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Testing Stability of 2-D Discrete Systems by a Set of
Real 1-D Stability Tests

Yuval Bistritz, Fellow, IEEE

Abstract—Stability of a two-dimensional (2-D) discrete system
depends on whether a bivariate polynomial does not vanish in the
closed exterior of the unit bi-circle. The paper shows a procedure
that tests this 2-D stability condition by testing the stability of a fi-
nite collection of real univariate polynomials by a certain modified
form of the author’s one-dimensional (1-D) stability test. The new
procedure is obtained by telepolation (interpolation) of a 2-D tab-
ular test whose derivation was confined to using a real form of the
underlying 1-D stability test. Consequently, unlike previous tele-
polation-based tests, the procedure requires the testing of real in-
stead of complex univariate polynomials. The proposed test is the
least-cost procedure to test 2-D stability with real polynomial 1-D
stability tests and real arithmetic only.

Index Terms—Discrete-time systems, immittance algorithms,
multidimensional digital filters, polynomials, stability tests, two-
dimensional (2-D) systems.

I. INTRODUCTION

THIS PAPER will present a new procedure that tests
whether a bivariate polynomial

(1)

has no zeros in the closed exterior of the unit bi-circle, viz.,

(2)

where with and
. A polynomial like (1) for which the condition (2)

holds will be called stable in the sense of two-dimensional
discrete system (2-D stable). The relation of this definition to
stability of 2-D discrete systems and more background on the
topic can be found in various texts, e.g., [1]–[4].

A univariate polynomial that has all its zeros in , or
equivalently

(3)

will stable in the sense of one-dimensional discrete system
(1-D stable) stable for its well known relation to stability con-
ditions of a 1-D discrete systems.

The new procedure will test the condition (2) by testing sta-
bility of a collection of real univariate polynomials using a cer-
tain modified form of the author’s 1-D stability test [5], [6] plus
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testing for no zeros on a real polynomial (or, and prefer-
ably, a related real symmetric polynomial for no zeros on )
obtained by interpolation of values that the collection of 1-D sta-
bility tests provide. The procedure will be derived by invoking a
recently introduced approach called telepolation [7] to the tab-
ular test in [8]. The new procedure is apparently the most effi-
cient stability test for 2-D discrete systems that uses only real
arithmetic and the manipulation of only real polynomials.

Virtually all the techniques that were proposed to test the con-
dition (2) use (or rely in a less direct manner on) its equivalence
to

(4)

plus a 1-D stability condition posed on for some fixed
. This simplification was introduced by Huang [9]

(with ) and variations on it were obtained afterwards also
by several other researchers, see accounts in [1] and [3]. The
condition (4) may be tested by a 1-D stability test for complex
coefficient univariate polynomial that regards as a uni-
variate polynomial in with coefficients that are polynomials of

. This approach was used in the first 2-D stability test pro-
posed in [10] and in many subsequent tests including [11]–[14].

In the early years when 2-D stability tests started to emerge,
1-D stability conditions for complex-coefficient polynomials
were not as widely known to engineers as real polynomial tests.
Bose suggested in [15] (see also [2]) a technique that allows
development of 2-D stability testing procedures from stability
conditions posed on real univariate polynomial. Accordingly,

is multiplied by , that is its complex-con-
jugated coefficient polynomial when regraded as a univariate
polynomial in with coefficients dependent on . The
product can then be converted, using the
transformation

(5)

into another polynomial, say whose degree is
(instructions on how to do this will appear in Section II). Since
(5) maps the unit-circle to the real interval , condition
(4) is replaced by

(6)

The condition (6) can be tested by a 1-D stability test for a real
polynomial, regarding as a univariate polynomial in
with real coefficients that are polynomials in . It is
notable that this technique doubles the degree in of the poly-
nomial that has to be tested. Hence, we refer to it as the “dou-
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bling-degree” technique. The doubling-degree technique under-
lies the method in this paper. It was used in the past to develop
several 2-D stability tests including [16]–[18] and, more perti-
nent to the work here [8], [19]–[21]. The technique can be shown
to always lead to a more costly 2-D stability tests than attainable
by using instead (4) with a corresponding complex 1-D stability
test. As a consequence, it produced so far 2-D stability tests with
a futile increase in cost of computation. The reason is that, con-
trary to what might be assumed, tabular tests that were devel-
oped from a complex 1-D stability test are too carried out by
manipulation of only real arrays and with only real arithmetic
for a real . This paper reveals, for the first time, that
the use of the doubling-degree technique may acquire the pro-
duced 2-D stability test with an added value that can not be ob-
tained without using it. It will present a 2-D stability test that
is carried by testing of a set of real univariate polynomials and
uses throughout only real arithmetic.

