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Zero Location of Polynomials With Respect to
the Unit-Circle Unhampered by

Nonessential Singularities
Yuval Bistritz

Abstract—A method to determine the distribution of the
zeros of a polynomial with respect to the unit-circle, proposed
by this author in the past, is revisited and refined. The revised
procedure remains recursive and nonsingular for polynomials
whose Schur–Cohn matrix is not singular. Other nonessential
singularities that previously caused interruption of the recursion
are assimilated into a more general regular form of the three-term
recursion of symmetric polynomials that underlies the method.
The new form of the procedure does not compromise the simplicity
of the rules to extract the information on the distribution that
are proved using a different and more direct proof, based on the
evaluation of the Cauchy index along the unit-circle. The low
count of operations of the original procedure (recognized as the
least cost solution for the problem) is maintained and actually
gets better by the elimination of nonessential singularities. The
improved features make the revised procedure a better all-around
unit-circle zero location method for any real or complex polyno-
mial. Its wider range of regularity should also benefit a variety of
related signal processing and algebraic problems including some
that were already affected by the original formulation.

Index Terms—Discrete-time systems, immittance algorithms,
polynomial methods, stability criteria, zero location.

I. INTRODUCTION

T HE unit-circle zero location problem aims to determine the
number of zeros, , of a polynomial inside, on and outside

the unit-circle (IUC, UC, and OUC zeros)
and , respectively, in a finite number of arithmetic op-
erations. The most noted application for this problem is testing
stability of discrete-time systems. However, most of the avail-
able solutions to this problem are intimately related to a variety
of topics in system theory and linear algebra, including efficient
algorithms in digital signal processing problems, factorization
of certain structured matrices, and tools for the design of one-di-
mensional and multi-dimensional filters.

The problem has a long history. It was first solved by [1], who
obtained necessary and sufficient conditions for a polynomial
to have only IUC zeros (to be “stable”) and was extended to
the zero location problem by [2]. Subsequent modifications to
this solution were carried out by [3]–[5] and more researchers.
A possible classification into four types of the forms that were
published for this Schur–Cohn–Marden–Jury (SCMJ) class of
methods was proposed in [6], that also cites more papers in this
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class, provides missing proofs or zero location rules, and gives
the exact relations among the many versions.

A different approach to the solution of this problem has been
proposed in [7] and [8]. This relatively late solution differs from
the classical solutions in form and efficiency. The tested poly-
nomial is associated with a sequence of symmetric polynomials,
instead of polynomials of no particular form in the SCMJ class
of solutions, and this sequence is obtained by a three-term recur-
sion, instead of two-term recursions in the classical solutions. It
requires less computation than the SCMJ methods by a factor
of two or more, depending on the type of the SCMJ solution to
which it is compared.

The current paper revisits the method in [7], [8] and proposes
an improved form for it. The procedure there requires special in-
tervention in certain circumstances called singularities that may
occur and interrupt the recursion. These singularities were clas-
sified into two types; afirst-typesingularity that is related to a
specific pattern in the location of a subset of the zeros of the
tested polynomial (it implies and is implied by the existence of
zeros whose reciprocal, with respect to the unit circle, are also
zeros of the polynomial) and asecond-typesingularity that may
occur and obstruct the recursion haphazardly, with no relation to
any specific pattern in the location of the zeros. The disrupted re-
cursion was resumed by replacing the offending polynomials by
other polynomials that maintain the counting of the zeros. Sin-
gularities impair also the SCMJ class of methods and the impor-
tance of a full and simple solution to this zero location problem
attracted much effort to overcome singular cases also for these
alternative solutions, e.g., [9]–[12] and more references there in.

The new form of the procedure in this paper, offers a better
way to combat singularities than in [7] and [8]. The revised pro-
cedure behaves normally like the original form but it remains re-
cursive and nonsingular in circumstances that previously caused
interruption of the recursion by second-type singularities. The
only singularities that disrupt the recursive behavior of the new
form correspond to first-type singularities in the former form.
In other words, singularity will now occur if, and only if, the
tested polynomial has UC zeros or pairs of zeros located re-
ciprocally with respect to the unit circle. However, no sepa-
rate examination or prior knowledge about such a situation is
requested. The procedure detects them during its progress and
handles them when they occur without wasting the already in-
curred computation. The improved features stem from intro-
ducing a more general form for the three-term recursion of sym-
metric polynomials that accommodates also symmetric polyno-
mials with vanishing leading (and lowest power) coefficients
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and admits equally simple rules to count the zeros. The refined
procedure also keeps the efficiency of the procedure (considered
the method of least count of operations to solve the problem).
As a matter of fact instances that correspond to elimination of
previous singularities imply now further saving in arithmetic op-
erations.

