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Zero Location of Polynomials With Respect to

the Unit-Circle

Unhampered by

Nonessential Singularities

Yuval Bistritz

Abstract—A method to determine the distribution of the
zeros of a polynomial with respect to the unit-circle, proposed
by this author in the past, is revisited and refined. The revised
procedure remains recursive and nonsingular for polynomials
whose Schur—Cohn matrix is not singular. Other nonessential
singularities that previously caused interruption of the recursion
are assimilated into a more general regular form of the three-term
recursion of symmetric polynomials that underlies the method.
The new form of the procedure does not compromise the simplicity
of the rules to extract the information on the distribution that
are proved using a different and more direct proof, based on the
evaluation of the Cauchy index along the unit-circle. The low
count of operations of the original procedure (recognized as the
least cost solution for the problem) is maintained and actually
gets better by the elimination of nonessential singularities. The
improved features make the revised procedure a better all-around
unit-circle zero location method for any real or complex polyno-
mial. Its wider range of regularity should also benefit a variety of

class, provides missing proofs or zero location rules, and gives
the exact relations among the many versions.

A different approach to the solution of this problem has been
proposed in [7] and [8]. This relatively late solution differs from
the classical solutions in form and efficiency. The tested poly-
nomial is associated with a sequence of symmetric polynomials,
instead of polynomials of no particular form in the SCMJ class
of solutions, and this sequence is obtained by a three-term recur-
sion, instead of two-term recursions in the classical solutions. It
requires less computation than the SCMJ methods by a factor
of two or more, depending on the type of the SCMJ solution to
which it is compared.

The current paper revisits the method in [7], [8] and proposes
an improved form for it. The procedure there requires special in-
tervention in certain circumstances called singularities that may

related signal processing and algebraic problems including some occur and interrupt the recursion. These singularities were clas-

that were already affected by the original formulation.

Index Terms—Dbiscrete-time systems, immittance algorithms,
polynomial methods, stability criteria, zero location.

. INTRODUCTION

T

sified into two types; dirst-typesingularity that is related to a
specific pattern in the location of a subset of the zeros of the
tested polynomial (it implies and is implied by the existence of
zeros whose reciprocal, with respect to the unit circle, are also
zeros of the polynomial) andsecond-typsingularity that may
occur and obstruct the recursion haphazardly, with no relation to

HE unit-circle zero location problem aims to determine thgny specific pattern in the location of the zeros. The disrupted re-
number of zeros;;, of a polynomial inside, on and outsidecrsion was resumed by replacing the offending polynomials by

the unit-circle (IUC, UC, and OUC zero$);| < 1, |zi| = 1  other polynomials that maintain the counting of the zeros. Sin-
and|z| > 1, respectively, in a finite number of arithmetic opyyarities impair also the SCMJ class of methods and the impor-
erations. The most noted application for this problem is testifgnce of a full and simple solution to this zero location problem
stability of discrete-time systems. However, most of the avalltiracted much effort to overcome singular cases also for these
able solutions to this problem are intimately related to a variefyternative solutions, e.g., [9]-[12] and more references there in.
of topics in system theory and linear algebra, including efficient The new form of the procedure in this paper, offers a better
algorithms in digital signal processing problems, factorizatiofay to combat singularities than in [7] and [8]. The revised pro-
of certain structured matrices, and tools for the design of one-@idure behaves normally like the original form but it remains re-
mensional and multi-dimensional filters. cursive and nonsingular in circumstances that previously caused
The problem has a long history. It was first solved by [1], Whiyterruption of the recursion by second-type singularities. The
obtained necessary and sufficient conditions for a polynomighiy singularities that disrupt the recursive behavior of the new
to have only IUC zeros (to be “stable”) and was extended {gym correspond to first-type singularities in the former form.
the zero location problem by [2]. Subsequent modifications {g gther words, singularity will now occur if, and only if, the
this solution were carried out by [3]-[5] and more researchefgsted polynomial has UC zeros or pairs of zeros located re-
A possible classification into four types of the forms that werg rocally with respect to the unit circle. However, no sepa-
published for this Schur-Cohn—Marden—Jury (SCMJ) class r%Ee examination or prior knowledge about such a situation is
methods was proposed in [6], that also cites more papers in thiguested. The procedure detects them during its progress and
handles them when they occur without wasting the already in-
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and admits equally simple rules to count the zeros. The refineation theorem and brings a second numerical example. Proofs
procedure also keeps the efficiency of the procedure (consideaed mostly collected in the Appendix.

the method of least count of operations to solve the problem).

As a matter of fact instances that correspond to elimination of Il. THE REGULAR CASE

previous singularities imply now further saving in arithmetic op- Let R andC denote the set of real and complex numbers

erations. andR[z] andC[~] the set of polynomials with coefficients in

The original zero location method was recruited to improy; e respective sets. The reciprocal of a polvno _
the efficiency of methods to test the stability of also higher <§n d‘Li € C[7]is aefined by%: (2) = Z,? yE @?Kvleaere
=0 "~ ~ n\~;, — =0 “n—rt

mensional discrete-time systems [13]-[15]. It also led to n r denotes complex conjugate. A reciprocal polynomial can
and more efficient forms for widely used signal processing e —"

gorithms related to the Schur—-Cohn algorithm (titled “immit:
tance” or “split” algorithms, see [16] and references there i the unit-circle, of the zeros db,.(z), i.e., D= (z) = 0 if, and
The now revised zero location procedure may benefit furthSHly D (7_1)' O AD (7)n€«é[;] .i’s galiéd symr’netric

these topics. The new recursion form is equally useful to el " D:(2) = Dy(») and antisymmetric iD= (z) = —D(2).