The testing of the condition (4) or (6) by a 1-D stability test
leads to “tabular” 2-D stability tests. The term “tabular” reflects
a historical tradition to present recursive 1-D stability tests by
an array of numbers known as “stability table.” A tabular 2-D
stability test is therefore any procedure that uses a recursion of
bivariate polynomials where the “2-D table” is representable by
either the produced sequence of bivariate polynomial, or by the
sequence of matrices that are the coefficients of the bivariate
polynomials, or by a hybrid of the above two—an array of uni-
variate polynomials. The first generation of 2-D tabular tests
used to have a cost of computation that increases exponentially
with (for say , the cost figures can be shown
to contain terms as severe as ), limiting their usefulness to
only very low degree polynomials. Tests that belong to this cat-
egory include the first 2-D stability test of Maria–Fahmy [10]
and tests that were proposed for many years afterwards, e.g.,
[11], [16], [17], [19], [20]. The second generation of tabular
tests, those in [12]–[14], stepped down from the exponential
complexity of the first generation tests to moderate polynomial

complexity (again for ), where the fact that
[12] has too complexity was established for it in [22].
The second valuable property shared by the second generation
of tabular tests is that essentially (that is, aside from a couple
of preliminary simple 1-D stability tests of polynomials of de-
gree ), upon completing the “2-D table,” there remains to test
only the last polynomial of the table—a univariate (symmetric)
polynomial—for zeros on . The latter condition is at times also
called ‘positivity’ test, because the condition of no zeros on
can also be expressed as positivity on of the ‘balanced’ poly-
nomial that corresponds to the symmetric polynomial.

The procedures in [7], [22], [23] relies on “telepolation” of
the tabular tests in [12]–[14], respectively. Telepolation presents
a new approach that takes advantage of the above mentioned
special features of second generation tabular tests. A finite set
of 1-D stability tests are used to bring forth (to “telescope”)
by interpolation the last polynomial of the 2-D table. The re-
sults are 2-D stability tests that are simple (involve repetitive
use of a same form 1-D stability test) and attain a lower com-
plexity of . The reduction from to occurs
because the telepolation eliminates the computation of the 2-D
table that turns out to be responsible for the cost tag of the

second generation tabular tests. These telepolation based tests
constitute apparently the most efficient procedures (i.e. with
least counts of real arithmetic operations) available to test 2-D
stability (topped with the immittance-type tests [7], [23] that ex-
ceed by a factor of approximately 2 the scattering-type test in
[22]).

The fact that it is possible to test 2-D stability by a finite
number of 1-D stability tests is in itself a new observation that
was discovered via the telepolation approach and demonstrated
so far in [7], [22], [23] (its debut was in [24]). It is important to
distinguish the above statement from similarly sounding state-
ments that occur in some of the previous papers on 2-D stability
tests. Previously, declaration on that the 2-D stability test that is
being proposed requires the examination of a small number of
univariate polynomials used to refer to the number of univariate
polynomials in the set of necessary and sufficient conditions for
2-D stability (as stability or positivity conditions). It was ob-
viously assumed that additional means (like construction of a
2-D table) are required to produce this set of polynomials be-
fore the final set of conditions can be examined. (Incidentally,
it turns out that a higher order of complexity of these additional
means diminishes the difference between testing one or several
positivity conditions.) In contrast, the 1-D stability conditions in
telepolation-based procedures are not just necessary conditions
for 2-D stability but their testing is, to the most part, the algo-
rithm to determine 2-D stability. It is worth mentioning that pa-
pers proposing 2-D stability tests used to appear without evalua-
tion of the overall computational cost of the proposed technique
they propose, for at least two decades after the first paper [10]
on this topic. This situation hindered the development of effi-
cient 2-D stability tests because it hid the fact that the bulk part
of the computation lied not in testing the univariate polynomials
that are present in the set of necessary and sufficient conditions
for stability, but in the algorithm required to produce these uni-
variate polynomials.