The original zero location method was recruited to improve
the efficiency of methods to test the stability of also higher di-
mensional discrete-time systems [13]–[15]. It also led to new
and more efficient forms for widely used signal processing al-
gorithms related to the Schur–Cohn algorithm (titled “immit-
tance” or “split” algorithms, see [16] and references there in).
The now revised zero location procedure may benefit further
these topics. The new recursion form is equally useful to elimi-
nate singularities from also a modified version of the procedure
[17]. (Exactly the same recursion plus very similar zero loca-
tion conditions can be shown to hold for also [17]. However, for
clarity only the form in [7], [8] will be considered in this paper.)

An interesting perspective on the difference in the range
of regularity of the current form and the previous form of
the procedure is provided by their respective relations to the
Schur–Cohn matrix. The Schur–Cohn matrix (also known as
the Schur–Cohn–Fujiwara matrix and the unit-circle Bezoutian)
is a Hermitian matrix that can be formed for a polynomial
(with number of rows and columns equal to its degree) such
that its inertia is related to the distribution of the polynomial
zeros with respect to the unit circle, e.g., [18]. The relations
of the original zero location method to the principal minors of
the Schur–Cohn matrix were studied in the context of posi-
tive-definite Schur–Cohn matrix and stable polynomials in [19]
and in [16] for the modified form. Detailed relations between
the new form and the rank profile of the Schur–Cohn matrix
are beyond the scope of this paper. However, it can be shown
that, unlike the first setting that could encounter singularities
for polynomials whose Schur–Cohn matrix is not singular, the
new form remains regular for all polynomials for which the
Schur–Cohn matrix is nonsingular (cf. Remark 8 later on). This
perspective gives further meaning to the adjectivenonessential
that has been attached now to the (former “second type”)
singularities that become obsolete with the current form of the
procedure.

The proof of the main theorem will use Cauchy indices along
the unit circle. This method of proof is different from the proof
in [7], [8]. The proof there applied the argument principle to cer-
tain auxiliary not symmetric “behind the scene” polynomials.
The current proof relates more directly to the three-term recur-
sion of symmetric polynomials. It is modeled after the proof pro-
vided in [20] for the Routh test, except that it removes some un-
necessary restrictions there on the Cauchy index and the Sturm
sequence used to evaluate it. The current alternative proof is in-
teresting in its own right and it strengthens the intimate relations
between this discrete-time systems stability test and the Routh
criterion, its continuous-time systems counterpart, noticed be-
fore also in [21] and [22].

The paper is constructed as follows. Section II presents the
new form of the recursion and the rule to obtain the zero dis-
tribution in the nonsingular case and brings a numerical illus-
tration. Section III completes the method into a general zero lo-

cation theorem and brings a second numerical example. Proofs
are mostly collected in the Appendix.

II. THE REGULAR CASE

Let and denote the set of real and complex numbers,
and and the set of polynomials with coefficients in
the respective sets. The reciprocal of a polynomial

is defined by , where
bar denotes complex conjugate. A reciprocal polynomial can
also be expressed by . It follows that the
zeros of a reciprocal polynomial are the reciprocal, with respect
to the unit-circle, of the zeros of , i.e., if, and
only if, . A is called symmetric
if and antisymmetric if .
Symmetric polynomials play a major role in the enrolled zero
location method. It is apparent that a symmetric polynomial has
either UC zeros or reciprocal pair (RP) zeros (& ).

The method in [7], [8] constructs for a polynomial

(1)

a sequence of symmetric polynomials
(the “stability table”) and then uses certain rules

to extract from this sequence the distribution of the zeros of
with respect to the unit circle. The basic form of the

algorithm for the construction of this sequence is as follow.
The Normal Algorithm (The Form in [7], [8]):Construct for

in (1)

Then, for , do:

(2)

