the one dimensional case, to ensure that bounded inputs

produce bounded outputs. However ensuring stability and testing it for higher dimensional

systems is known as a much more difficult problem. This work will concentrate on the

problem of testing the stability of two-dimensional (2-D) discrete-time (linear shift

invariant) systems. The key to stability determination of 2-D discrete systems is an

efficient solution for the next problem.

Problem statement. Given a 2-D (bivariate) polynomial

Dðz1; z2Þ ¼ ½1; z1; . . . ; zn11 �D½1; z2; . . . ; z
n2
2 �

t ð1Þ

of degree (n1, n2), whereD = (di,k) is the coefficient matrix (superscript t denotes transpose),

determine whether it does not vanish in the closed exterior of the unit bi-circle, viz.,
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Dðz1; z2Þ 6¼ 0; 8ðz1; z2Þ 2 V
	
 V

	
: ð2Þ

where the notations T = {z : |z| = 1}, U = {z : |z| < 1}, V = {z : |z| > 1} will be used to denote

the unit circle, its interior, and its exterior, respectively, and the bar denotes closure, V
	
= V [

T.

A 2-D polynomial D(z1, z2) that satisfies (2) will be called stable. Some other forms are

also in use in the literature to describe 2-D stability. The polynomial may be presented in

negative powers of the variable and/or it may be required not to vanish in U
	
 U

	
. The

moving between different conventions may require some minor adjustment, like reversion

of the matrix D, cf. [1]. We shall also call a 1-D system polynomial stable, if

pðzÞ ¼ ½1; z; . . . ; z n�½ p0; . . . ; pn�t 6¼ 0 8z 2 V
	
: ð3Þ

The fact that it is possible to arrange a similarity in the definition of 1-D and 2-D stable

polynomials as in (2) and (3), is instrumental for the solution of the problem but it is

somewhat misleading. It hides inherent difficulties that complicate the stability issue

compared to the 1-D case. The main source of difficulty, that also complicates other

topics in the analysis and design of higher dimensional systems is the absence of

factorization for multivariate polynomials. An interesting peculiar outcome is a phe-

nomenon called ‘‘nonessential singularity of the second kind’’ (NSSK) observed by

Goodman [2]. Accordingly, a 2-D digital filter may be stable even though its

denominator D(z1, z2) vanishes on T 2 (i.e. it is not ‘‘stable’’) because its numerator

2-D polynomial (without having a common factor with D(z1, z2)) may stabilize the filter.

Consequently, in a strict mathematical sense, a stable D(z1, z2) is a sufficient but not

necessary condition for stability of the system. However, it was rightly argued in [3] that

in a practical engineering sense a stable 2-D polynomial is also necessary for designing

a robustly stable filter. Another pertinent outcome is that the problem can not be solved

by in numerical manner similar to the possibility of testing stability of p(z) by

determining numerically its n zeros and examining their locations. Comprehensive

background on 2-D discrete systems with particular attention to the stability issue

may be found in [3] [4] [5] [6].

Considerable amount of papers have been published offering solutions to the stated

problem. The solutions are traditionally classified into ‘‘tabular’’ and ‘‘determinantal’’

tests. Tabular tests, first proposed in [7], attempt to extend 1-D tabular stability tests to

the 2-D case. Determinantal methods, first proposed in [8], attempt to similarly generalize

1-D stability conditions posed on the determinants of ‘‘stability’’ matrices (like the Schur-

Cohn and the inner matrices). Many early solutions are reviewed and listed in [3] [4] [5]

[6]. Some more recent 2-D stability tests, [9], [10], [11], [12], [13], [1], [14], will be

noted later.

The current paper considers the 2-D stability test proposed in [15]. The test evolves

from Jury’s so called modified 1-D stability test proposed by him in [16] and in several

more versions and occasions in the last four decades [17, p. 104], [18], [19], [20]. The

modified Jury test forms one of several types of stability tests that evolved from the

Schur-Cohn test through modifications proposed by Marden and Jury. In [21] this class
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of Schur-Cohn-Marden-Jury (SCMJ) tests were classified into four types. In this

classification the modified Jury tests fall into the ‘‘C-type’’ category. The special

property of tests in this category is that they create for the 1-D polynomial a tables

that produces at certain locations entries equal (or with sign opposite) to the principal

minors of the Schur-Cohn Bezoutian matrix for the tested polynomial. The pertinent

results from [21] will be cited and used below. The relation with the Schur-Cohn minors

allowed [16], [15] to adopt Siljak’s simplification in [22] and obtain 2-D stability tests

with just a single so called ‘positivity test’.

The current paper first brings a new form to this tabular 2-D stability test. The derivation

follows the 1-D stability test assigned in [21] as the prototype for the C-type stability tests.

This prototype uses a uniform recursion to constructs for the 1-D tested polynomials a

sequence of 1-D polynomials (the 1-D ‘table’) whose leading coefficients are equal to the

principal minors of the Schur-Cohn matrix. Strictly speaking, this form of the 1-D stability

test is not identical with any of the of the previously available versions of the modified Jury

test [17] [18] [19] [20]. The 2-D stability test uses a simple to program algorithm to build

for D(z1, z2) a ‘2-D stability table’ in the form of a sequence of 2-D polynomials, or

matrices (a third adequate look on it is a 1-D stability table with entries that are polynomials

instead of scalars, hence called ‘polynomial array’ [15]). An accompanying theorem poses

necessary and sufficient conditions on the on the 2-D table for D(z1, z2) to be stable.

The paper proceeds to analyze the computational complexity of this tabular 2-D stability

test, a task that was not carried out for it before. It is shown that the test has O(n6)

complexity (for n = n1 = n2) - a definite advantage over all previous 2-D tabular stability

tests that used to be of exponential complexity. This analysis also paves the way to further

complexity reduction.

The stability theorem associated with the 2-D table makes it apparent that the

construction of the table is required only in order to obtain its last entry - a target

polynomial that will be denoted by �(s). This is a symmetric 1-D polynomial of degree

2n1n2 that has to tested for having no zeros on the unit-circle. The task can be carried out

by only O(n4) (again for n1 = n2 = n) operations. However the higher cost of the table’s

construction makes the overall complexity O(n6).

The paper proposes to telescope (brings forth) �(s) by interpolation. This approach,

thereupon called telepolation, circumvents the construction of the 2-D table and instead

requires only a finite number of low degree 1-D stability tests. These 1-D stability tests

provide sample values for �(s) that are used to recover it via a simple closed form formula.

The resulting new 2-D stability testing procedure has an overall complexity of only O(n4)

(n1 = n2 = n). A more detailed count and comparison with other available solutions to this

problem indicates that the procedure achieves one of the lowest count of operations

reported for 2-D stability testing.