The new procedure in this paper stems from the 2-D stability
tabular test in [8] via telepolation. The tabular test in [8] is too
a second generation tabular stability test. Namely, it features a
single positivity condition and complexity. It differs from
the other tabular tests to which telepolation was applied so far in
that it was confined to use the real form of the Bistritz test (BT)
[5]. The 2-D stability test in [7] and in [23] stem from 2-D tab-
ular tests that were developed from the complex 1-D BT in [25]
and in [26], respectively, while the one in [22] telepolates a 2-D
tabular test that stems from the 1-D modified Jury test (MJT)
in [27] for complex univariate polynomials. As a consequence,
the telepolation of the test in [8] leads, as will be seen, to a col-
lection of real-coefficient polynomial 1-D stability tests instead
of a collection of complex-coefficient polynomial 1-D stability
tests in [7], [22], [23]. Computational cost assessment for the
proposed test will show that it requires four times more compu-
tation than the immittance-type tests in [7] or [23] (that are the
least cost available 2-D stability tests) and two times more than
the scattering-type test in [22]. With no other known test that
competes with the efficiency of the test to be presented here, the
test in this paper is considered to be the most efficient stability
test for 2-D discrete systems that uses only real arithmetic and
the manipulation of only real polynomials.
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The tabular test in [8] has been preceded by some other works
that too used the doubling-degree technique in conjunction with
the real BT to obtain 2-D stability tests. Karan and Srivastava
in [19], [20] proposed a 2-D stability test with several posi-
tivity tests (they actually used not [5] but the form in [28] that
has some interesting properties in other contexts [29] but of-
fers a less pleasant form for developing 2-D stability tests).
Premaratne in [21] (switching to [5]) showed for the scheme
the single positivity testing condition and some other improve-
ments. However, both procedures are first generation (i.e. expo-
nential order of complexity) tabular tests, as was shown in [8].

This paper is constructed as follows. Section II summarizes
the tabular stability test in [8]. Section III first brings the com-
panion 1-D stability test for real polynomials that can be used to
sample this tabular 2-D table on . Next, an efficient algo-
rithm is derived to recover the polynomial, whose positivity over

implies 2-D stability, from a certain choice of sample
values. The derivation of the recovering algorithm reveals that
further saving in the overall cost of computation is possible by
testing instead an intermediate polynomial that it produces for
no zeros on . Section IV summarizes the new procedure, illus-
trates it by a numerical example and evaluates its cost of com-
putation. Some concluding remarks end the paper.

II. REAL IMMITTANCE-TYPE TABULAR 2-D STABILITY TEST

Following a brief introduction of notation, this section brings
a summary of the tabular 2-D stability test in [8].

A. Notation

All polynomials in the rest of the paper are assumed to have
real (matrix or vector) coefficients. The variable may take any
complex number while the variables and will usually as-
sume values on the real interval and on the unit-circle

, respectively. A polynomial like (1) is said to have degree
. It may also be written as , where

of length depending on context, and
is also used to denote its coefficient matrix. Similarly, for

a univariate polynomial , is also used to denote its coef-
ficient vector, and it may be written also as . Re-
version is defined for a column vector by where is
the reversion matrix (defined as a square matrix with 1’s on its
main anti-diagonal and zeros elsewhere), and correspondingly

. A vector and a polynomial are
called symmetric if and . Reversion of
columns (only!) for a matrix will be denoted by .
A matrix and its corresponding bivariate polynomial
are said to posses column-symmetry if . Indexes are
attached to matrices and vectors to sign their position in a se-
quence, e.g., , . Reference
to columns of an indexed matrix carries its identifying index in
brackets,, e.g., . Indexes are also used
to denote order of 1-D polynomials in a sequence,

, (in this case they are re-
lated to their degrees as indicated). Finally, the “balanced poly-
nomial” is defined for a polynomial by

and it may also be written as , where
.