The recursion (2) has been called thenormal recursion. A
polynomial will be called normal if its formal degree

is equal to its exact degree, , andabnormalother-
wise. A symmetric polynomial is normal or abnormal
depending on whether or , respectively.
If the normal recursion does not encounter an abnormal poly-
nomial it produces a sequence of normal
symmetric polynomials from which the distribution of zeros of

can easily be obtained (using rules that can also be de-
duced from theorems later on in this paper). The normal re-
cursion (2) is disrupted when it produces an abnormal polyno-
mial. Such cases were called singularities and they were classi-
fied into two types. An identically zero polynomial was called
first-type singularity and an abnormal polynomial that is not
identically zero—a second-type singularity. The treatment of
the two type of singularities differed but both cases involved the
replacement of the offending polynomial and its predecessor by
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a certain other pair of normal polynomials such that the inter-
rupted recursion can be resumed and such that the counting of
zeros goes on seamlessly. At the end, the polynomials
submitted to the zero location rules, in order to determine the
distribution of zeros, were always normal polynomials for all

—either naturally or because abnormal poly-
nomials were replaced.

Currently, a more general form for the three-term recursion
will be used. It can accommodate also abnormal symmetric
polynomials. To account for this possibility, a new param-
eter is introduced to measure the deficiency between the
exact and formal degree of a . In other words,
counts the number of zeros of a at (and
at ). The possible range of , for a not identically
zero symmetric polynomial, is , where
the upper limit is implied by the symmetry of the polynomial
( ). The for polynomials

need not be defined (it will never be required).
Clearly, may also be used to say that a polynomial is
normal ( ) or abnormal ( ). A related difference
between the previous and the current form of the procedure will
be that now abnormal polynomials (and even identically zero
polynomials!) will be legitimate members in the final sequence
of polynomials submitted to the zero location rules.

The new procedure is initiated as before but it replaces the
normal recursion (2) by a more general regular recursion shown
in the next algorithm that becomes the basic form for the re-
vised procedure. The next algorithm can be applied to a real
or complex polynomial that obeys the assumptions in (1). This
assumption is usually not restrictive because a polynomial can
be adjusted easily to meet it. We shall return to this assumption
later (in Remark 3 below) and discuss its implications and ways
to relax it.

The Regular Algorithm (The New Form):Construct for the
polynomial in (1) a sequence of symmetric polynomials

as follows:

(3a)

(3b)

For

if

if

not required if

(4)

The recursion (4) will be called theregular recursion. It is not
difficult to show that all the polynomials that the regular algo-
rithm produces are symmetric, . This symmetry
can again be exploited to calculate only half of the coefficients
of each polynomial.

The zero location procedure for a will be calledreg-
ular (as well asnonsingular), if the regular algorithm can create
the entire sequence till and including without in-
terruption. Interruption of the regular recursion occurs when

(and only when) a occurs after a such that
. In such a case the zero location procedure will be

said to besingular for . Thus, the new procedure is sin-
gular if, and only if, a normal polynomial is followed by an iden-
tically zero polynomials,viz.,

with (5)

Remark 1: A always presents a singular case and
has to be treated as such (using means to be described in the next
section) before the zero location rules may be applied. A helpful
way not to miss the fact that termination of the procedure with
a is not legitimate is to insist on regarding the termi-
nation of the construction when the sequence reaches the term

( by structure) rather than ending it when reaching
. The assertion here is consistent with (5) because, for rea-

sons explained in Remark 5 below, a can occur only
after a normal . [Clearly, must be either normal or
identically zero.]

Remark 2: In the original setting the parameters were nec-
essarily for all . Now, the regular recursion rede-
fines the parameters differently. Consequently is now
admissible. In fact, if, and only if, .

The following conditions

(6)

have been callednormal conditionsin [7] and [8] [expressed
there by ]. In the current context,
normal conditions present the special case in which the exact de-
gree of every is equal to its formal degree. When normal
conditions hold, the regular recursion (4) simplifies to the orig-
inal normal recursion form (2). Normal conditions (6) are suffi-
cient conditions for the normal algorithm to produce the entire
sequence till (but are not necessary conditions simply
because does not obstruct the normal algorithm).

Theorem 1 (The Regular Case):Consider (1) and as-
sume that the procedure is regular. Then, has

IUC zeros, and OUC zeros, where

(7)

, and denotes the number of sign variations
in the sequence.

This theorem is proved in the Appendix. The current proof
is different from the proof presented in [7], [8] where incre-
ments in the distribution of zeros of successive polynomials in
an auxiliary sequence of not symmetric polynomials,

were used to prove a sim-
ilar sign variation rule. It is modeled after the proof provided in
[20] for the Routh test (another evidence to the Routh-like form
of this procedure) but it employs a more liberal definition of
the Sturm sequence to evaluate more directly the Cauchy index
along the unit-circle.