The procedure derived in this paper has been reported before in a conference [23]. The

brief presentation there was restricted to 2-D polynomial with real coefficients and

contains no derivation details or proofs. This paper brings all the details required to

establish the method and numerical illustrations. It also generalizes the 2-D tabular test and

its simplification by telepolation to testing (2) for also 2-D polynomials with complex

valued coefficients.
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The rest of the paper is constructed as follows. The next section brings a revised form for

the 2-D tabular stability test in [15] and examines its computational complexity. Section 3

derives a simplified stability test obtained by telepolation of the tabular test. Section 4

generalizes the test to the complex case and discusses various ways to examine �(s).
Section 5 evaluates the efficiency of the test and highlights issues that deserve further

investigation.

2. The 2-D Tabular and its Companion 1-D Stability Tests

2.1. Notation

We shall follow the notation convention that we used in some previous related works,

e.g. in [1]. Briefly, arrays and polynomials may be used interchangeable. For example, a

matrix D may be associated with a 2-D polynomial by D(z1, z2) = z1
tDz2 as in (1) where

z @ [1, z, . . . , zi, . . . ]t and its length is depending on context. Vectors and 1-D

polynomials are linked similarly, e.g. p is associated with the 1-D polynomial in (3)

p(z) = ztp. The letter s is reserved for s 2 T (or it infers intention to interpret it at some point

in such a way). We shall also use s~ to denote the variable for a ‘balanced polynomial’ - a

polynomial that extend to equal degree in s and s	1 or in s1/2 and s	1/2, depending on

parity, e.g., p(s~) = [s	n/2, . . . , sn/2] p. D
] @ JD

8
J and ek

] @ Jek
8
will denote matrix and vector

(conjugate) reversion, respectively, where J is the reversion matrix (a matrix with 1’s on

the main anti-diagonal and 0’s elsewhere), and 8 denotes complex conjugate.

2.2. Companion 1-D Stability Test

Here we bring the 1-D stability that will be used to derive the 2-D tabular test. It will later

also become part of the proposed simpler procedure. In a classification of the Schur-Cohn

and Marden-Jury (SCMJ) class of tests into four types in [21], the next cited test is referred

as the basic form for C-type tests, where all the C-type tests encompass all versions of the

so called Modified Jury tests [17, p. 104] [18] [19] [20]. All the results cited in this

subsection are proved in [21].

Algorithm 1 [A scattering-type 1-D stability ‘table’]. Assign to a complex 1-D

polynomial p(z) (3) a sequence of polynomials {cm(z) = �i=0
m cm, i z

i, m = n	 1, . . . , 0}, as
follows.

zcn	1ðzÞ ¼ p8
npðzÞ 	 p0p

]ðzÞ ; qn	1 ¼ 1 ð4aÞ

For m = n	 1, . . . ,1 do:

zcm	1ðzÞ ¼
cm;mcmðzÞ 	 cm;0c

]
mðzÞ

qm
; qm	1 ¼ cm;m ð4bÞ
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Theorem 1: [Stability conditions for Algorithm 1]. If Algorithm 1 becomes singular

(a cm,m = 0 occurs) then p(z) is not stable. Else, p(z) is stable if, and only if, cm,m > 0 for all

m = 1, . . . , n.
Algorithm 1 has some further interesting properties related to the Schur-Cohn (SC) matrix

for p(z). The SC matrix, say R, is an n 
 n matrix associated with p(z) by the expression,

R ¼ Lðp8

n:1ÞLtðpn:1Þ 	 Lðp0:n	1ÞLtðp8

0:n	1Þ ð5Þ

where p0:n	1 = [ p0, . . . , pn	1]
t, pn:1 = [ pn, . . . , p1]

t and L(a) denotes the lower triangular

Toeplitz matrix whose first column is the vector a. It forms the Bezoutian with respect to the

unit circle for p(z) and may also be expressed by a generating 2-D function, e.g. [24].

Theorem 1c: [Complementing properties for Algorithm 1]

(a) Algorithm 1 does not become singular if, and only if, its SC matrix R is strongly

regular (all the leading principal minors of R are non-zero).

(b) If R is strongly regular then the principal minors of R are given by the leading

coefficients of the polynomials created by Algorithm 1, det {Rk} = cn	k,n	k k = 1, . . . , n
(where Rk denotes the k 
 k upper-left submatrix of R).

(c) If Algorithm 1 does not become singular then p(z) has � zeros in V and n	� zeros in

U where � is given by

� ¼ Varf1; cn	1;n	1; . . . ; c0;0g ð6Þ

and Var denotes the number of sign variations in the indicated sequence. (If algorithm 1 is

not singular then its cm,m are well defined and non-zero for all m = n	 1, . . .0.)

Remark 1. Theorem 1c or parts of it were often quoted in the literature but till [21] no

proof for it was widely available. In additions often some of the details were not

always stated correctly. Algorithm 1 plays several functions in this paper. First, it is

an instrument to derive the tabular 2-D stability test. Then, it will become an

essential algorithm repeatedly used in the 2-D stability test of reduced complexity. In

addition, both the tabular test and its simplification require decision on whether a

polynomial symmetric � (z) of degree 2M (�
]
= �) has no zeros on the unit circle.

Algorithm 1 in conjunction with zero location rule in Theorem 1c may be used

(most often) for this task as well. For this latter task notice the following. A

symmetric polynomial has reciprocal zeros, i.e., � (zi) = 0 ! �ð 1

z
8

1

Þ. Therefore, � (z) 6¼
0 8z 2 T if, and only if, it has M zeros in U and M zeros in V (their reciprocal).

Setting �(z) into Algorithm 1 causes an immediate singularity (cn	1(z) � 0, a similar

singularity would occur in also all other algebraic stability). The remedy is to use the fact

(attributed to Cohn, see e.g. [25]) that �(z) and its derivative �(z)0 have the same number of

zeros in V. Thus one can apply Algorithm 1 to �(z)0 and use condition (c) of Theorem 1 to

determine whether it hasM zeros in V. This scheme works well as long as Algorithm 1 does

not become singular for �(z)0. We shall bring alternative complete solutions to this problem

later in section 4.3.
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2.3. 2-D Tabular Stability Test

The next lemma is a simplification for the condition (2) that was introduced to the field by

Huang [26] (with a = 1) and has become the starting point of most of the methods for

testing 2-D stability.

Lemma 1: D(z1, z2) is stable if, and only if,

(i)

Dðz; aÞ 6¼ 0 for all z 2 V
	
and some a 2 V

	 ð7Þ

(ii)

Dðs; zÞ 6¼ 0 for all ðs; zÞ 2 T 
 V
	
: ð8Þ

The above form is due to Strintzis [27]. A simple proof for this Lemma has recently

appeared in [28]. Related forms of simplifying conditions are also available (see a

summary in [6]). The lemma shows that the main task of 2-D stability testing concentrates

on condition (8), which indeed was taken as the key problem in [15]. This paper will

regard the problem as stated in (8) and will obtain solutions for it using the above

simplification with a = 1. This specific choice will allow a pleasant invariance in the form

of the stability conditions when the two variables in the tested polynomial are

interchanged. (Swapping of variables in the tested polynomial is clearly always allowed

and amounts to D! Dt in (1). It will turn out that when n1 6¼ n2 this operation may reduce

the amount of computation.)