§§/mmetric polynomials play a major role in the enrolled zero

[17]. (Exactly the same recursion plus very similar zero Ioceflé : : : :
; " cation method. Itis apparent that a symmetric polynomial has
tion conditions can be shown to hold for also [17]. However, fa bp y POy

. . : : 2 dither UC zeros or reciprocal pair (RP) zeres& 7. ).
clarity only the form in [7], [8] will be considered in this paper.) The method in [7], [8] constructs for a ponnomZiaI
An interesting perspective on the difference in the range ’
of regularity of the current form and the previous form of ™ i
the procedure is provided by their respective relations to the Dn(z) = Z diz" € Clz],
Schur—Cohn matrix. The Schur—Cohn matrix (also known as =0
the Schur—Cohn—Fujiwara matrix and the unit-circle Bezoutian) 0#Dn(l) €R dn # 0 @)

is a Hermitian matrix that can be formed for a polynomial sequence of symmetric polynomidlg, (z) = 3% | e 2,
(with number of rows and columns equal to its degree) sugh_,, * 1 (the “stability table”) and then uses certain rules
that its inertia is related to the distribution of the polynomigl, extract from this sequence the distribution of the zeros of
zeros with respect to the unit circle, e.g., [18]. The relatiory_gn(z) with respect to the unit circle. The basic form of the
of the original zero location method to the principal minors afigrithm for the construction of this sequence is as follow.

the Schur—Cohn matrix were studied in the context of posi-The Normal Algorithm (The Form in [7], [8]): Construct for
tive-definite Schur—Cohn matrix and stable polynomials in [1%n(2) in (1)

and in [16] for the modified form. Detailed relations between

Iso be expressed @y, (z) = 2" D,,(z71). It follows that the
eros of a reciprocal polynomial are the reciprocal, with respect

the new form and the rank profile of the Schur—Cohn matrix Tn(z) = Dy(z) + D5 (2)
are beyond the scope of this paper. However, it can be shown D(2) = D2 (2)
that, unlike the first setting that could encounter singularities T 1(2) =22 ni?s
for polynomials whose Schur—Cohn matrix is not singular, the (z=1)
new form remains regular for all polynomials for which therhen, fork = n —1, ..., 0, do:
Schur—Cohn matrix is nonsingular (cf. Remark 8 later on). This

perspective gives further meaning to the adjectivaessential Sep1 = T341(0)

that has been attached now to the (former “second type”) 1;(0)

singularities that become obsolete with the current form of the 2T 1(2) = (6rg1 + 0k112) Tul2) — Topr (2). (2)
procedure.
The proof of the main theorem will use Cauchy indices along The recursion (2) has been called thermal recursion A
the unit circle. This method of proof is different from the proopolynomial D,,(z) will be called normal if its formal degree
in [7], [8]. The proof there applied the argument principle to cer is equal to its exact degreé,, # 0, andabnormalother-
tain auxiliary not symmetric “behind the scene” polynomialsvise. A symmetric polynomial}(z) is normal or abnormal
The current proof relates more directly to the three-term recutepending on whethéf;, (0) # 0 or 73 (0) = 0, respectively.
sion of symmetric polynomials. Itis modeled after the proof prdf the normal recursion does not encounter an abnormal poly-
vided in [20] for the Routh test, except that it removes some unemial it produces a sequené&,,(z), ..., To(z)} of normal
necessary restrictions there on the Cauchy index and the Stsyrmmetric polynomials from which the distribution of zeros of
sequence used to evaluate it. The current alternative proof isIp; (=) can easily be obtained (using rules that can also be de-
teresting in its own right and it strengthens the intimate relatiodsiced from theorems later on in this paper). The normal re-
between this discrete-time systems stability test and the Roatlrsion (2) is disrupted when it produces an abnormal polyno-
criterion, its continuous-time systems counterpart, noticed bmeial. Such cases were called singularities and they were classi-
fore also in [21] and [22]. fied into two types. An identically zero polynomial was called
The paper is constructed as follows. Section Il presents tfist-type singularity and an abnormal polynomial that is not
new form of the recursion and the rule to obtain the zero diglentically zero—a second-type singularity. The treatment of
tribution in the nonsingular case and brings a numerical illuthe two type of singularities differed but both cases involved the
tration. Section Ill completes the method into a general zero leplacement of the offending polynomial and its predecessor by
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a certain other pair of normal polynomials such that the intefand only when) &}._;(z) = 0 occurs after &}(=) such that

rupted recursion can be resumed and such that the countingdpf0) # 0. In such a case the zero location procedure will be

zeros goes on seamlessly. At the end, the polynorffig{s) said to besingularfor D, (z). Thus, the new procedure is sin-

submitted to the zero location rules, in order to determine tigelar if, and only if, a normal polynomial is followed by an iden-

distribution of zeros, were always normal polynomials for atically zero polynomialsyiz.,

k=n—1, ..., 0—either naturally or because abnormal poly- .

nomials were replaced. T,(z)with ; =0 & T 1(2)=0;0<s—1<n. (5)
Currently, a more general form for the three-term recursion Remark 1: A T,

will be used. It can accommodate also abnormal symmetfigg i, he treated as such (using means to be described in the next
polynorr_na_ls. To account for this pOSS|b|_I|t_y, a new pararrEection) before the zero location rules may be applied. A helpful
eter A, is introduced to measure the deficiency between ﬂWay not to miss the fact that termination of the procedure with
exact and formal degree of (=) # 0. In other words aTy(z) = 0is not legitimate is to insist on regarding the termi-
counts the number of zeros of R(z) # 0 atz = 0 (and nation of the construction when the sequence reaches the term

atz = o). The possiblg range ok, for a not identically T_1(z) (=0 by structure) rather than ending it when reaching
zero symmetric polynomial, i8 < A\, < (k + 1)/2, where f

(z) = 0 always presents a singular case and

h limit is implied by th ‘i | . To(=). The assertion here is consistent with (5) because, for rea-
the upper limit is implied by the symmetry of the polynomiag, explained in Remark 5 belowJg z) = 0 can occur only
(tx,s = tpx—i ¢ = 0,..., k). The A, for polynomials

after a normall(z). [Clearly, 7} (z) must be either normal or
T3(2) = 0 need not be defined (it will never be required) 1(2)-1 V1)

.~ ‘identically zero.]
Clearly, \, may also be used to say that a ponnorﬁTa{z) IS Remark 2: Inthe original setting thé&, parameters were nec-
normal (\x = 0) or abnormal &; > 0). A related difference