It is apparent that the regular algorithm is not obstructed by
abnormal polynomials. Abnormal polynomials were previously
responsible for “second-type” singularities. The only singularity
that is possible now occurs in circumstances described in (5) and
it will be the subject of the next section. Since “second-type”
singularities have now been eliminated, it might be expected that
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the remaining singularity coincides with the previously called
“first-type” singularity. The reply to this expectation is divided
between appearance and characterization as follows. Formerly,
first-type singularity was shown to imply and be implied by

having UC or reciprocal pair of zeros. Singularities in
the new procedure will be shown to relate similarly to this spe-
cial pattern of zeros. (A hint is already provided by Theorem 1
that infers that a polynomial that obeys regular conditions has
no UC zeros.) On the other hand, formerly a
always presented a first-type singularity. In difference, now a

, by itself, does not present a singularity. Cur-
rently, a that follows an abnormal polynomial
( ) does not interrupt the recursion. It implies
and consequently is obtained regard-
less of . This means that one or several (not adjacent)
identically zero polynomials may legitimately appear in the final
sequence of the currently revised procedure. The exact charac-
terization of singularities is brought in the forthcoming Theorem
2 and Example 2 will illustrate the new situation.

The parameters for Theorem 1 can be obtained also in
a different manner. Setting in the regular recursion (4)
proves the recurrence relation

(8)

This recursion may be used to obtain adequate parameters for
Theorem 1 in several ways: i) Running (8) in descending order
(possibly in parallel with the regular recursion steps) starting
with and . ii) Running it in as-
cending order, after the table has been completed (so that all
the are available), starting with and .
iii) Running the recursion in ascending order as in ii) but initi-
ating it with and . The latter case amounts to
forming a normalized sequence , where
that clearly has the same number of sign variations. One use
of this approach is to obtain the parameters for the zero loca-
tion rules in just arithmetic operations [less computation than
summing the coefficients of each ] but it has other poten-
tial applications as well (one is hinted in Remark 3.

It follows that any of the two sets of parameters and
contains all the information on the zero distribution for

the regular case. Similar relations between theand the
and the recursion (8) were available also previously but formerly
they were limited to polynomials that obey normal conditions.

Remark 3: In this remark we shall dwell in some depth on the
assumption in (1). An arbitrary polynomial can be made
to meet it by a sequence of preliminary adjustments as follows.
If [enough to declare as not stable] then zeros
at have to be removed till a polynomial of lower degree,
say of degree , such that is reached. (In such
a case zeros at should be remembered for the final re-
port on the distribution of zeros). If (which holds
of course for all ) then may be
chosen. Else when and can
be chosen by scaling to acquire it with the property (1)
e.g., or . Next,
a few words on what purpose this assumption is set to serve

(and how it can be relaxed). The requirement ad-
mits the division in (3b), i.e., is necessary for to be
a polynomial. It can then be shown that the value at
of is [where

]. It follows that all following pro-
duced by the regular recursion are real as well [cf. (8)] so that
the sign variation rule makes sense. The additional requirement,

, is posed in order to have
because else a that is followed by a
implies that all subsequent produced by the regular recur-
sion vanish. This would pose an obstacle on the sign variation
rule [cf. (7)]. If however, (for some more remote applications
than a stand alone zero location problem), the assumption (1) is
restrictive or not desirable, several fixes are possible. Assuming
regularity, it is possible to replace in the zero location rule the

by parameters explained next to (8). This way, it is
possible to drop the requirement and require only
that is real. Furthermore, it can be shown that the revised
zero location method is applicable also for a modified form of
the zero location procedure [17] that differs in its initiation and,
consequently, admits complex values for posing instead
the requirement . The latter requirement can
further be relaxed to also just , see [23, Remark
2].

Remark 4: Note that a implies
, i.e., a cost-free next polynomial (just shift and

sign change). Thus, not only that the new form of the procedure
conveniently circumvents previous singularities (that required
irregular intervention with a cost that exceeds the cost of a
normal step) viz. rewards the count of operations by
free recursion steps.

Remark 5: Some of the may be zero. However,
no two consecutive s can be zero because common zeros of
adjacent and at would imply a zero of

at (using an inherent property of the recursion,
see also the proof for the forthcoming Theorem 2), in contra-
diction to the assumption (1). A vanishing will never pose
ambiguity on the sign variation for the following reasons. The
sequence starts with by assumption. If at
some intermediate step , a occurs, then (8) im-
plies that . Thus the segment
contributes a definite sign variation. Finally, the last element
can never be zero, cf. Remark 1.