The condition (8) is clearly equivalent to the condition

Dðs~~; zÞ 6¼ 0 forall ðs; zÞ 2 T 
 V
	 ð80Þ

where D(s~, z) @ s	n1=2D(s, z). Regarding D(s̃, z) as a polynomial in z with coefficients that

are balanced polynomials, it is possible to examine the latter condition by applying

Algorithm 1 to ps̃(z) = D(s̃, z). The approach gives rise to the next algorithm.

Algorithm 2 [A scattering-type 2-D stability ‘table’]. Denoting D(s~, z) = �k=0
n dk(s~)z

k,

n @ n2, assign to D a sequence of polynomials {Cm(s~, z) = �k=0
m c[m]k (s~) zk, m =

n	 1, . . . , 0}, using the following recursions.

zCn	1ðs~~; zÞ ¼ d]nðs~~ÞDðs~~; zÞ 	 d0ðsÞD]ðs~~; zÞ ; qn	1ðs~~Þ ¼ 1 ð9aÞ

For m = n	 1, . . . , 1 do:

zCm	1ðs~~; zÞ ¼
c½m�mðs~~ÞCmðs~~; zÞ 	 c½m�0ðsÞC]

mðs~~; zÞ
qmðs~~Þ

qm	1ðs~~Þ ¼ c½m�mðs~~Þ ð9bÞ
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The s̃ interpretation is constructive to also obtain stability conditions for this

algorithm and later to derive its simplification. Otherwise, it is possible to equally

regard Algorithm 1 as creating for D (s, z) a sequence of bivariate polynomials

{Cm (s, z), m = n	 1, . . . , 0} (i.e with normal rather than balanced first variables). It

can be shown easily that replacing everywhere in the Algorithm 2 the s̃ by s leads to

an equivalent algorithm in the sense of producing the same sequence of coefficient

matrices {Cm, m = n	 1 . . . 0}. Maybe the most transparent presentation of the

algorithm for its programming (especially by an array oriented language like Matlab)

is one that drops altogether polynomial notation and replace (9a) and (9b) by,

respectively,

½0Cn	1� ¼ d]n � D	 d0 � D] ; qn	1 ¼ 1 ð90aÞ

½0Cm	1� ¼ ðc½m�m � Cm 	 c½m�0 � C]
m Þ=qm ; qm	1 ¼ c½m�m ð90bÞ

where * and / denote convolution and deconvolution (respectively) of the vector by each

column of the matrix columns (the padded zero in the left hand sides represents a

column of zeros), cf. [1]. It is important to realize that the division by qm(s) is exact

[15]. Namely, qm(s) is a factor of the numerator 2-D polynomial that it divides and

consequently the recursion creates 2-D polynomials and not 1-D polynomials with

coefficients that are rational functions of s. The 2-D polynomial Cm(s, z) has degrees

(2(n2	m) n1, m), m = n2	1, . . . , 0. It is also noted that the polynomials c[m],m(s) are

symmetric, i.e. c[m],m = c[m],m
]

. (We already used this property to write c[m]m(s̃) in (9b)

instead of the anticipated c[m]m
]

(s)). Therefore c[m],m(s̃) is real for s 2 T. Since Algorithm

2 implements for each s 2 T Algorithm 1 for ps̃ (z) = D(s̃, z) = s	n1=2D(s, z) and since

condition (8) in Lemma 1 is equivalent to (80), it is concluded, via Theorem 1, that

condition (8) holds if and only if all the c[m],m(s̃ ) polynomials created by Algorithm 2

satisfy

c½m�mðs̃Þ > 0 8s 2 T ; m ¼ n	 1; . . . ; 0 : ð10Þ

The c[m]m(s̃) are, according to Theorem 1c, the principal minors of the Schur-Cohn

matrix of ps̃ (z) = D(s̃, z) where now R = R(s̃ ) becomes a matrix with entries dependent on

s̃. Therefore, following Siljak [22], the necessary and sufficient conditions for positive

definiteness of R(s̃), given by (10) (positivity of all principal minors), are also given by its

positive definiteness at a single point on T plus positivity of its determinant for all s 2 T.

Namely, conditions (10) are replaceable by the two conditions (a@) stability of D(1, z)

(because it is equivalent, according to Theorems 1 & 1c, to positive definiteness of R(s̃ ) at

s = 1) and (b@) c[0]0(s̃ ) > 0, 8 2 T. Clearly, (b) implies (b’@) c[0]0(s̃ ) 6¼ 0, 8 s 2 T.

However in combination with (a) it follows from Theorem 1 that the converse, (a) & (b’)

! (a) & (b), is also true. Therefore (a) and (b) are equivalent to (a) and (b’). Finally the
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balanced polynomial in (b’) may be dropped because (b’) is equivalent to c[0]0(s) = C0(s, z)

6¼ 0, 8s 2 T (it is recalled that the last polynomial of Algorithm 2 has degree 0 in z).

Combining these results with Lemma 1, we have proved the following 2-D conditions for

Algorithm 2.

Theorem 2: [Stability conditions for Algorithm 2]. Assume algorithm 2 is applied to

D(z1, z2) and denote by �(s) @ C0(s, z) the last polynomial that it produces. D(z1, z2) is

stable if, and only if, the following three conditions hold.

ðiÞ Dðz; 1Þ 6¼ 0 8z 2 V
	

ðiiÞ Dð1; zÞ 6¼ 0 8z 2 V
	

ðiiiÞ �ðsÞ 6¼ 0 8s 2 Tðor �ðs~~Þ > 0 8s 2 TÞ ð11Þ

Note that �(s) is a symmetric polynomial in s of degree 2n1n2. The examination of

condition (11) will sometimes referred as the positivity test. The tabular 2-D stability test

consists of Algorithm 2 plus Theorem 2. A numerical illustration for this 2-D test

follows.

2.4. First Example (Part 1: Tabular Test)

The current form of the tabular test will be illustrated by a numerical example that was

used also in [15]. This numerical example will be used later to illustrate also the

simplification of the test. Consider the real 2-D polynomial,

Dðz1; z2Þ ¼ ½1 z11 z21 z31�

0 0 0 1

0 0 1 2

0 1 2 4

1 2 4 8

2
666666664

3
777777775

1

z12

z22

z32

2
666666664

3
777777775

ð12Þ

(For the sake of comparison with [15] we remind that we stated the problem with a slightly

different convention. In addition we also scaled the polynomial there to have integer

coefficients.) We may test conditions (i) and (ii) of Theorem 2, by the underlying 1-D

stability test. Applying Algorithm 1 to D (z, 1) = D (1, z) = [1, 3, 7, 15]z yields the sequence

of polynomials c2(z) = [38, 102, 224]z, c1(z) = [18972, 48732]z, c0(z) = 8994960.