B. 2-D Tabular Stability Test

The tabular 2-D stability test in [8] begins with the conversion
of into (4)–(6). First one forms

(7)

Denote the columns of and by

The conversion (7) involves the following convolutions:

(8)

is a polynomial of degree that may also be
regarded as a 1-D polynomial in with coefficients that
are symmetric polynomials for all . Next, is
converted into such that

(9)

As shown in [8], this can be done by pre-multiplying the last
rows of , denoted by , as follows:

(10)

where is an th sized diagonal matrix
and is an th sized square

“Chebyshev matrix” defined as an upper triangular matrix

(11)

whose columns consist of the coefficient vectors of the (first
kind) Chebyshev polynomials , ,
augmented to length by , a vector of zeros of length

. The ’s obey the recursion

(12)

that can be run for with the initiation
and to obtain them.

Next, the construction of the 2-D stability table follows the
next algorithm.

Algorithm 1 : (The 2-D Real Table) Given ,
convert it to using (7)–(12) and then assign to it a
sequence

(13)
of column-symmetric 2-D polynomials (i.e.

), as follows.

Initiation.

(14a)

(14b)
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Body. For

(15)

where , and

(16)

The degrees of the polynomials are for
and for . Finally, the

stability conditions in the following theorem are shown in [8]
for the above table.

Theorem 1 (Stability Conditions for Algorithm 1.): Assume
Algorithm 1 produces for the sequence .
The following conditions (i), (ii) and (iii) are necessary and suf-
ficient for to be stable.

(17)

(18)

(19)

where is the last polynomial in the sequence that
Algorithm 1 produces, a polynomial of degree ,

.
The condition (19) may be tested by Sturm’s method as was

suggested in [30]. It can be stated also as a positivity condition.
Namely, condition (iii) in the theorem may be replaced by

(20)

because, if has no zeros in and the other conditions
in the theorem hold, then, cannot be negative on this in-
terval [8]. The condition (19) is stronger than (20) because it
disregards the sign (this becomes in particular handy when the
testing (19) goes through singularities).

The cost evaluation carried out in [8] shows that this 2-D sta-
bility test requires real multiplications,
where denotes a bivariate polynomial in and with
power terms such that (dropped for brevity).
This cost is about two times the cost of the immittance-type tab-
ular tests in [13], [14] (that too propagates matrices with sym-
metry), an increase that is caused by the doubling of the se-
quence length that the conversion (7)) introduces. The cost is
comparable to the cost of the scattering-type tabular test in [12]
as calculated in [22]. The reason for equality in this latter case is
that the symmetry of the matrices makes up for the doubling
in length of the sequence when the comparison is held with the
table in [12] that produces matrices with no symmetry.

III. TELEPOLATION OF THE 2-D TABULAR TEST

From the point of view of the stability conditions in Theorem
1, the only role that Algorithm 1 serves is to obtain at
its end. Now, the conversion of to requires

operations. The testing of conditions (i) and (ii) require
operations. The testing of (iii) has too of com-

plexity. Thus, Algorithm 1 is solely responsible for the
overall complexity shown for the test in [8].

Being a polynomial of degree , can be de-
termined by a set of values for any set of

different points . Such sample values can be produced by an
algorithm that presents the behavior of Algorithm 1 at a fixed
real that would have complexity per sample. Thus, the
complete set of sample values can be acquired in op-
erations. The recovery of from sample values presents a
standard interpolation problem for a polynomial of degree
known to have solutions [31]. These considerations in-
dicate that an complexity solution can be worked out.
This section provides the two key components to implement the
anticipated scheme in a very neat and efficient manner. First, it
brings a 1-D stability test that can sample in the interval

. Then, a simple closed form interpolation formula that
recovers the polynomial from a specific choice of sampling
points is derived.

A. Companion 1-D Stability Test

The following Algorithm 2 and Theorem 2 form a companion
1-D stability test usable the telepolation of the real 2-D tabular
test in the previous section. Algorithm 2 and Theorem 2 are
derived and proved in [32] (where they appear as Algorithm
3 and Theorem 7), a paper that presents further properties and
applications for this 1-D stability test.

Algorithm 2: (A Companion 1-D Algorithm) Consider a
real polynomial of degree

(21)

Assign to it a sequence of symmetric polynomials
, of degree , and ,

, as follows:

(22)

Let , and for do

(23)

Theorem 2 (Companion Stability Conditions.): The real
polynomial (21) is stable if, and only if,

and the sequence that Algorithm 2 produces for it satisfies

(24)

A stable implies that the next further conditions also hold

(25)

The fact that conditions (25) are necessary for 1-D stability
means that for a stable polynomial, all the symmetric polyno-
mial are normal, i.e., with no vanishing leading coeffi-
cient, . The normal conditions (25) provide
a broad enough setting for the Algorithm 1 to be well defined
for stability testing. Because, when an occurs the al-
gorithm can terminated at once (three steps before this division
by this zero would arise) and the tested polynomial declared as
not stable.