Example 1: Consider the third example in [7] that was
brought there to illustrate a second-type singularity

where here and on (of proper length deter-
mined by context). Following (3), the algorithm is initiated with

Here, so the first recursion step is normal;
, and
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Next, so this is an abnormal step;
and

Next presents a normal step; and

Since is normal ( ), all the information required for the
zero location rule (7) has already reached. However, it is noted
that the algorithm is defined as terminating after one more step
(and Remark 1 explains why it is better not to overlook this
matter). The next step produces and
the term . Substituting values into (7) gives

Therefore according to Theorem 1, has no UC zeros
(the procedure is not singular), IUC zeros and

OUC zeros.
The example can also be used to realize the alternative ways

to obtain parameters via (8) in parallel to the main recur-
sion or by recovering from

. As illustration for Remark 3,
notice that implies that that be-
comes available for no arithmetic cost. Finally, it is also pos-
sible to arrange the algorithm in a tabular form as done in [7].
The rows of the table are the coefficients of the symmetric poly-
nomials and its entries can be obtain by an adequate translation
of the effect of the algorithm on them. The table for this example
is

Some annotation on the relevant parameters has been added
at a right hand side column. The symmetry of the coefficient
vectors (the rows of the table) can be used to drop the right hand
side (say) of the table. The second example in this paper will be
presented only in this brief tabular form.

A stability criterion according to this method corresponds to
the special case in Theorem 1. As a matter of fact and
as will become apparent immediately, the new procedure offers
nothing new to this case compared to the former form. Never-
theless, this special case is important enough to be characterized
separately as the next corollary.

Corollary 1 (Stability): (a) (1) has IUC zeros (is
stable) if, and only if, all (are non zero and) have
the same sign. This condition may be equally presented by e.g.,

(9)

(b) The following are necessary conditions for stability: i)
. ii) The normal conditions, defined

in (6).

Proof: Part (a) follows as the special case in The-
orem 1, where the expression (9) is chosen to stressdefinite
signs, i.e., that all are necessary condition for stability.
It was shown in Remark 5 that a implies a full sign vari-
ation hence OUC zeros. For part (b): If all have same sign
then is seen from (8). Condition i) implies
condition ii) because a implies .

Note that, since normal conditions form necessary condi-
tions for stability, the appearance of an abnormal polynomial
is enough to declare the tested polynomial as not stable and
the stability test need not be continued. Since for normal
conditions the regular recursion coincides with the original
normal recursion, the revised procedure offers no added value
for using the method only as a stability criterion.

Remarks 6: It is possible to express the necessary and
sufficient conditions for stability by by requiring

[instead of the form assumed in (1)] because
. In the complex case, this nicety will typically be

granted after arranging a to meet the requirement
(1) by or .

When testing a complex polynomial, it is possible to replace
the regular recursion by a pair of interlacing recursion of real
symmetric and anti-symmetric polynomials, extending the ap-
proach shown in [8] to the regular recursions. Let the symmetric

be written as , where
and .

Then, the regular recursion (4) can be carried out by the fol-
lowing coupled three-term recursion of real polynomials

(10a)

(10b)

where . The initiation, and for
, are obtained from (3a), (3b). Notice thats for the

zero location rules are given by . They may also be
obtained from the set of s using (8).

III. T HE GENERAL CASE

In order to determine the zero location of an arbitrary polyno-
mial, it remains to deal with singular cases. Singularity occurs
when an identically zero polynomial follows a normal poly-
nomial as stated in (5). It is associated with the existence of
zeros of such that their reciprocal with respect to the
unit-circle, , is also a zero of . In this category distinc-
tion will be made between zeros on the unit-circle (“UC zeros”)
and zeros not on the unit-circle that appear in reciprocal pairs
(“RP zeros”), .

Theorem 2: (a) If the regular recursion is interrupted by
that follows a normal (i.e., ) then,

contains all the UC and RP zeros of . Conversely,
if the total number of UC and RP zeros of is , then the
regular recursion is interrupted by a that follows
a normal .

(b) If the regular recursion produces a that
follows an abnormal (i.e., ), then the situation
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described in part (a) will occur for of degree
given by .