Setting the leading coefficients in (6) gives Var{1, 224, 48732, 8994960} = 0. Therefore

D(z, 1) = D(1, z) are stable. Next, Algorithm 2 generates the following sequence of

matrices.
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C2 ¼
�����

0 0 8

0 8 20

8 20 42

16 40 84

8 20 42

4 10 20

2 4 8

2
666666666666666666664

3
777777777777777777775

;C1 ¼

0 64

64 320

288 1056

912 2960

2120 5652

3440 8760

4424 11108

3520 8760

2320 5652

1252 2960

456 1056

144 320

32 64

2
666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777775

;C0 ¼

512

3584

15744

55808

152800

345824

666120

1054544

1411144

1582800

1411144

1054544

666120

345824

152800

55808

15744

3584

512

2
666666666666666666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777777777777777777775

It remains to determine whether the condition �(s) @ C0
t s 6¼ 0 8s 2 T holds for this

polynomial of degree 2n1n2=18. This can be done using Algorithm 1 and the zero

location rule in Theorem 1c as described in the remark that follows them. Applying

Algorithm 1 to the derivative of � (s) yields a sequence of polynomials (omitted

for brevity) whose leading coefficients arranged into (6) gives Var {7.2090�107,
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3.7727�1013, 	2.6888�1024, 2.9103�1033, 	1.8855�1042, 	1.4340�1050, 	3.3009�1057,
2.2488�1067, 	1.1427�1076, 4.3455�1084, 2.8899�1094, 1.6337�10103, 9.1679�10111,
1.2443�10120, 	1.3979�10130, 7.9626�10139, 	1.7445�10149} = 9. Therefore �(s) has 9

zeros in V 9 zeros in U and no zeros on T. Therefore the tested 2-D polynomials is

stable.

2.5. Count of Operations

We want next to evaluate the computational complexity of the above tabular test. For

simplicity, we shall obtain only an approximate count of multiplications by keeping

track of only leading terms in polynomial expressions for the precise count (all counts

are of polynomial order). The notation O(n1,2
k ) will be used to indicate polynomial order

with powers n�1

1 n�2

2 , �1 + �2 � k. Multiplication of two polynomials of degrees ‘1 and

‘2 (convolution of their coefficients) requires approximately (‘1 + 1) 
 (‘2 + 1)

operations. The division (deconvolution) of a polynomial of degree ‘1 + ‘2 by a

polynomial of degree ‘2 (known to be its factor) requires ‘1(‘1 + 1)/2 multiplications

(counting into it also ‘1 divisions). The calculation of Cn2
	k at step k of Algorithm 1

(k = 2, . . . n2	1) requires, for each of its (n2 	 k + 1) columns, two convolutions of

degrees 2kn1 by 2kn1 followed by deconvolution of degree 4kn1 by degree 2(k 	 1)n1.

Summation of these counts over all the steps of the algorithm gives 5
2
n1
2n2

4 + O(n1,2
5 ).

This remains approximately also the overall complexity for the whole tabular stability

test because the arithmetic costs associated with the examination of conditions (i) (ii)

(iii) in Theorem 2 (given respectively by O(n1
2), O(n2

2) and O(n1
2n2

2)) are, by

comparison, negligible.

The paper [15] motivated the significance of the test in reaching a symmetric polynomial

of degree 2n1n2 compared to symmetric polynomial of much higher degree in previously

proposed tabular tests. Indeed, all tabular stability tests preceding [15], since the first

proposed tabular test of Maria and Fahmy [7] till and including several publications by Hu

and coauthors e.g [10] (and references listed therein and in [15]), end with a (symmetric)

polynomial of degree n12
n2 . A more significant achievement of this tabular test is in the

reduction of the overall complexity to O(n6) from previous severe exponential complexity

that featured previous tabular tests. This aspect of the achievement has been overlooked

because most often tabular tests were presented without a count of the amount of

operations they require. A representative estimate for the level of complexity of past

tabular tests may be obtained by performing a count of operations for an algorithm that is

similar to Algorithm 2 but omits the divisions by the qm(s) factors. In such a case, the

degree of Cm(s, z) would become ðn12n2	m;mÞ, m = n2	1, . . . , 0. The overall cost can be

obtained by summation over all steps of the summation over all columns for a step of two

convolutions per column, using the above guideline adjusted to the different column sizes

(i.e. with n12
k replacing 2kn1). The result is an exponential count with n1

2 4n2 as its

domineering term.

More recently, the author has extended his 1-D stability test in [29] and in [30] [31] to

2-D tabular tests in [1], and [14], respectively. These tabular tests use instead of two-term

recursion of matrices with no specific structure, three-term recursion of matrices with
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certain (centro-)symmetry that allows the computation of only half of their entries. They

may be regarded as the immittance counterpart of the scattering type tabular test here and

in [15]. (The immittance formulation stems from the formulation in [30] [31] and was

found to produce better algorithms for also several other classical signal processing

algorithms related to the Schur-Cohn algorithm, see [32] and references there in). The

immittance tabular tests in [1] [14] have too O(n6) complexity but taking advantage of the

symmetries make them several times more efficient than the tabular test considered here.

The idea of using the tests [30] [31] for 2-D stability was explored before also in [33] [11].

However the 2-D ‘‘immittance’’ stability test presented in the latter work is inferior the

immittance tabular tests in [1] [14] and even to the tabular test here as it can be shown to

be of an exponential order of complexity typical to early generation of 2-D tabular stability

tests.

3. Simplification By Telepolation

The simplification proposed makes constructive use of two observations regarding the

tabular test presented so far. One is that the count analysis revealed that the O(n6)

complexity of the tabular test is determined by the cost of the table’s construction. The

second is that according to Theorem 2 the construction of the table has to be carried out

only in order to get its last polynomial, distinguished by the notation �(s).
This section presents a 2-D stability test of O(n4) overall complexity that is obtained by

‘‘telepolation’’ of the tabular table of the previous section. The idea is to (telescope �(s) by
interpolation) of the table, without its full construction. As has been already said the

testing of the testing of �(s) requires only O(n4) operations. The telepolation involves two

more components: the sampling of �(s) and its reconstruction from these samples. Each of

the two components has O(n4) complexity. Judicious choice of sampling points and an

efficient formula to recover �(s) from them, are used to attain an overall O(n4) complexity

procedure of quite low count of operations.

3.1. Sampling by the Companion 1-D Stability Test

Sample values for �(s̃) (i.e. the balanced polynomial) for s 2 T can be obtained by using

Algorithm 1. Recall that the tabular test stems from using Algorithm 1 to implement the

testing of the condition D(s̃, z) 6¼ 0 8 (s, z) 2 T 
 V
	
, it follows that application of

Algorithm 1 to ps̃i(z) = D(s̃i, z) may be used to produce �(s̃i). This next corollary describes

this important component for the method.