Our intention is to use this test for polynomials
with a fixed in the context of the con-

ditions stated by Theorem 1 but instead of obtaining by
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Algorithm 1 to obtain it by interpolation. Let corre-
spond to by the mapping (5). Then, using (9), (7),

. Therefore, if is 2-D stable then
is 1-D stable and hence is 1-D stable. In other

words, 1-D stability of is a necessary condition for 2-D
stability of . Note that for one has

. We intend to carry
a collection of stability tests only after is deter-
mined to be 1-D stable (i.e. after checking condition 1 in The-
orem 1). Therefore, and the requirement for

in (21) will hold and need not be examined. Next,
comparison of the two algorithms reveals that Algorithm 2 acts
on in a manner that presents the projection
of Algorithm 1 on at any fixed real . With these clar-
ifications, the viability of the next mode of operation follows.

Theorem 3 (Sampling Properties of the Companion 1-D
Stability Test.): Assume is related to
via the conversion (7)–(9). Let and consider

(a univariate polynomial of degree
). Apply Algorithm 2 to and use Theorem 2

to examine its stability. If is not stable then is
not stable. If is stable then Algorithm 2 ends normally
and its last element (a univariate polynomial of
degree 0) is equal to , where ,
a bivariate polynomial of degree , is the last polyno-
mial that Algorithm 1 would produce for .

B. Interpolation Problem

The polynomial

(26)

that appears in Theorem 1, like any polynomial of degree ,
can be determined from knowing its values at any
set of distinct points by solving
the set of equations,

...
...

...
...

...
(27)

Furthermore, this is a standard polynomial interpolation can
be solved for arbitrary points by several efficient algorithms in

operations (where the least cost general algorithm to
solve it is by the Newton interpolation algorithm) see, e.g., [31].

Instead of using a standard general purpose solution, we pro-
pose in the following a solution more suitable for the problem
at hand. It assumes a specific choice of sample points but in
turn obtains a competing closed expression for the vector . An
important special feature of the following solution is that it pro-
duces, at an intermediate step, the coefficient vector for the sym-
metric polynomial that corresponds to the solution via
the mapping (5), viz.,

(28)

It follows that the positivity condition (20) can be replaced by

(29)

and the no zero condition (19) in Theorem 1 by

(30)

Indeed, it will be argued that there is no actual need to recover
and that it is possible, and as a matter of fact preferable, to

halt at the intermediate step, right after has been obtained,
and proceed to examine the condition (30) instead of the condi-
tion (iii) in Theorem 1.

The relation between the coefficient vector of
and the coefficients of the symmetric polynomial

are

...
...

(31)

where is the Chebyshev matrix and the diagonal ma-
trix defined before for (10). This relation was derived in (an
appendix of) [8] to deduce there (10). Similar relations were
obtained before in [30] in order to convert a symmetric poly-
nomial like into a in order to test (19) by a Sturm
sequence instead of testing the condition (29). The above trans-
formation also underlies the conversion in [15] of into

via corresponding trigonometric relations. It is note-
worthy that, unlike the derivations in [15] and [30], the relation
(19) was obtained in [8] without assuming that or

(allowing some additional flexibilities like choosing sam-
pling points also outside this interval).

In order to use Theorem 3 we choose the sample points
in . So that sample values can be obtained
by the companion 1-D stability test of the last subsection and
stability of each is a necessary condition for
the stability of .

For , the vectors in the columns of are
the coefficients of the Chebyshev polynomials ,
viz.,

(32)

Note that (12) represents vectorially the familiar recursion

(33)

known to generate the (first kind) Chebyshev polynomials,
when started with .

It follows that it is possible to write the set of (27) as

...
...

...
...

...