X essarilyé;, # 0 for all £ < n. Now, the regular recursion rede-
between the previous and the current form of the procedure V‘ﬁﬁes thes,, parameters differently. Consequently= 0 is now
be that now abnormal polynomials (and even identically Zeymissible. In factsy, = 0 if, and c;nly if A > 0

polynomial_s!) will be _Iegitimate members i_n the final sequence The following conditions
of polynomials submitted to the zero location rules.
The new procedure is initiated as before but it replaces the Ax =0, k=n,...,0 (6)
normal recursion (2) by a more general regular recursion shown
in the next algorithm that becomes the basic form for the rBave been calledormal conditionsin [7] and [8] [expressed
vised procedure. The next algorithm can be applied to a rdggre byZx(0) # 0, k==, ..., 0]. In the current context,
or complex polynomial that obeys the assumptions in (1). TH®rmal conditions present the special case in which the exact de-
assumption is usually not restrictive because a polynomial cage of everyl;(z) is equal to its formal degree. When normal
be adjusted easily to meet it. We shall return to this assumptig@nditions hold, the regular recursion (4) simplifies to the orig-
later (in Remark 3 below) and discuss its implications and wa{fl normal recursion form (2). Normal conditions (6) are suffi-
to relax it. cient conditions for the normal algorithm to produce the entire
The Regular Algorithm (The New FormConstruct for the Sequencetiliy(z) # 0 (butare not necessary conditions simply
polynomial D, (z) in (1) a sequence of symmetric po|ynomia|§)ecause\n > 0 does not obstruct the normal algorithm).

{T(2), k = n, ..., 0} as follows: Theorem 1 (The Regular CasefonsiderD,,(z) (1) and as-
] sume that the procedure is regular. Thén,(z) hasa,, =
T,.(2) = Dy(2) + D, (2) (3a) n — v, IUC zeros, andy,, = v,, OUC zeros, where
Th_1 (z) = Dn((Z) — ‘]-D;L(Z) ) (3b) Vn = Var{anv On—1; -+ 00} (7)

oy = T3(1), andVar{-} denotes the number of sign variations
in the sequence.
tht1,0 if Ti(2) £ 0 . This theorem is proved in the Appe.ndix. The current' proof
thoa ke is different from the proof presented in [7], [8] where incre-
Spt1 = 0 ments in the distribution of zeros of successive polynomials in
’ _ ) an auxiliary sequence of not symmetric polynomiddg(z) =
not required if tx11,0 # 0&T(2) =0 Tu(2)+(z—1)Tp_1(z) k = n, ..., Owere used to prove a sim-
— (S1ar =M LB Y T T (). ilar sign variation rule. It is modeled after the proof provided in
T-a(2) (6k+17 ok ) B(2)=Tival2). (4) [20] for the Routh test (another evidence to the Routh-like form
The recursion (4) will be called thegular recursionltis not  of this procedure) but it employs a more liberal definition of
difficult to show that all the polynomials that the regular algothe Sturm sequence to evaluate more directly the Cauchy index
rithm produces are symmetri¢;. () = 77 (z). This symmetry along the unit-circle.
can again be exploited to calculate only half of the coefficients It is apparent that the regular algorithm is not obstructed by
of each polynomial. abnormal polynomials. Abnormal polynomials were previously
The zero location procedure for,,(z) will be calledreg- responsible for “second-type” singularities. The only singularity
ular (as well amnonsingula}, if the regular algorithm can createthat is possible now occurs in circumstances described in (5) and
the entire sequence till and includifig(z) # 0 without in- it will be the subject of the next section. Since “second-type”
terruption. Interruption of the regular recursion occurs whesingularities have now been eliminated, it might be expected that

Fork=n-1,...,0

if tk+170 =0



308 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 3, MARCH 2002

the remaining singularity coincides with the previously calle(and how it can be relaxed). The requireméht(1) € R ad-
“first-type” singularity. The reply to this expectation is dividednits the division in (3b), i.e., is necessary t6;_1(2) to be
between appearance and characterization as follows. Formealyolynomial. It can then be shown that the valuezat 1
first-type singularity was shown to imply and be implied byf 7, _1(z) is T,,—1(1) = 2Re{D, (1)} — nD,(1) [where
D, (=) having UC or reciprocal pair of zeros. Singularities irD/,(z) = dD,,(z)/dz]. It follows that all following 73,(1) pro-
the new procedure will be shown to relate similarly to this speluced by the regular recursion are real as well [cf. (8)] so that
cial pattern of zeros. (A hint is already provided by Theoremthe sign variation rule makes sense. The additional requirement,
that infers that a polynomial that obeys regular conditions hd, (1) # 0, is posed in order to havg,(1) = 2D,,(1) # 0
no UC zeros.) On the other hand, formerlyTa 1(z) = 0 because else&,(1) = 0 that is followed by &7}, (1) = 0
always presented a first-type singularity. In difference, nowimplies that all subsequeffi,(1) produced by the regular recur-
Tw—1(z) = 0, by itself, does not present a singularity. Cursion vanish. This would pose an obstacle on the sign variation
rently, aZ,_1(») = 0 that follows an abnormal polynomial rule [cf. (7)]. If however, (for some more remote applications
(A > 0) does not interrupt the recursion. It impliés = 0 than a stand alone zero location problem), the assumption (1) is
and consequentl¥} _»(z) = —z~1T%(z) is obtained regard- restrictive or not desirable, several fixes are possible. Assuming
less ofT},—1(z). This means that one or several (not adjacentgularity, it is possible to replace in the zero location rule the
identically zero polynomials may legitimately appear in the findl},(1) by parameterg;, explained next to (8). This way, it is
sequence of the currently revised procedure. The exact chagaassible to drop the requiremebt,(1) # 0 and require only
terization of singularities is brought in the forthcoming Theorenthat D,,(1) is real. Furthermore, it can be shown that the revised
2 and Example 2 will illustrate the new situation. zero location method is applicable also for a modified form of
The parameters;, for Theorem 1 can be obtained also irthe zero location procedure [17] that differs in its initiation and,
a different manner. Setting = 1 in the regular recursion (4) consequently, admits complex values 1y (1) posing instead

proves the recurrence relation the requiremenRe{D, (1)} # 0. The latter requirement can
further be relaxed to also juSts D, (1) # 0, see [23, Remark
2].
Or_2 = 2Re{bi}ok_1 — oy (8) Remark 4:Note that a), > 0 implies T 2(z) =