Corollary 1: Let si 2 T and apply the companion 1-D stability test to psi(z) = D(si, z)

(or qsi(z) @ D(s~i, z) = s	n1=2psi (z)). If the 1-D polynomial is not stable then D(z1, z2) is not

stable. Else, Algorithm 1 produces at its end �(s̃i) = c0,0 = C0(z).

It is clear that applying Algorithm 1 to qsi(z) produces �(s̃i) because it is exactly how

Algorithm 2 was obtained from Algorithm 1. The reason psi(z) may be equally used to
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get �(s̃i) follows from the fact that (4a) produces for both qsi(z) and psi(z) a same cn	1(z).

(This is the argument that also explains why in Algorithm 2 all s̃ can be replaced by s.)

Therefore both choices produces the same sequence cm(z) for m = n	1, . . . , 0. In

particular they both reach the same c0,0 = �(s̃i). Statement (b) is obvious from (2). It will

provides a very useful enhancement for testing 2-D stability by telepolation because it

implies that all necessary conditions for 1-D stability (e.g., cm,m > 0 m = n	1, . . . , 0)
encountered in the process of acquiring sample values are necessary conditions for 2-D

stability. Consequently, the procedure will be bundled with frequently occurring

necessary conditions for 2-D stability that may be used for earlier identification of an

unstable 2-D polynomial.

3.2. The Interpolation Problem

We also need an algorithm to recover �(s) from sample values of �(s̃ ). Denote the entries of
the coefficient vector of �(s) by � = [�0, . . . , �2M]

t. Let


 ¼ 2�

2M þ 1
; w ¼ e j


where j ¼
ffiffiffiffiffiffiffi
	1

p
. If �(s̃ ) is known at M + 1 values si 2 T given by

bi ¼ �ðs̃iÞ ; si ¼ w	Mþi ; i ¼ 0; 1; . . . ;M ;

then it can be determined from these values as follows.

�M	m ¼ bM þ 2
PM

k¼1 bM	kcosðmk
Þ
ð2M þ 1Þ ; m ¼ 0; . . . ;M

�Mþm ¼ �M	m ; m ¼ 1; . . . ;M ð13Þ

The expression is obtained by a DFT-like formula specialized to the current problem,

see the appendix. The cost of determining � from n1n2 + 1 values of bi = �(s̃i) is

n1
2n2

2 real operations. Since � is required only up to a scaling factor, the division by

2M + 1, that provides an exact reproduction of (5), may be dropped.

3.3. 2-D Stability Testing By Telepolation

The new proposed 2-D stability test consists of putting together the results derived up to

this point. It is presented as a 4 step procedure below. In this summary, ‘exit’ is used to
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mark points that admit early termination of the procedure because an indication that

‘‘D(z1, z2) is not stable’’ has already been found.

A procedure for testing stability of D(z1, z2) (D is real).

Step 1(r). Determine whether D(z, 1) is 1-D stable. If not stable - ‘exit’.

Step 2(r). Set M = n1n2, 
 = 2�
2Mþ1

, w = e j
.

For i = 0,1, . . . , M do: Set si = w	M+i. Apply the companion 1-D stability

(Algorithm 1 + Theorem 1) to psi(z) = D(si, z). If a cm,m � 0 m = 1, 2, . . . is
detected (implying psi(z) is not 1-D stable) - ‘exit’. Otherwise, retain the last

element as bi @ c[0],0 (> 0).

Step 3(r). Use (13) to obtain �(s) = �i = 0
2M+1 �i s

i from the values bi i = 0, . . . , M,

Step 4(r). Examine the condition ‘‘�(s) 6¼ 0 8s 2 T’’. D(z1, z2) is stable if and only

if this condition is true and the current step has been reached without an

earlier ‘exit’.

Note that condition (ii) of Theorem 1 is checked at step 2 because si = 1 is one of the

interpolation points.

3.4. First Example (Part 2: Telepolation)

We now use the previous numerical example (12) to illustrate the testing of D(z1, z2) by

telepolation.

Step 1: D(z, 1) is stable. Its testing using the companion 1-D stability test was

demonstrated in the first part of this example. Step 2: For this example, M = n1n2 = 9,


 = 2 � / 19, w = e j
 = 0.9458 + j0.3247. We need samples of �(s̃ ) at values si = w	9+i

for i = 0, . . . , 9. Each value is obtained by application of Algorithm 1 to D(si, z). For

i = 0, s0 = w	9 = 	0.98636 	 j0.1646, Algorithm 1 is applied to ps0 (z) = [1, s0, s0
2,

s0
3]Dz = [	0.87947 	 j0.47595, 	0.81313 	 j0.62720, 	2.6126 	 j1.4190,

	4.2252	j2.8380]z. The algorithm gives the sequence of polynomials c2(z) =

[2.2425 + j0.3469, 14.052 	 j1.2544, 24.907]z, c1(z) = [318.92 	 j38.93, 615.20]z,

c0(z) = 11050.875. Thus ps0 (z) is stable according to Theorem 1 and, by Corollary 1,

c0(z) provides �(s̃0) = b0 = 11050.875. Performing the companion 1-D tests D(si, z)

for also i = 1, . . . , 9 determines all these polynomials as 1-D stable and provides the

remaining required sample values as follows: b1 = 113162 /5, b2 = 276373 /7, b3 =

132379 /3, b4 = 363276 /7, b5 = 143432, b6 = 700668, b7 = 2809553, b8 = 6716279,

b9 = 8994960. (Note that the acquisition of b9 coincides with the stability test of

D(1, z) detailed in testing (12) by the tabular test in Part 1 of this example.) Step 3:

Obtain the vector � from the above values of bi i = 0, . . . , 9 using (13). The resulting

� is identical to that obtained in Part 1 of this numerical example. For example,

the central value �9 of the vector � may be easily checked to be given indeed by

�9 = (b9 + 2
P

8
1bi) / 19 = 1582800. Step 4: It remains to determine whether the

condition �(s) 6¼ 0 8s 2 T holds. This condition was already determined to be true in
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Part 1 of this example. Therefore (12) is found to be stable also by the telepolation

of the table.

4. Complex 2-D Polynomials

This section brings generalizations for the methods of the last two sections to test the

condition (1) for a 2-D polynomial with complex coefficients followed by some comments

on carrying out the test for �(s).

4.1. The Complex Tabular Test

The derivation of the 2-D tabular test relies on the 1-D companion stability test and the

simplifying conditions of Lemma 1. They both are not limited to real polynomials.

Subsequently, the derivation has not used any property that is restricted to the real case. In

other words, Algorithm 2 and Theorem 2 were already presented in a manner that holds

equally for also a D with complex entries. All that is needed is to read the statements with

attention to the fact that our definition of the ] operation presents not just reversion but also
complex conjugation.