The proof of this theorem is brought in the Appendix. It uses
the fact that the regular recursion acts as a greatest common
divisor (g.c.d.) algorithm for and hence it also
determines the g.c.d. of and .

Remark 7: Part (a) of Theorem 2 can be rephrased as saying
that singularity occurs [and if so then right after ] if, and
only if, and have a g.c.d. of degreegiven (up
to a constant value) by . Note that the theorem covers cor-
rectly also the regular case. The regular case is represented in
Theorem 2 by the value . For the highest degree
g.c.d. of and is the real and constant .
Taking the recursion one step beyond produces the term
“ ” (cf. Remark 1) which is still in agreement with
the description in Theorem 2. Next part (b) of the theorem en-
lightens further the complementary case of an identical zero
polynomials that follows an abnormal polynomial. It does not
present an immediate singularity (the regular recursion bypasses
it without interruption) but it implies a singularity at
if (and only if) . It is even more acutely stated that such
a situation impliesalways(whether or not later the procedure
turns to be singular) that the degree polyno-
mial presents the common finite zeros of and

(if any). Bearing in mind that , cases where
an identically zero polynomial occurs without implying a sub-
sequent singularity are described by . In explicit words,
a does not predict a later singularity if, and only if,
it has odd degree and it is preceded by an abnormal polynomial

that has only a single nonzero coefficient (at the center of
its coefficient vector, necessarily).

Remark 8: Our introductory comment that characterized the
advantage of the current procedure as remaining nonsingular for
all polynomials that have a nonsingular Schur–Cohn matrix be-
comes now apparent. It follows from the links that Theorem 2
describes between singularity in the current form of zero loca-
tion procedure to g.c.d of and of degree
that are also well known as necessary and sufficient conditions
for the Schur–Cohn Bezoutian to be singular (e.g., [18]).

Overcoming Singularities:Whenever a with
is followed by a for a proceed as follows:

i) Differentiate and denote the derivative by
. Form

(11a)

where is any scaling number that fulfills the require-
ment that is real and has a sign opposite to the
sign of . Some adequate choices forare

(11b)

ii) Resume the regular recursion with the two polynomials

(12a)

(12b)

The above method for overcoming a singularity is similar to
the treatment of first-type singularity in the former form of the
procedure. The choice was proposed in [8] and it reduces to
the convenient value for the real case [7]. More sub-
stantiation for this method of overcoming singularities appears
in the Appendix.

Remark 9: A singular situation (5) will occur more than once
if (and only if) has UC or RP zeros of multiplicity higher
than one. Any time , occurs after a normal it
has to be treated again by (10) and (11). Singular steps will occur
in a number of times equal to the highest multiplicity of UC or
RP zeros of (because differentiation lowers multiplicities
each time by one).

The complete rules to obtain the distribution of zeros by the
current unit-circle zero location method are presented in the next
theorem.

Theorem 3 (General Case):Assume the proposed algorithm
is applied to (1) and that, possibly after encountering
singular steps treated each time by the procedure stated above,
it finally produces a sequence . Let
denote the degree after which a singularity occurred for the first
time (with presenting a nonsingular procedure). Let

(13)

and

(14)

Then, the number of IUC zeros of is , its
number of UC zeros is and its number of OUC
zeros is (and there are pairs of reciprocal
zeros).

Example 2: To illustrate a singular case
and other identically zero polynomial consider

. For
brevity this time we shall present the procedure only by
the resulting table (with commentary on the participating
parameters at an extra column at the right end, similar to the
tabular presentation of Example 1), as shown at the bottom of
the next page, and are identically zero but they
do not present a singularity because they are preceded by
abnormal polynomials. As illustration for Remark 4, notice
that for .
The procedure becomes singular at when the normal
polynomial is proceeded by an identically zero
polynomial. The procedure is resumed with and
created from using (11) (with ) and (12).
The distribution of zeros can finally be determined using
Theorem 3. Here , setting values into (13) and
(14) reveals that
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and that . Accordingly, there are
IUC zeros; the number of UC zeros is

and the number of OUC zeros is
. (In addition means one OUC and IUC

zeros that form a reciprocal pair.) As illustration for Theorem
2, it can be checked that the zeros of

are zeros of . Namely, the above counted 1 UC
zero of is at and the 1 reciprocal pair of zeros are
at . Furthermore, part b) of Theorem 2 is illustrated
by noting that for . In other words, the
two early identical zero polynomials predict the forthcoming
singularity. It is also apparent they reveal the g.c.d. zeros that
cause the singularity. Namely, the finite nonzero zeros of
and are equal to the zeros of .