—271Ty(2), i.e., a cost-free next polynomial (just shift and
This recursion may be used to obtain adequate parameterssigh change). Thus, not only that the new form of the procedure
Theorem 1 in several ways: i) Running (8) in descending orde@nveniently circumvents previous singularities (that required
(possibly in parallel with the regular recursion steps) startirifegular intervention with a cost that exceeds the cost of a
with o,, = T;,(1) ando,,_; = T,_1(1). i) Running it in as- normal step) vizAx > 0 rewards the count of operations By
cending order, after the table has been completed (so thatfege recursion steps.
the 6, are available), starting with_; := 0 andoy = Tp(z). Remark 5: Some of they;, = 7.(1) may be zero. However,
iii) Running the recursion in ascending order as in ii) but initin0 two consecutive,.s can be zero because common zeros of
ating it with _, := 0 andé, := 1. The latter case amounts toddjacentl;,(z) and7;_1(z) at= = 1 would imply a zero of
forming a normalized sequendéy } ..o, Wheresy, := oy /oo Dn(2) atz = 1 (using an inherent property of the recursion,
that clearly has the same number of sign variations. One &€ also the proof for the forthcoming Theorem 2), in contra-
of this approach is to obtain the parameters for the zero lod¢#ction to the assumption (1). A vanishirmg. will never pose
tion rules in just, arithmetic operations [less computation thagmbiguity on the sign variation for the following reasons. The
summing the coefficients of eadf ()] but it has other poten- sequence starts with,, = 2D, (1) # 0 by assumption. If at
tial applications as well (one is hinted in Remark 3. some intermediate step > 0, ac, = 0 occurs, then (8) im-

It follows that any of the two sets of parametég };.,, and plies thatoy1 = —oy—1. Thus the segmerioiy1, 0, o1}
{o%}o:n contains all the information on the zero distribution fofontributes a definite sign variation. Finally, the last element
the regular case. Similar relations between dheand thes, ~ €an never be zero, cf. Remark 1.
and the recursion (8) were available also previously but formerlyExample 1: Consider the third example in [7] that was
they were limited to polynomials that obey normal conditionsbrought there to illustrate a second-type singularity

Remark 3: In this remark we shall dwell in some depth on the
assumption in (1). An arbitrary polynomi&l(z) can be made Dy(z)=1[2,7,8, 5, 6]z
to meet it by a sequence of preliminary adjustments as follows. .

If P(1) = 0 [enough to declar@(z) as not stable] then zeroswhere here and oa = [1, z, 2%, ...]" (of proper length deter-
atz = 1 have to be removed till a polynomial of lower degreghined by context). Following (3), the algorithm is initiated with
say P, (=) of degreen, such that’,,(1) # 0 is reached. (In such

a case zeros at = 1 should be remembered for the final re- Tu(z) =8, 12, 16, 12, 8]z

port on the distribution of zeros). I, (1) € R (which holds T3(z) =[4, 2, 2, 4]z.

of course for allP,,(z) € R[z]) thenD,,(z) = P,(z) may be

chosen. Else wheR,,(z) € C[z] and P, (1) € R, D,(z) can Here, A3 = 0 so the first recursion step is normal,

be chosen by scaling, (=) to acquire it with the property (1) 64 = ¢40/t30 = 2, and
e.g.,.D,(z) = P,(1)P,(2) or D,,(z) = P,(z)/P,(1). Next,
a few words on what purpose this assumption is set to serve Ty(z) = 271 [64(1 + 2)T3(2) — Tu(2)] = [0, -8, 0]z
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Next, \» = 1 so this is an abnormal stefl; = ¢30/t21 = —0.5 Proof: Part (a) follows as the special case= 0 in The-
and orem 1, where the expression (9) is chosen to stiessite
signs, i.e., that alb;, # 0 are necessary condition for stability.
Ti(2) = 271 [63 (271 + 22) To(z) — T3(2)] = [-2, —2]z.  Itwas shown in Remark 5 thats, = 0 implies a full sign vari-
ation hence OUC zeros. For part (b): If al} have same sign
NextA; = 0 presents a normal stefl = ¢29/t10 = 0 and thenRe{6,} > 0, Vk is seen from (8). Condition i) implies
condition ii) because a;, > 0 impliesé;, = 0. [ ]
To(z) = 2~ Hoa(1 + 2)T1(2) — Ta(2)} = 8. Note that, since normal conditions form necessary condi-

tions for stability, the appearance of an abnormal polynomial

SinceTo(z) is normal ¢<0), all the information required for the js enough to declare the tested polynomial as not stable and
zero location rule (7) has already reached. However, it is notgg stability test need not be continued. Since for normal
that the algorithm is defined as terminating after one more stggngitions the regular recursion coincides with the original
(and Remark 1 explains why it is better not to overlook thigormal recursion, the revised procedure offers no added value
matter). The next step produceés = #10/to0 = —0.25 and  for ysing the method only as a stability criterion.
the termI_,(z) = 0. Substituting values into (7) gives Remarks 6:1t is possible to express the necessary and
sufficient conditions for stability by, > 0, ¥V & by requiring
D,(1) > 1 [instead of the form assumed in (1)] because
) on = 2D,,(1). In the complex case, this nicety will typically be

Therefore according to Theorem (=) has no UC zeros granted after arranging, (=) € C[z| to meet the requirement
(the procedure is not singulag,= 4 — 14 = 2 IUC zeros and (1) by Dy (2) = Po(1)*Pa(2) OF Dy (2) = Pa(2)/Po(L).