4.2. Telepolation of the Complex 2-D Table

We consider now the simplification of the tabular test by telepolation in the

complex case. On transition to the complex case all c[m]m(s) become symmetric

in the Hermitian sense. In particular �(s) becomes complex valued with � = J�8.

This means that �(s̃ ) is still real valued for all s 2 T but it gets different values for

si and si
8. Two adjustments of the telepolation procedure are required for the

complex case: (i) Algorithm 2 has to be run 2M + 1 rather then just M + 1 times

(M @ n1n2) (values of bi = �(s̃i) for i = M + 1, . . . , 2M are also required) and (ii)

The previous formula (13) to recover � that assumed real vector � has to be

replaced by a complex version given by (14) below. The derivation of this formula

appears too in the appendix. (Actually, the appendix obtains first (14) then shows

that it deduces to (13) in the real case.) The resulting complex version of the

procedure may be summarized in 4 steps that correspond the previous steps for the

real case.

A procedure for testing stability of D(z1, z2) (D is complex).

Step 1(c). Determine whether D(z, 1) is 1-D stable. If not stable - ‘exit’.

Step 2(c). Set M = n1n2, 
 = 2�
2Mþ1

, w = e j
.

For i = 0,1, . . . , 2M do: Set si = w	M+i. Apply the companion 1-D stability

(Algorithm 1 + Theorem 1) to psi(z) = D(si, z). If a cm,m � 0 m = 1, 2, . . . is
detected (implying psi(z) is not 1-D stable) - ‘exit’. Otherwise, retain the last

element as bi @ c[0],0( > 0).
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Step 3(c). Use bi i = 0, . . . , 2M to obtain �(s) = �i=0
2M+1�i s

i by the next formula

�M	m ¼ bM þ
PM

k¼1½ðbMþk þ bM	kÞcosðmk
Þ þ jðbMþk 	 bM	kÞsinðmk
Þ�
2M þ 1

;

m ¼ 0; . . . ;M

�Mþm ¼ �M	m
8 ; m ¼ 1; . . . ;M ð14Þ

Step 4(c). Examine the condition ‘‘�(s) 6¼ 0 8s 2 T’’. D(z1, z2) is stable if and only

if this condition is true and the current step has been reached without an

earlier ‘exit’.

The following changes occur in the transition to the complex case. Step 1(c) deals now

with complex instead of real polynomials. Step 2(c) requires M more repetitions of

Algorithm 2. In step 3(c) the solution of the interpolation uses a complex version of the

recovery formula. Finally, in step 4(c) the tested polynomial becomes complex and

possesses the symmetry � = Je8.

4.3. Second Example

The testing of a complex coefficient 2-D polynomial by the the tabular test and by the

telepolation procedure is illustrated in this second example by considering the next 2-D

polynomial.

Dðz1; z2Þ ¼ ½1 z11 z21 z31�

0 0 0 1

0 0 1 2þ 1j

0 1 2þ 1j 4þ 2j

1 2þ 1j 4þ 2j 8þ j4

2
666666664

3
777777775

1

z12

z22

z32:

2
666666664

3
777777775

ð15Þ

Tabular test. The first two condition of Theorem 2, require stability of D(z, 1) = D(1, z)

= [1, 3 + 1j, 7 + 3j, 15 + 7j]z. Testing it with the companion 1-D stability test, Algorithm 1

yields the sequence c2(z) = [45	3j, 123 	 3j, 273]z, c1(z) = [28035 	 585j, 72495]z,

c0(z) = 16370775. Setting the leading coefficients into (6) gives Var{1, 273, 72495,

16370775} = 0. Therefore the tested 1-D polynomials are stable. Next, the 2-D table is

constructed using Algorithm 2,
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C2 ¼

0 0 8	 4j

0 8	 4j 24	 2j

8	 4j 24	 2j 52	 1j

20 50 105

10 25 52þ 1j

5 12þ 1j 24þ 2j

2þ 1j 4þ 2j 8þ 4j

2
666666666666666666664

3
777777777777777777775

;C1 ¼

0 48	 64j

48	 64j 368	 224j

344	 192j 1384	 512j

1212	 416j 4092	 1056j

3006	 608j 8383	 874j

5200	 330j 13400	 445j

6810	 100j 17145

5400þ 80j 13400þ 445j

3470þ 285j 8383þ 874j

1743þ 424j 4092þ 1056j

606þ 208j 1384þ 512j

172þ 96j 368þ 224j

24þ 32j 48þ 64j

2
666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777775

;C0 ¼

128	 704j

3008	 4544j

18336	 16848j

75504	 50272j

236744	 106692j

580028	 177404j

1174762	 237791j

1939795	 208560j

2656280	 118245j

3001605

2656280þ 118245j

1939795þ 208560j

1174762þ 237791j

580028þ 177404j

236744þ 106692j

75504þ 50272j

18336þ 16848j

3008þ 4544j

128þ 704j

2
666666666666666666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777777777777777777775

The condition �(s) = C0
t s 6¼ 08 s 2 T may again be examined by applying Algorithm 1 to

the derivative of �(s). The algorithm exhibits no further singularity for also this example

and at its end, the rule (6) shows 9 sign variations. It follows that �(s) (a symmetric

polynomial of degree 18) has no zeros on the unit circle. Therefore (15) is stable.

Telepolation. Step 1: D(z, 1) = [1, 3 + 1j, 7 + 3j, 15 + 7j]z is stable. Its stability was

checked by the companion 1-D test above. Step 2: We have M = n1n2 = 9. Therefore, like

in the real polynomial examples, 
 = 2�/19 and w = e j
 = 0.9458 + j0.3247. This time, �(s~)
has to be sampled at si = w	9+i for i = 0, . . . , 18 (unlike the same degree real case example

that required just the first 10 values). Each value is obtained by application of the

companion 1-D test to D(si, z). All the 19 1-D polynomials are found to be 1-D stable and

yield the vector of sampled values b = [b0, . . . , b18] = [220813/6, 1018964/15, 144631/2,

958279/20, 176972/3, 280637, 1721129, 6616777, 13936722, 16370775, 11118402,

4610246, 1344871, 387246, 329303/2, 581047/6, 472019/9, 76075/3, 20439]. Testing
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the stability of D(1, z) by the companion 1-D test in the first part of this example illustrates

also the acquisition of the value the value b9 = 16370775. The details on the remaining

sample values, that involve 1-D stability tests of complex polynomials, are omitted. Step

3: The vector � is obtained from the above values of bi i = 0, . . . , 18 using (14). The vector

� so obtained is identical with the above C0. Step 4: As already said in the first part of this

example, checking the condition �(s) 6¼ 08s 2 T using Algorithm 1 as a zero location

procedure works well for this example and shows that this condition holds. Therefore the

(15) is stable.