(34)
The equation can be used to find a corresponding

for values of at any distinct set of ’s. A simple and
closed form solution for (34) (and hence for (27)) results when
the sample points are chosen in a discrete cosine transform
(DCT)-like manner as follows:

(35)

Incidentally, due to familiar relations between the Chebyshev
polynomial and the above cosine sequence, the above sequence
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of points can in itself be obtained by
recursion similar to (33), viz.,

(36)

for , where .
For the above choice of sample points, the solution to (34)

can be adopted from the solution that was designed for the inter-
polation problem that arises in complex 1-D stability test based
procedures in [22] and [7]. In order to deduce the solution usable
here from the solution derived for [22] and [7], let us evaluate
each row (34) for sample value in (35)

(37)

Next, identify the polynomial in [7], [22] (restricting in-
terest to the case there when is real) with . Also, identify
the points and values for there with

and for here.
With these correspondences, it follows from the solution proved
there that the solution for (34) here is given by

...
...

(38)

where is a square sized matrix whose entries
are

(39)

The entries of consist of values , where each
row (and column) forms a certain permutation of the set .
As a matter of fact, can be constructed from the already
available entries of by the following procedure.

For and

(40)

where, for nonnegative integers , , , the notation
means that is the least integer equivalent to modulo (i.e.,
is such that divides ). The proof of the above
procedure follows from the periodicity of the sample points and
properties of the function .

Finally, the coefficients for can be determined from
by one extra matrix multiplication (31).

Or putting things together, the solution for (27) for sample
values chosen as in (35) is expressed by

...
...

(41)

Once the solution has been obtained, it remains to examine
whether the condition (19) holds for the polynomial of

degree . This condition can be tested normally by creating
a Sturm sequence of length (see, e.g., [30]).

The above derivation reveals however a way to lower even
further the overall computation. As shown, the sample values of

create at an intermediate stage (38), the symmetric poly-
nomial that relates to via (28). As a consequence, it
is possible to test for the condition (30) instead of testing
(19). The testing of the condition (28) by the author’s unit-circle
zero location procedure [7] takes normally a number of opera-
tions comparable to the cost of testing (19) by the Sturm method
in [30] and it also handles neatly not normal situations (that may
occur and coexist with validity of (19) and (30)!). Avoiding the
transformation of into (31), that has an cost,
contributes noticeable to reducing the overall cost of the
2-D stability test.

IV. PROPOSED PROCEDURE

This section starts with summarizing the proposed 2-D sta-
bility test, then illustrates it by a numerical example and finally
evaluates its cost of computation.

A. Procedure for Testing Stability of

The new 2-D stability test is presented by the next five steps
that puts together the components presented in the previous sec-
tions. In this outline, ‘exit’ notes points at which the procedure
terminates with a “not (2-D) stable” decision (points where a
necessary condition for 2-D stability is already violated).

Step 1) Determine whether is 1-D stable. If
not stable—“exit.” Optionally (because, strictly
speaking, this second 1-D stability test can be
skipped, as explained below), test 1-D stability of

and if not stable “exit.”
Step 2) Convert to using (7)–(12).
Step 3) Set , ,

and use (36) to create the set of sample points .
For apply the companion 1-D
stability (Algorithm 2 + Theorem 2) to

. If is not 1-D stable (as soon as
a , or a is observed)—‘exit’.
Otherwise, retain as .

Step 4) Use (38) to obtain from
. Note that the entries of ,

defined by (39), may be obtained from the already
available entries of by (40). It is also no-
table that division by may be skipped
(a resulting up scaled is admissible). Next,
use to form the symmetric matrix

. (It is also
possible to use (31) to obtain , but as afore-
mentioned, this alternative implies an unnecessary
increase in the computation cost.)

Step 5) Examine the condition “ ” or equiv-
alently (29). (Alternatively, if has been recov-
ered, examine for the condition (19) or (20).)

is stable if, and only if, this condition is
true and the current step has been reached without
an earlier “exit.”
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The reason testing the stability of , the second con-
dition in Theorem 1, is said to be only optional at Step 1), is
because it is actually tested later in Step 3), where the sampling
point is acquired by testing the stability of

. Also, as already explained it is preferable to obtain
only in Step 4) and examine it in Step 5) for no zeros on
with the refined procedure [6]. When a fully algebraic decision
is not crucial, a reasonably reliable decision for Step 5) may also
be reached by plotting the balanced polynomial for values
along (the upper half of) the unit circle and inspect whether it
is positive for all (alternatively, plotting and inspecting
positivity of for all ).