7 = va = 2 OUC zeros. _ _ When testing a complex polynomial, it is possible to replace
The e_zxample can also b_e ”Se‘?' to realize the altern_at|ve WaYg regular recursion by a pair of interlacing recursion of real
to obtaing;, parameters via (8) in parallel to the main recurgy y,etric and anti-symmetric polynomials, extending the ap-
sion or by recoverindsy }o = {7, 1.5, =1, 0.5, 1} from ;10404 shown in [8] to the regular recursions. Let the symmetric
{6k_}4:1 =2, —0.5, 0, .—0.25}. As |IIustrat|9n for Remark 3, Ti(z) € Clz] be written asT(z) = Su(z) + jAr(z), where
notice thaté, = 0 implies thatZy(z) = —z~11%(2) that be- Su(2), Au(z) € R[2], 5:(2) = Si(z) and A (z) = —Aw(2).
comes available for no arithmetic cost. Finally, it is also po hen: the regular réculFsion (4) can be cafrried out by the fol-

sible to arrange the algorithm in a tabular form as done in [7 wing coupled three-term recursion of real polynomials
The rows of the table are the coefficients of the symmetric poly-

nomials and its entries can be obtain by an adequate translatigp_, () = R (Z—Ak + ZM+1) Si(2)
of the effect of the algorithm on them. The table for this example _s (7,Ak B 7Ak+1) An(2) = Sipa(2) (10a)
; E+1\# ¢ \Z A 1\Z

vy = Var{56, 12, —8, —4, 8} = 2.

is
_ LT — Ak Ar+1
8§ 12 16 12 8 M=0 A1 (2) =0 (2 N ) ?’“(z)
4 2 2 4 A3=06,=2 + Shpr (7N = 2 ) Si(2) — Arga(2) (10D)
0 _9 -8 _9 0 12 B (1)’ g?’ B 80'0 wheres;, = &% + j6%. The initiation,Sy () and A, (=) for k =
I . n,n—1, are obtained from (3a), (3b). Notice thats for the
8 )\0 = 0, (51 = —0.25.

zero location rules are given by, = Si(1). They may also be

Some annotation on the relevant parameters has been adRf@ined from the set dfi's using (8).
at a right hand side column. The symmetry of the coefficient
vectors (the rows of the table) can be used to drop the right hand lIl. THE GENERAL CASE

side (say) of the table. The second example in this paper will bey order to determine the zero location of an arbitrary polyno-
presented only in this brief tabular form. mial, it remains to deal with singular cases. Singularity occurs
A stability criterion according to this method corresponds tghen an identically zero polynomial follows a normal poly-
the special case = 0 in Theorem 1. As a matter of fact andnomial as stated in (5). It is associated with the existence of
as will become apparent immediately, the new procedure offefsyos., of D,,(z) such that their reciprocal with respect to the
nothing new to this case compared to the former form. Nevg{ni_circle z -1 isalsoazeroab,(z). In this category distinc-
theless, this special case is important enough to be characteriggg will be made between zeros on the unit-circle (“UC zeros”)

separately as the next corollary. and zeros not on the unit-circle that appear in reciprocal pairs
Corollary 1 (Stability): (a) D,,(z) (1) hasn IUC zeros (is (‘RP zeros”),(z., 274, |2| # 1.
stable) if, and only if, alb, = 73,(1) (are non zero and) have ' Theorem 2:(a) If the regular recursion is interrupted by
the same sign. This condition may be equally presented by ef: ; (z) = 0 that follows a normall,(z) (i.e., A; = 0) then,
ok T,(z) contains all the UC and RP zeros Bf,(z). Conversely,
bl k=n-1,...,0. (9) if the total number of UC and RP zeros b¥,(z) is s, then the
’ regular recursion is interrupted byZa_(z) = 0 that follows
(b) The following are necessary conditions for stability: i normalZ’(z).
Re{bx} > 0, k=n, ..., 1.ii) The normal conditions, defined  (b) If the regular recursion producesZa_;(z) = 0 that

in (6). follows an abnormall.(z) (i.e., A\x > 0), then the situation
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described in part (a) will occur fdF, () of degrees = k — 2 i) Resume the regular recursion with the two polynomials
given by 7, (z) = (=D T (2)/2™*.

The proof of this theorem is brought in the Appendix. It uses T, 1(z) =D, 1(2) + D;l(z) (12a)
the fact that the regular recursion acts as a greatest common
divisor (g.c.d.) algorithm fofZ;,(z) andT,_1(z) hence it also T, o(z) = [Ds_l(z) - D;_l(z)} / (z=1). (12b)

determines the g.c.d. d?,,(») and D; (»).

Remark 7: Part (a) of Theorem 2 can be rephrased as sayingrhe ahove method for overcoming a singularity is similar to
that singularity occurs [and if so then right aftgy(z)] if, and  {he treatment of first-type singularity in the former form of the
only if, D,,(z) and D7,(z) have a g.c.d. of degreegiven (Up procedure. The choick; was proposed in [8] and it reduces to
to a constant value) b¥.(z). Note that the theore_m COVErS COlhe convenient valug& = —1 for the real case [7]. More sub-
rectly also the regular case. The regular case is representediifhtiation for this method of overcoming singularities appears
Theorem 2 by the valug = 0. For s = 0 the highest degree i, ine Appendix.

g.c.d. of Dy (z) and D7 (z) is the real and constafib(z) # 0. Remark 9: A singular situation (5) will occur more than once
Taking the recursion one step beyone: 0 produces the term i ang only if) D, (=) has UC or RP zeros of multiplicity higher
T_1(z) =0 (cf. Remark 1) which is still in agreement with {51 one. Any timé},_1(z) = 0, occurs after a normdl, (z) it
the description in Theorem 2. Next part (b) of the theorem e (o he treated again by (10) and (11). Singular steps will occur
lightens further the complementary case of an identical z&fp, nympber of times equal to the highest multiplicity of UC or
polynomials that follows an abnormal polynomial. It does ngkp zeros op),, () (because differentiation lowers multiplicities
presentanimmediate singularity (the regular recursion bypasgggh, time by one).
itwithoutinterruption) butitimplies asingularity at= k~2\.  The complete rules to obtain the distribution of zeros by the
if (and only if) s > 0. Itis even more acutely stated that SuCllyrent unit-circle zero location method are presented in the next
a situation impliesalways(whether or not later the proceduréneorem.
turns to be singular) that the degree= & — 2\ POlyno-  Theorem 3 (General Case)assume the proposed algorithm
mial Ty (z)/="* presents the common finite zeroslf (=) and s applied toD,.(#) (1) and that, possibly after encountering
D7, (2) (if any). Bearing in mind thak — 2\, > 0, cases where gingylar steps treated each time by the procedure stated above,
an identically zero polynomial occurs without implying a suby finally produces a sequendd(z), k = n, ..., 0}. Lets
sequent singularity are described/oy= 2. In explicitwords,  genote the degree after which a singularity occurred for the first

ali_1(») = 0 does not predict a later singularity if, and only if ;e (with s = 0 presenting a nonsingular procedure). Let
it has odd degree and it is preceded by an abnormal polynomial

Tx(z) that has only a single nonzero coefficient (at the center of
its coefficient vector, necessarily).