4.4. Testing a Balanced Symmetric Polynomial for Unit Circle Zeros

The testing of the condition �(s) 6¼ 0 8 s 2 T where �(s) = [�0, �1, . . . �2M]s is a symmetric

polynomial, i.e., � = �
]
is a central task common to both the tabular test and its telepolation.

Here is a brief account on some possible ways to examine this condition.

Since �(s) is symmetric, �(s̃ ) is real for s 2 T. In addition it is known that at s = 1 it is

positive (the latter follows from condition (ii) of Theorem 2 via Theorem 1). So the

condition amounts to positivity of �(s~) on T. When D is real, then � = J� is a real vector.

Setting s = e j
, the requested condition may be expressed by

�ðs~~Þ ¼ �M þ 2
XM	1

k¼0

�kcosððM 	 kÞ
Þ > 0 8
 2 ½0; �� ð16Þ

This expression may be used to test the positivity condition numerically by sketching the

implied graph. When D is complex, � = J�8 is complex the expression (16) has to be

replaced by

�ðs~~Þ ¼ �M þ 2
XM	1

k¼0

�Rk cosððM 	 kÞ
Þ þ �IksinððM 	 kÞ
Þ > 0 8
 2 ½0; 2��: ð17Þ

where �k = �k
R + j�k

I and can again be used to examine the condition graphically.

Algorithm 1 and Theorem 1c may be used to test �(s) in a manner described in Remark 1

as long as the algorithms does not encounter a singularity. Other scattering-type algorithms

may similarly be used where [21] brings for them generalization to complex polynomials

and to the zero distribution determination to the extent that they do not encounter

subsequent singularities. In particular B-type tests (that feature a single multiplier per

recursion step require only 0.5n2, real multiplications, for testing a real polynomial of

degree n. Methods to overcome singularities were presented for B-type tests in [25] [34]

(real polynomials) and [35] (also complex polynomials) but not yet for the other types of

tests. In particular amendment of the type C method that consist of Algorithm 1 and zero

location rules to handle also the not strongly regular case will enhance the nicety of the

telepolation procedure here having all parts of the procedure be handled by a single

algorithm.
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The method that was suggested for the positivity test in [15], and one that has been often

mentioned for this task, is a technique proposed in [18]. It transforms �(s) to the variable to
x = (s + s	1) / 2. When �(s) is real, this transformation corresponds to the substitution

cos(m
) = Tm(x) in (16) where Tm(x) is the m– th degree Chebyshev polynomials. After

expanding this Chebyshev series into a power series, �(s) is transformed into a polynomial

of degree M in x. This polynomial has then to be tested for no zeros in the real interval

[	1, 1]. This task can be done by construction of a Sturm sequence and applying Sturm’s

theorem. The creation of the Sturm sequence for a polynomial of degree M requires

approximatelyM 2 operations. The transformation from the polynomial in s to a polynomial

in x requires additional computation and may decrease numerical accuracy. The general-

ization of this technique for the complex case introduces second-kind Chebyshev

polynomials which are implied by the sin(m
) terms in the expression (17). Therefore a

transformation to a polynomial in x is not possible.

An attractive alternative way is to test the condition �(s) 6¼ 0 8s 2 T by the zero location

method in [30] [31] or [29]. This procedure requires less computation than transformation

to a new variable, or than any test in the SCMJ class of methods. It is applicable for both

real and complex polynomials and it offers means to overcome all the possible

singularities.

5. Computation Issues

An approximate count of operations for the reduced complexity procedure will now be

carried out (for both the real and the complex case). The count is in terms of real

multiplications (with real times complex and complex times complex counted as two and

four operations, respectively). Step 1 is a 1-D stability test for a polynomial of degree

n = n1. Its O(n2) complexity is negligible compared to the overall anticipated O(n4)

count. Step 2 involves n1n2 + 1 repetitions of Algorithm 2 in the real case and 2 n1n2 +

1 in the complex case. Algorithm 2 requires for a polynomial of degree n, n2 + O(n)

operations when it is real and 3n2 + O(n) real operations when it is complex. The

polynomials in step 2 are complex (with one exception: ps0 (s) is real when D is real)

and of degree n2. Therefore step 2r requires 3n1n2
3 + O(n1,2

3 ) operations and step 2c 6n1n2
3

+ O(n1,2
3 ) operations. Step 3r and 3c require n1

2n2
2 and 2n1

2n2
2 + O(n1,2

3 ) operations,

respectively. If step 4 is carried out too by Algorithm 1 then it requires 4n1
2n2

2 + O(n1,2
3 )

and 12n1
2n2

2 + O(n1,2
3 ) for the real and complex case, respectively. The resulting overall

complexity of the test is 5n1
2n2

2 + 3n1n2
3 + O(n1,2

3 ) real operations for real D and 12n1
2n2

2

+ 6n1n2
3 + O(n1,2

3 ) real operations for a complex D. Note that the count suggests that

when n1 6¼ n2 it is worthy to arrange n2 to be the lower degree (i.e. replace D by Dt

when n2 > n1).

For comparison of the count of operations with other available solutions assume n1 = n2
= n for simplicity. As already pointed, tests preceding [15] used to be of severe O(n24n)

complexity. The tabular test [15], as shown here, and the immittance tabular tests in [14]

[1] have only O(n6) complexity. Gu and Lee proposed in [9] to interpolate the Schur-Cohn

polynomial matrix by available efficient matrix factorization routines. However they do
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not detail a full specific algorithm from which a count of operations could be estimated.

Kurosawa, Yamada and Yokokawa proposed in [13] to obtain the determinant of the

polynomial matrix using DFT and assess its complexity as O(n5). Barret and Benidir

suggested in [12] a solution that uses a generalized Levinson algorithm to interpolate the

resultant matrix and showed that it requires approximately 23n4 + O(n3) real multi-

plications and 23.5n4 + O(n3) real additions. These solutions were presented only for the

case of real 2-D polynomial and have higher complexity than the solution for the real case

by the current procedure.

Competing alternatives in terms of cost of computation and availability for also the

complex case are the simplification by telepolation of the immittance 2-D tabular test

[36] [37]. The terms immittance and scattering are used to distinguish algorithms that

stem from the zero location test formulation of Bistritz in [30] [31] from algorithms that

stem from the Schur-Cohn test and several other related classical algorithms (see [32]

and other references therein). Telepolation of the immittance tabular tests [1] [14] lead

too to O(n4) complexity but, like with the comparison of tabular tests in the two

formulations, achieve a lower count of operations because they carry out the task with

symmetric polynomials. It is possible to reduce the overall count of operations reported

above by using the author’s zero location methods of [30] and [31] or [29] to carry out

step 4 in n1
2n2

2 multiplications and 2n1
2n2

2 additions +O(n1,2
3 ) for real D and in 4n1

2n2
2

multiplications and 8n1
2n2

2 additions +O(n1,2
3 ) for the complex D case.