IV. CONCLUDING REMARKS

The paper has presented a revised form for the method to de-
termine the distribution of zeros of a polynomial with respect to
the unit circle in [7], [8]. The method now uses a three-term
recursion of symmetric polynomials of a more general form
that assimilates situations that previously were regarded as sin-
gularities and disrupted the procedure for polynomials whose
Schur–Cohn matrix is not singular. The new form of the proce-
dure does not compromise neither the simplicity of the rules to
extract the information on the distribution of the zeros, nor the
efficiency of original form. As a matter of fact, each instance a
previous singularity is circumvented by the regular recursion,
implies now one or several cost-free recursion steps. Conse-
quently, the cost of the revised procedure is less or equal to the
cost of the original procedure (already recognized as the method
of least arithmetic operations for the task).

The importance of a complete solution for the unit-circle zero
location problem motivated considerable effort to overcome sin-
gularities that occur also in the SCMJ class of methods (see
[9]–[12] and references there in). The many publications dealing
with singularities in these longer known solutions, may symp-
tomize a genuine difficulty to reach a satisfactory general so-
lution in this classical (“scattering”) framework. By this token,
the elegant way the current procedure overcomes singularities
conveys the impression that the newer formulation (the “immit-
tance” approach) is an inherently more suitable environment to
deal with singularities in this problem.

The new form of the procedure may be valuable for various
application on which the original procedure already had an im-
pact. Other applications may also benefit from the wider range
of regularity of the new three-term recursion. For example, the
writing of this paper at this time stems from realizing the impor-
tance of a uniform and recursive unit-circle zero location algo-
rithm for multidimensional stability tests in schemes like [23].
Finally, but not least importantly, the new shape of the proce-
dure makes it a more pleasant general method to determine the
distribution of the zeros of any real or complex coefficient poly-
nomial with respect to the unit-circle.

APPENDIX

Part 1—Proof for Theorem 1:Write the unit-circle as

Define for a polynomial of degree a “bal-
anced polynomial” by . is real for

, if (and only if) is symmetric, [8, Theorem 3].
Consider from here and on the sequence of symmetric polyno-
mials produced completely by the regular
algorithm. Therefore each is real for . Multiplying
the two sides of the regular recursion (4) by gives the next
recursion for the corresponding balanced polynomials,

(A.1)

Consider the function that results when a balanced symmetric
polynomials takes values on and call it a
trigonometric polynomial [it can be expressed as a polynomial
in and ]. Thus is real valued for .
The recursion for the trigonometric polynomials is obtained by
substitution of into (A.1)

(A.2)

where denote the real and imaginary parts of
.

singularity
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Proposition: The sequence of trigonometric polynomials
, related via (A.2) to a sequence

produced by the regular procedure has
the next properties.

Property 1) For every , if then
.

Property 2) .
Property 3) .
Proof: To prove Property 1), assume . Then,

it is apparent from (A.2) that . The
possibility that they are both equal to zero is prohibited because
it implies singularity (as explained in the proof for Theorem 2).
Property 2) is satisfied too because by the nonsingularity as-
sumption, . The proof of Property 3)
is by induction. For [ is a nonzero
constant]. Since it follows that
and .
Therefore the property holds for also . Assume it
holds for , then

. This completes
the proof of Property 3).

Assume that has IUC zeros. Then, by the argument
principle, the argument of , changes as en-
circles by the amount . Therefore,

(A.3)

From (3), and therefore,

(A.4)

Since all are real valued for ,

(A.5)

The Cauchy index is defined in [20] for a rational real func-
tion and for in a real interval as (number
of jumps of from to ) (number of jumps of
from to ).

This index can be calculated using a Sturm sequence of real
polynomials from boundary values of these polynomials and it
was used in this manner to prove the Routh test in [20]. A se-
quence of polynomials over the real interval was used
in [24] to obtain a proof for the original setting of this unit-
circle zero location method. The proof there assumed the case
of real polynomials and strictly adhered to the above definition
of the Cauchy index and to the definition of a Sturm sequence
of polynomials in [20]. Next, a more direct proof for the case of
complex polynomials and the newer setting general is enrolled
using the properties prepared in the above proposition to eval-
uate Cauchy index directly along the unit circle as follows.