Remark 8: Our introductory comment that characterized thand
advantage of the current procedure as remaining nonsingular for vy, =Var{o,, 0,1, ..., 01, 0o} (14)
all polynomials that have a nonsingular Schur—Cohn matrix be-
comes now apparent. It follows from the links that Theorem Phen, the number of IUC zeros @,,(z) is o, = n — vy, its
describes between singularity in the current form of zero locaumber of UC zeros ig,, = 2v, — s and its number of OUC
tion procedure to g.c.d ab,,(z) and D% (z) of degrees > 0 zerosisy, = n—a,—/f, (andthere are—w, pairs of reciprocal
that are also well known as necessary and sufficient conditioresros).

v, =Var{o,, 6,1, ..., 01, 0o} (13)

for the Schur—Cohn Bezoutian to be singular (e.g., [18]). Example 2:To illustrate a singular case
Overcoming SingularitiesWhenever & (z) with A, = 0 and other identically zero polynomial consider
is followed by aZ;_1(z) = 0 for as > 0 proceed as follows: Dq(z) = [-2,7, =3, —16, 16, 10, —1, —3, —8, 4]z. For

brevity this time we shall present the procedure only by
the resulting table (with commentary on the participating
parameters at an extra column at the right end, similar to the
tabular presentation of Example 1), as shown at the bottom of
the next pageZs(z) andZ,(z) are identically zero but they

do not present a singularity because they are preceded by
abnormal polynomials. As illustration for Remark 4, notice
where K is any scaling number that fulfills the require-that b = 0 = Tis(2) = —2"Ti(e) for k = 7,6,5.

ment thatD,_, (1) is real and has a sign opposite to th(-arhe procedure becomes singularsat=" 3 when the normal

. . polynomial 73(z) is proceeded by an identically zero
Sign of Z;(1). Some adequate choices frare polynomial. The procedure is resumed with(z) and 73 (z)

i) Differentiate 7;(z) and denote the derivative by
P,_1(z) := T!(2). Form

D.i(2) = KPP\ (2) (11a)

created from75(z) using (11) (with X' = —1) and (12).
Re{P,_1(1)} The distribution of zeros can finally be determined using
Ky =— 2 - 1 Theorem 3. Here&r = 9, s = 3, setting values into (13) and
»—1(1) (14) reveals that
K=-—=D g mmp). Q1)

Po_i(1) v, = Var{8, —12, —16, 0, 16, 0, —16, 48, 144, —144} = 5
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and that,, = 2. Accordingly, there arer,, = n—v,, =9—-5= The new form of the procedure may be valuable for various
4 IUC zeros; the number of UC zeros i, = 2v;, — s = application on which the original procedure already had an im-
2-2—3 = 1 and the number of OUC zerosis = n—a,,— 3, = pact. Other applications may also benefit from the wider range

9—4—1 = 4. (Inadditions — v, = 1 means one OUC and IUC of regularity of the new three-term recursion. For example, the
zeros that form a reciprocal pair.) As illustration for Theorermwriting of this paper at this time stems from realizing the impor-
2, it can be checked that the zerosiaf») = 16(» + 1)(z — tance of a uniform and recursive unit-circle zero location algo-
1/2)(z—2) are zeros oDy (). Namely, the above counted 1 UCrithm for multidimensional stability tests in schemes like [23].
zero of Dy(z) is atz = —1 and the 1 reciprocal pair of zeros arerinally, but not least importantly, the new shape of the proce-
atz = 1/2, 2. Furthermore, part b) of Theorem 2 is illustratedlure makes it a more pleasant general method to determine the
by noting thats = k£ — 2X;, for £ = 7, 5. In other words, the distribution of the zeros of any real or complex coefficient poly-
two early identical zero polynomials predict the forthcomingomial with respect to the unit-circle.

singularity. It is also apparent they reveal the g.c.d. zeros that

cause the singularity. Namely, the finite nonzero zerdg:¢f) APPENDIX

and7;(z) are equal to the zeros @h(2). Part 1—Proof for Theorem 1Write the unit-circle as

V. CONCLUDING REMARKS T = {Z

2= ¢ o, 7r]} .

The paper has presented a revised form for the method to de-
termine the distribution of zeros of a polynomial with respect tgefine for a polynomialP,,(z) € C[z] of degreen a “bal-
the unit circle in [7], [8]. The method now uses a three-ter@nced polynomial” byP, (z) := 2="/2P,(z). P,(z) is real for
recursion of symmetric polynomials of a more general form € 7, if (and only if) P,(z) is symmetric, [8, Theorem 3].
that assimilates situations that previously were regarded as $x@nsider from here and on the sequence of symmetric polyno-
gularities and disrupted the procedure for polynomials whosdals{Z5.(#), - .., To(z)} produced completely by the regular
Schur—Cohn matrix is not singular. The new form of the procélgorithm. Therefore eachy, (z) is real forz € 7'. Multiplying
dure does not compromise neither the simplicity of the rules @€ two sides of the regular recursion (4)4y*/? gives the next
extract the information on the distribution of the zeros, nor tHecursion for the corresponding balanced polynomials,
efficiency of original form. As a matter of fact, each instance a
previous singularity is circumvented by the regular recursiofty,1(z) = (5k+12_)"“_1/2 +5k+12)"“+1/2> T (2)—Tr_1(2).
implies now one or several cost-free recursion steps. Conse- (A1)
quently, the cost of the revised procedure is less or equal to the

costof the original procedure (already recognized as the methogsiger the function that results when a balanced symmetric

of Ieasjt arithmetic operations for the 'Fask). o polynomials takes values @n Tk(</>) — Tk(cj%) and callita
Th_e importance of a complete _solut|0n for the unit-circle Ze1Pigonometric polynomial [it can be expressed as a polynomial
location problem motivated considerable effort to overcome Sify . 4) andsin(@)]. Thus (¢ is real valued for € [0, ]

gularities that occur also in the SCMJ class of methods (Sgfe recursion for the trigonometric polynomials is obtained by
[9]-[12] and references there in). The many publications dealiQgp «titution ofr = /2¢ into (A1)

with singularities in these longer known solutions, may symp-
tomize a genuine difficulty to reach a satisfactory general Sg- — [267 . cos(2\ i :