B. Numerical Example

For illustration, we consider the polynomial used in [8] as
well as in many papers before [1, p. 129], [9], [10], [27]

Step 1) Here, is stable.
Step 2) Convert to using (7)–(10)

Step 3) Here, , . Here
. (The remaining of this example

uses approximate rational numbers that were
produced by MATLAB running this example in
rational numeric format. Due to some further
properties of Algorithm 2 [32], this provides
a better compromise between compactness
and accuracy than using decimal numbers).
Use (35) to obtain the sample points

.
Next obtain samples values for

by application of Algorithm 2 to
.

For ,
. Algorithm 4

produces the table shown at the bottom of the
page (entries in parentheses become available
by symmetry). The polynomial is stable. Retain

.
For ,

. Algorithm 4 produces the second
table shown at the bottom of the page.

The polynomial is stable. Retain .
Repeating the process for (the details
are skipped), all subsequent polynomials are
too stable and provide sample values as follows:

, , ,
, ,

and .
Step 4) Form by (39) or using (40) set the sampling points

into

and into (38) to obtain

.
It is also possible (but not required) to proceed

and obtain . Setting the above into (31),
for which of (11) is created by (12), gives

which is indeed
the last polynomial that Algorithm 1
produces for this example, see [8].

Step 5) The polynomial with the
above can be shown to have no zeros on (or the
above to have no zeros on ). Thus, the
tested polynomial is 2-D stable.



BISTRITZ: TESTING STABILITY OF 2-D DISCRETE SYSTEMS 1319

C. Cost of Computation

An approximate count of operations for the procedure will
now be carried out. The procedure involves only real polyno-
mials so that all counts are in terms of real arithmetic operations
(multiplication and additions; the term ‘flop’ when used stands
for one addition plus one multiplication). The notation
denotes a bivariate polynomial in and with powers
such that .

Step 1) is a 1-D stability test for a polynomial of degree
. Its complexity is negligible compared to the

overall anticipated count. In Step 2), the conversion of
into involves multiplications of pairs of poly-

nomials of degree . Each multiplication requires
flops. The subsequent conversion of to requires flops.
Thus, Step 2) requires flops. Step 3) involves

repetitions of Algorithm 2 each with a polynomial of
degree , where . Algorithm 2 requires for a
polynomial of degree , flops (assuming it is
carried out as a recursion with two multipliers). Thus, Step 3)
requires flops. Step 4) is carried out by (38) and requires

, i.e. flops. Step 5) can be carried out by mul-
tiplications and using the zero location method in [5] or
its bettered version [6]. The resulting overall complexity of the
test is therefore real multiplications
and real additions.

The above count of operations does not position this test as
the least cost 2-D stability test that is available at this time be-
cause it requires approximately four times the cost of the im-
mittance-type telepolation-based tests in [7], [23] and two times
the cost of the scattering-type telepolation-based test in [22].
These tests involve a collection of (only) 1-D stability
tests (but) of polynomials with complex coefficients (complex
arithmetic operations are translation to real arithmetic counts
in the conventional manner) plus one positivity test of a sym-
metric polynomial of degree . The doubling-degree tech-
nique used here doubles the number of 1-D polynomials and
double their degrees. However, it also enables a 2-D stability
test manipulates only real coefficient univariate polynomials.
Since the only known more efficient stability tests are the above
mentioned tests that employ a collection of complex univariate
polynomial stability tests (a comparison with the costs of other
available 2-D stability tests is detailed in [22] and [7]), the pro-
cedure in this paper appears to be the least cost stability test for
2-D discrete system that relies on testing of real univariate poly-
nomial and involves real arithmetic operations only.

As one might anticipate at this point, it is also possible to
produce a scattering counterpart for the procedure presented in
this paper. It would consist of telepolation of a tabular test that is
obtained by combination of the tabular test in [12] with the dou-
bling-degree technique. After putting the details together prop-
erly, the outcome would be a 2-D stability test that is carried out
by MJT 1-D stability tests applied to real polynomials
each of degree (instead of MJT tests applied to
complex polynomials each of degree in [22]). However the
cost of such a procedure will be higher than the cost of the cur-
rent procedure because the cost of each MJT test is higher than
the cost of the test [32] that is used here as the companion 1-D
stability test.