A jump from to and from to correspond,
respectively, to a and change in the value of the

function. Therefore, one obtains from (A.5) that the change in
the argument of as traverses is given by

(A.6)

After dropping the factor that has a constant sign on
, and combining the last expression with (A.3), one ob-

tains,

(A.7)

Using the first two properties of the above proposition, it be-
comes apparent that the trigonometric sequence meets all the
properties (even though they are not simple polynomials) that
were truly used in [20, p. 175] to evaluate the Cauchy index by a
Sturm sequence over the interval . Therefore Sturm’s the-
orem can be applied to calculate the values of the above Cauchy
index from boundary values of this sequence,viz.,

(A.8)

Using Property 3) of the proposition, it follows that

(A.9)

Next, substitute (A.9) into (A.8), use
and combine the result with (A.7) to obtain

(A.10)

Recall that denotes the number of IUC zeros of , and
since nonsingularity implies no UC zeros (see Theorem 2), it
follows that has OUC zeros given by the above
count of sign variations. This completes the proof of Theorem
1.

Part 2—Proof for Theorem 2:First, recall that the zeros of a
symmetric polynomial , as well as the common zeros of

and , are either UC zeros or RP zeros. It is also im-
portant to remember that zeros of at and at
were prohibited by assumption (1). The proof uses the property
of the regular three-term recursion that if adjacent polynomials

vanish at a common then and
there as well.

Assume the greatest common divisor (g.c.d.) of and
has degree. Then these zeros are also common to
and . Therefore, by the mentioned property of

the recursion, these are zeros of for also
till . This must be normal (zeros at 0 andcan not
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be g.c.d. zeros) and must be followed by (because
its degree is too low to accommodate differentlyzeros).

To prove the converse, assume is normal ( ) and
is followed by . Then,

(A.11)

If then the above equation asserts that the zeros of
consist of the zeros of plus the zero of the

factor and therefore all higher degree polyno-
mials also vanish at the zeros of . When then

and the zeros still propagate to upward
polynomials, in fact the next higher degree polynomial will be

. Thus, either way, vanish at the
zeros of for all . Therefore, the zeros of
are zeros of also and
of . This completes the
proof of part (a).

To prove part (b), assume with is followed by
a . In this case,

(A.12)

implies that the zeros of consist of the
finite zeros of plus zeros of the factor

. The claim in part 2 follows at once by repeating the
argument above on the propagation of the common zeros
of the two adjacent polynomials and down and
up the recursion.

Part 3—On the Scheme to Overcome Singularity:The treat-
ment of singularity here is similar to the treatment of first type
singularities in [7], [8]. It uses the property that

has as many OUC zeros as [2]. Therefore,
has as many IUC zeros as . As shown in [7],

is required to seam correctly the zero location
rule based on the concatenation of the two partial sequences

and . It remains
to show that the proposed options forsatisfy this requirement.
Differentiation of and setting into the re-
sult shows that . It follows that

satisfies the sign requirement .
This sign requirement is obviously satisfied by alsoand .

Part 4—Proof for Theorem 3:If is normal ( )
and is followed by an identically zero polynomial, then ac-
cording to Theorem 2, it divides all the previous polynomials

. Therefore this common factor cancels out
in the ratio of trigonometric polynomials used in the proof to
Theorem 1. Consequently the proof for Theorem 1 may be re-
garded as evaluation of the Cauchy index for the trigonometric
sequence that corresponds to the reduced degree polynomials

. It then shows that
has IUC zeros.
Next, Theorem 1 may be applied to test the polynomial

assuming the procedure is nonsingular (else, when a
singularity recurs, the current reasoning has to be repeated on a
subsequent subset, or subsets, of the sequence). Consequently,

provides information

on the zero distribution of . However, the number of
IUC zeros of is equal to the number of IUC
zeros of . , being a symmetric polynomial, has then
also OUC zeros (located reciprocally to the IUC zeros)
and the remaining zeros are UC zeros. These are
also the UC zeros (andall the UC zeros) of . Therefore

. The remaining assertions in Theorem 3 follow
at once. If singularities recur they have to be resolved each
time in a similar manner. In fact singularities must occur in
a number of times equal to the highest multiplicity of a UC
zero or RP zeros of (because each time by treatment by
differentiation reduces the multiplicity of zeros by one). Note
that determining the distribution triple depends
only the degree associated with thefirst occurring singularity.
However, the location of subsequent singularities can be used
to obtain more subtle information on the multiplicity of UC
and RP zeros of by nesting and superposing conclusions
from the above analysis.
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