L d . . ; ; = . s+ D+ 267, sin(2A5 + 1
lution in this classical (“scattering”) framework. By this token, k+1(¢) [ ket COS(2 )¢ . kot ~( * )(/)]
the elegant way the current procedure overcomes singularities T(P) — Th—1(¢p) (A.2)
conveys the impression that the newer formulation (the “immit- ‘
tance” approach) is an inherently more suitable environmentidered},, 6; denote the real and imaginary partsopf= 6}, +

deal with singularities in this problem. JoL.
2 -1 —6 —-17 —26 —26 —17 —6 -1 2 X=0
6 -9 -9 6 0 6 -9 -9 6 Ag =0, 6g =2/6
—0 -0 —16 —24 —24 16 0 0 A7 =2, 68 =6/16
0 0 0 0 0 0 0 Aeénfa, b7 =0
0 —~16 24 24 —-16 0 As =18 =0
0 0 0 0 0 \nja, 85 =0
16 —24 —24 16 A3 =0,6,=0
0 0 0 s = 3 (singularity)
—24 96 —24 A2=0
72 72 A\ =0, 8y = —24/72

—144 Ao =0, 8 =—72/144
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Proposition: The sequence of trigonometric polynomialdunction. Therefore, one obtains from (A.5) that the change in
{Tk(¢), k = n,...,0}, related via (A.2) to a sequencethe argument obn(z) asz traversed’ is given by
{Tw(2), k = n, ..., 0} produced by the regular procedure has
the next properties.

B (a2 2sin(¢)Tn-1(¢)

Property 1) For everyy € (0, n), if Ti(¢) = 0 then Ag arg Dn(¢/*) = —T§ T,($) : (A.-6)
Try1(9)The—1 () < 0.
Property 2)fI5(¢) # 0 V¢ € (0, 7). After dropping the facto@sin(¢) that has a constant sign on
Property 3)I;(7) = (—1)"1¢(0), V£ =0, ..., n. (0, ), and combining the last expression with (A.3), one ob-
Proof: To prove Property 1), assurtféc(%) = 0. Then, tains,

it is apparent from (A.2) thal41(¢,) = —Ti_1(¢,). The .

possibility that they are both equal to zero is prohibited because n—2k=1I8 sz—l(‘f’)_ (A7)

it implies singularity (as explained in the proof for Theorem 2). T.(¢)

Property 2) is satisfied too because by the nonsingularity as
sumption,Zy(¢) = To(2) = oo # 0. The proof of Property 3)
is by induction. For = 0, Tp(n) = To(0) [1o(z) is a nonzero
constant]. Sincd’_1(z) = 0 it follows that73(0) = 2677, (0)

sing the first two properties of the above proposition, it be-
comes apparent that the trigonometric sequence meets all the
properties (even though they are not simple polynomials) that
were truly used in [20, p. 175] to evaluate the Cauchy index by a

and Ty(n) = —261To(m) = —261T0(0) = (_1)T(0)2 Sturm sequence over the interj@l =r]. Therefore Sturm’s the-
Therefore the property holds for alsb = 1'1, Assume it .o can be applied to calculate the values of the above Cauchy
holds fori = 0, ..., ¢ _71’~thean(7r) = _365~Té—1(ﬂ) ~ index from boundary values of this sequende,,
Teo(m) = —26/(=1)"""T;1(0) — (-1) T 2(0) =
(—1)*[265T;—1(0) — Tp—2(0)] = (—1)“T;(0). This completes T ()
the proof of Property 3). m N Var {Tn(0)7 e To(o)}

Assume thaD,,(z) hask IUC zeros. Then, by the argument T()

principle, the argument dP,,(z), arg D,,(z), changes as en- _ ~ ~
circlesT by the amouniAy arg D,,(») = 27k. Therefore, Var {T"’(W)’ U TO(W)} - (A8)

Agarg Dn(z) = Apr 2 4 Aparg Do(2) Using Property 3) of the proposition, it follows that

= —mn o+ 2nk. (A-3) Var {Tu(n), ... Dul), ., To(m) )
From (3),2D,(z) = T(z) + (» — 1)T,,_1(%) and therefore, — Var {(_1)nj'vn(0)7 e (=D)L TO(O)}
2D, (e7%) = T ($) + j2sin(¢) T 1 (). (A.4) — 1 — Var {Tn(()), o T, TO(O)} . (A9)

Since allTj,(¢) are real valued fog € [0, #], Next, substitute (A.9) into (A.8), usE (0) = Ty(e0) = Ty(1)