A 2-D stability tests should be evaluated not only by its cost of computation but

also in terms of programming complexity and numerical accuracy. The above count

ranks the procedure proposed here highly in terms of computational complexity. Its

programming is also quite simple, a single module - Algorithm 1 - is used repeatedly

in step 2 and it may be used also for steps 1 and 4. These features may be good

enough for symbolic computation or for testing polynomials of relatively low degrees.

However, in floating point environment, round-off errors may hinder the potential

ability of any algebraic stability procedure to give a decisive answer. The early

generation of 2-D stability tests of exponential complexity were criticized for this

reason in [3], as impractical for all but testing the simplest filters. A recent

experimental study on the numerical accuracy of several 2-D stability tests that has

been carried out in [38] shows that accuracy tends to improve as the complexity goes

down by orders of magnitudes. It is wrong to assume that ‘‘squeezing’’ the count of

operations, leads necessarily to better accuracy. Different forms of algorithm of

similar levels of complexity may have different numerical behavior depending on

design and implementation details that may not manifest itself in count of operations.

Nevertheless, for reasons explained in [14], immittance tabular tests might have better

numerical behavior than the current scattering tabular. Numerical accuracy becomes a

concern also in testing the target polynomial e(s) for no zeros on the unit circle

because in this instance a relatively high degree polynomials with typically widely

ranged coefficient values has to be processed. Its testing raises a need for also 1-D

zero location tests of high numerical accuracy. Thus, numerical accuracy provides a

good incentive for further research for better stability tests for both univariate and

multivariate polynomials.
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6. Conclusion

The paper considered the problem of deciding whether a two-variable polynomial of

degree (n1, n2), with real or complex coefficients, has no zeros in the closed exterior of the

unit bi-circle (is ‘2-D stable’). First a new form for the tabular test proposed in [15] was

obtained. This test consists of a ‘2-D table’ (a sequence of matrices or 2-D polynomials)

and testing the last 1-D polynomial of this table for having no zeros on the unit circle.

While the testing of this last polynomial has only O(n4) (n1 = n2 = n) complexity, the

overall complexity of the test was shown to be O(n6) caused by the computational cost of

the construction of the 2-D table. Next a 2-D stability test of overall O(n4) was obtained by

telepolation of the tabular test. This approach uses a set of 1-D stability tests to sample the

last polynomial and then recovers it by an interpolation formula. Finally, generalizations of

the tabular test and its telepolation to the case of complex 2-D polynomials were also

presented.

The new approach shows that testing the stability of a polynomial of degree (n1, n2) can

be carried out by a finite number (of n1n2 + 1 for the real case, and 2n1n2 + 1 for the

complex case) 1-D stability tests of designated form of degrees n1 or n2 plus one zero

location test of a 1-D polynomial of degree 2n1n2. This new observation is highlighted in

an interesting manner when it is contrasted with an early numerical method to test 2-D

stability called the mapping method [3]. The mapping method suggests to test the condition

(8) by performing many 1-D stability tests (by numerical calculation of their zeros) using a

‘‘dense enough’’ grid of sample values s 2 T. Instead, the telepolation approach shows that

a definite decision on whether the 2-D polynomial is stable can be reached by using only a

well defined finite number of 1-D stability tests of some specific form.

The fact that the 2-D stability test is spanned by a finite series of 1-D stability tests

simplifies considerably the programming of the procedure. It also implies a procedure that

is densely filled with necessary conditions (for 1-D stability that are also necessary

conditions) for 2-D stability. The latter property reduces even further the amount of

computation that is required to determine a 2-D polynomial as not stable.

Appendix: The Interpolation Formulas

The purpose of this appendix is to derive the formulas (13) and (14) for recovering �.
As a polynomial of degree 2M (M @ n1 n2), �(s) = st[�0, . . . , �2M] can be determined from

2M + 1 values bi = �(s̃i) at distinct points si 2 T. Therefore, the required � = [�0, . . . , �2M]
t

can be determined from the solution of the next set of equations that present the collection

of 2M + 1 values of �(s̃ ) at distinct points si,

½s	M
i ; s	Mþ1

i ; . . . ; s	1
i ; 1; si; . . . ; s

M	1
i ; sMi �� ¼ bi ; i ¼ 0; 1; . . . ; 2M : ðA:1Þ

When D is real it is of advantage, as will become apparent in a moment, to choose 2M

interpolation points in complex conjugate pairs. In addition, choosing the points equally
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spaced along T the set with a DFT-like orthogonality property that simplifies its solution.

An adequate choice of interpolation points that satisfies both requirements is given by

si ¼ w	Mþi ; i ¼ 0; 1; . . . ; 2M where 
 ¼ 2�

2M þ 1
; w ¼ e j
 ðA:2Þ

ðj ¼
ffiffiffiffiffiffiffi
	1

p
Þ. For this choice, the set of equations (A.1) takes the form Q� = b, where b =

[b0, . . . , b2M]
t is the vector of known interpolation values and Q is given by

Q ¼
�����

wMM wMðM	1Þ . . . wM 1 w	M . . . w	ðM	1ÞM w	MM

wðM	1ÞM wðM	1ÞðM	1Þ . . . wM	1 1 w	ðM	1Þ . . . w	ðM	1ÞðM	1Þ w	ðM	1ÞM

] ] ]

1 1 . . . 1 1 1 . . . 1 1

] ] ]

w	ðM	1ÞM w	ðM	1ÞðM	1Þ . . . w	ðM	1Þ 1 wM	1 . . . wðM	1ÞðM	1Þ wðM	1ÞM

w	MM w	MðM	1Þ . . . w	M 1 wM . . . wðM	1ÞM wMM

2
666666666666666666664

3
777777777777777777775

The matrix Q is symmetric, Qt = Q, and also centro-symmetric, JQJ = Q. The columns of

Q = [v	M, . . . , v	1, v0, v1, . . . , vM] are given by the vectors

vk :¼ ½w	Mk ;w	ðM	1Þk ; . . . ;w	k ; 1;wk ; . . . ;wðM	1Þk ;wMk �t ; k ¼ 0;�1; . . . ;� M

The inner product of two vectors in this set reveal the following orthogonality.

vt	ivk ¼ w	Mðk	iÞ 1	 wð2Mþ1Þðk	iÞ

1	 wk	i
¼

2M þ 1 k ¼ i

0 k 6¼ i

8<
:

It follows that

Q	1 ¼ 1

2M þ 1
QJ : ðA:4Þ

Therefore, an explicit solution to Q� = b is given by

� ¼ 1

2M þ 1
QJb

(A.3)

(A.5)
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Using the symmetry � = J�8, it suffices to read only the upper half rows of the this solution.

The result is the expression in equation (14). If, in addition D is real, then � is real. Setting
J� = � into (A.1) makes it clear that the value bi of �(s̃ ) at si is equal to value b2M	i at s2M	i

= si
	1. The resulting relations bM+k = bM	k, i = 0, . . ., M	1 simplifies (14) to (13).
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