Beyond its unique feature of using real polynomial stability
test, the test shares some additional niceties that stem from being
carried out by a collection of 1-D stability tests and that are
common to also the other telepolation-based 2-D stability tests.
One is simplicity of programming. The second follows from the
fact that the stability of each 1-D polynomials is a necessary
condition for 2-D stability. Therefore, all necessary conditions
for 1-D stability encountered en route are also necessary condi-
tion for 2-D stability. This property may speed the spotting of
an unstable bivariate polynomial and save the remaining cost of
computation.

V. CONCLUDING REMARKS

The paper has presented a new procedure to test stability of
a 2-D discrete system. The new procedure carries out the task
by a finite number of real univariate polynomial 1-D stability
tests (plus one unit-circle zero location test) and it is apparently
the most efficient algebraic 2-D stability testing procedure that
involves real univariate polynomials and real-arithmetic only.

It is interesting to examine the contribution in this paper from
the perspective of the roles that the doubling-degree technique
has played in the development of 2-D stability tests. The dou-
bling-degree technique was introduced by Bose [15] to help re-
searchers to develop 2-D stability tests from real 1-D stability
tests. It has been used since then in numerous papers (we cited
only a few of the more pertinent papers). The doubling-degree
technique increases the cost of computation compared to de-
veloping tests starting with stability conditions posed on 1-D
polynomials with complex coefficients. This property is true in
general even though it has been demonstrated explicitly only for
some of the cases (because many papers were published without
cost assessment and not every instance was treated both with and
without the doubling-degree technique).

Influenced by its use in [19] to develop a 2-D stability test
from the BT, we considered the doubling-degree technique at
an early stage in a conference paper [33]. As a matter of fact,
this conference paper was the first to announce com-
plexity for 2-D tabular test. However, we soon afterward re-
alized that developing tabular 2-D stability from 1-D stability
tests for complex univariate polynomials achieve lower cost. As
a consequence, our interest shifted to complex polynomial 1-D
stability test based tabular tests [13], [14]. It is important to re-
alize that a tabular 2-D stability test that is derived from a 1-D
stability for complex polynomials produces a 2-D stability test
that manipulates real matrices and vectors (or bivariate and uni-
variate polynomials) when testing a real bivariate polynomial.
For instance, irrespective of the fact that the derivation of the
tests in [12]–[14] rely on complex polynomial 1-D stability test,
the resulting 2-D tabular tests are efficient procedures that prop-
agate real matrices and involve only real arithmetic. It is equally
hard to justify the use of the doubling-degree technique for the
derivation of tabular 2-D stability test by saying that “engineers
are more familiar and will more readily apply a real 1-D stability
test” [16] because the benefit of using real 1-D stability test is
not passed to the user. The outcome is a tabular 2-D stability
that, like a corresponding tabular test derived from a complex
polynomial 1-D stability test, manipulates real bivariate poly-
nomial (or matrices, or an array of univariate polynomial) but
has a higher computational cost.
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The use of telepolation changes the above situation. Tele-
polation carries out a 2-D stability test by a collection of 1-D
stability tests of certain qualifying forms that are related to the
1-D stability test that underlies the development of the tabular
2-D stability test that is being interpolated. A tabular test that
stems from a (scattering/immittance type) 1-D stability test of
complex or real polynomials gives rise to a collection of 1-D
stability tests of complex or real polynomials, respectively (of
scattering/immittance types, respectively). This perception, re-
newed our interest in the study reported earlier in [33] and led
us to expand it into a journal paper [8] and to write the current
paper that shows that, in conjunction with telepolation, the dou-
bling-degree technique admits testing 2-D stability by a collec-
tion of real 1-D stability tests.

The 2-D stability test presented in this paper thus brings a
positive twist to the use of the doubling-degree technique for
developing 2-D stability tests so far. The doubling-degree tech-
nique still takes a toll in producing a test whose cost is higher
than the alternatives in [7], [23] that stem from complex 1-D
stability tests. However, for the first time it also enhances the
product with a property that without using it is not attainable—it
admits the testing of 2-D stability by a collection of real instead
of complex 1-D stability tests. The use of real 1-D stability tests
may have indeed (as suggests also in the above quote from [16])
a better appeal to engineers than using complex 1-D stability
tests.
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