. and combine the result with (A.7) to obtain
arg bn,(ej2¢) = arctan <w> . (A.5)
T, (o) n—k = Var{T,(1), ..., To(1)}. (A.10)
The Cauchy index is defined in [20] for a rational real funcRecall that: denotes the number of IUC zeros bf,(z), and
tion p(z) and forz in areal intervaja, b] asZlp(x) := (number since nonsingularity implies no UC zeros (see Theorem 2), it
of jumps ofp(z) from —oo to +00) — (number of jumps of(z)  follows thatD,,(z) hasn — & OUC zeros given by the above
from oo t0 —o0). count of sign variations. This completes the proof of Theorem
This index can be calculated using a Sturm sequence of réal
polynomials from boundary values of these polynomials and it Part 2—Proof for Theorem 2First, recall that the zeros of a
was used in this manner to prove the Routh test in [20]. A seymmetric polynomiall;(z), as well as the common zeros of
quence of polynomials over the real interyall, 1] was used D,,(z)andD;,(z), are either UC zeros or RP zeros. Itis also im-
in [24] to obtain a proof for the original setting of this unit-portant to remember that zerosbf,(z) atz = 1 and atz = oo
circle zero location method. The proof there assumed the cagere prohibited by assumption (1). The proof uses the property
of real polynomials and strictly adhered to the above definitiaof the regular three-term recursion that if adjacent polynomials
of the Cauchy index and to the definition of a Sturm sequen@g(z), T+1(2) vanish at a common, thenZ},2(2,) = 0 and
of polynomials in [20]. Next, a more direct proof for the case df},_1(z,) = 0 there as well.
complex polynomials and the newer setting general is enrolledAssume the greatest common divisor (g.c.d.Y»f(z) and
using the properties prepared in the above proposition to eval: (z) has degree. Then theses zeros are also common to
uate Cauchy index directly along the unit circle as follows. T,,(z) and7,_;(z). Therefore, by the mentioned property of
A jump from —oo to +o0 and from+-oo to —oo correspond, the recursion, these are zerosiof(z) for alsom =n — 2, ...
respectively, to a7 and—= change in the value of thecctan  till T;(z). ThisT;(z) must be normal (zeros at 0 and can not
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be g.c.d. zeros) and must be followedBy (=) = 0 (because on the zero distribution oD,_;(»). However, the number of
its degree is too low to accommodate differentlgeros). IUC zeros ofD;_4(z), s — v, is equal to the number of IUC

To prove the converse, assuffig z) is normal ¢; = 0) and

zeros ofT;(z). Ts(z), being a symmetric polynomial, has then

is followed byT;_1(z) = 0. Then,

alsos — v, OUC zeros (located reciprocally to the IUC zeros)

and the remaining — 2(s — 1/,) zeros are UC zeros. These are

0= ((554_1 + SS_HZ) T, (Z) — Tq+1(z). (All)

also the UC zeros (aral the UC zeros) ofD,,(z). Therefore

B = 2vs — s. The remaining assertions in Theorem 3 follow

. at_once.
If 6541 # 0 then the above equation asserts that the zeros“(?]t]e in a

T,11(z) consist of thes zeros of7,(z) plus the zero of the
factor (6,41 + 35+1z) and therefore all higher degree polyno
mials also vanish at the zeros #f(z). Whené,,1 = 0 then
T.11(z) = 0 and the zerog;(z) still propagate to upward
polynomials, in fact the next higher degree polynomial will b
T,12(2) = —2Ts(z). Thus, either way7,,,(z) vanish at thes
zeros ofT;(z) for all m > s. Therefore, the zeros &f,(z)
are zeros of als®,(z) = (Tn(2) + (# — 1)T,,_1(2))/2 and
of D:(z) = (T,,(2) — (= — 1)T,,_1(2))/2. This completes the
proof of part (a).

To prove part (b), assung,(z) with A, > 0 is followed by
aTi—1(z) = 0. In this case,

- (1
0= (6k+1z_)"" + 6k+12)\’“+1) Tk(z) — Tk+1(z) (A].Z)
o ) [2]
implies that thek + 1 zeros of},11(z) consist of thek — 2
finite zeros ofl},(z)/2* plus2A,+1zeros of the factofsy 1+ [

5,22+ F1), The claim in part 2 follows at once by repeating the (4]
argument above on the propagation of the comie), zeros

of the two adjacent polynomialg,(z) and7}.41(z) down and
up the recursion.

Part 3—On the Scheme to Overcome Singularityte treat-
ment of singularity here is similar to the treatment of first type
singularities in [7], [8]. It uses the property th& ;(z) =
T!(~) has as many OUC zeros&S») [2]. Therefore, D _,(») 18]
has as many IUC zeros d5(z). As shown in [7],SgnT;(1) =
—SgnT;_1(1) is required to seam correctly the zero location ol
rule based on the concatenation of the two partial sequences)
{T.(1), ..., Tu(1)} and{T,_1(1), Ts—>(1), ...}. It remains
to show that the proposed options férsatisfy this requirement.
Differentiation of 7,(») = »°T,(»~*) and setting into the re-
sultz = 1 shows thaRRe{P;_1(1)} = sT,(1). It follows that
K, satisfies the sign requiremegn7,(1) = —SgnT;_1(1).
This sign requirement is obviously satisfied by alspand K5.

Part 4—Proof for Theorem 3if T,(z) is normal ¢, = 0)
and is followed by an identically zero polynomial, then ac-[14
cording to Theorem 2, it divides all the previous polynomials
Tw(2)k = s, ..., n. Therefore this common factor cancels out
: . i . . : [15]
in the ratio of trigonometric polynomials used in the proof to
Theorem 1. Consequently the proof for Theorem 1 may be re-
garded as evaluation of the Cauchy index for the trigonometri€L6l
sequence that corresponds to the reduced degree polynomials
T(2)/Ts(2), k = n, ..., s. It then shows thaD,,(2)/T.(2)  [17]
hasn — s — Var{T,(1), T,,_1(1), ..., Tx(1)} IUC zeros.
Next, Theorem 1 may be applied to test the polynomial
D,_1(z) assuming the procedure is nonsingular (else, when a
singularity recurs, the current reasoning has to be repeated ori’4l
subsequent subset, or subsets, of the sequence). Consequently,
vs = Var{T, 1(1)T,_2(1), ..., To(1)} provides information  [20]

(5]
(6]

(11]

[12]

(13]

[18]

If singularities recur they have to be resolved each
similar manner. In fact singularities must occur in

a number of times equal to the highest multiplicity of a UC
zero or RP zeros ab,,(~) (because each time by treatment by
differentiation reduces the multiplicity of zeros by one). Note
that determining the distribution triple,,, 3,, v» depends
8n|y the degree associated with thiirst occurring singularity.
However, the location of subsequent singularities can be used
to obtain more subtle information on the multiplicity of UC
and RP zeros ab,,(») by nesting and superposing conclusions
from the above analysis.
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