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ABSTRACT

The paper presents several algebraic procedures to test whether
a bivariate polynomial is continuous-discrete (C-D) stable (does
not vanish in the product of the closed right half-plane times the
closed exterior of the unit-circle). This problem was solved in
the last ISCAS by a scattering-type tabular test based on Jury’s
modified stability test. Here an immittance-type counterpart for
the test, that relies instead on a modified form of the author’s
test, is presented. The immittance tabular test has a lower cost
of computation because it produces a sequence of matrices with
para-conjugate column-symmetry. Telepolation-based forms for
the two tabular tests are also presented. They carry out the C-D
stability test by a finite number of Jury’s or this author’s 1-D sta-
bility tests, respectively, plus a Routh zero location procedure. As
a consequence the overall complexity reduces significantly (from
O(n®) to O(n*) for a bivariate polynomial of degree (n, n)).

1. INTRODUCTION

The paper considers the problem of determining whether a two-
variable (2-V) polynomial of degree (n1, n2), say

np m2

Qs,2) =D aus's  qurs #0 (M

i=0 j=0
satisfies the condition
Q(s,2) #0

where, with C denoting the complex plane, we denote

V(s,z) ERxV 2

L={s:Res<0,|s|]<x},, R=C-L. (3)

and .
U={z:|z|<1}, V=C-TU. “
We shall also denote the imaginary axis and the unit circle by
I={s:Re(s)=0}, T={z: |z| =1}. )

The problem arises in testing stability of certain linear sys-
tems that can be described by a linear differential-difference equa-
tions, where ()(s, z) presents their characteristic polynomial [1].
A polynomial that satisfies the condition (2) will be called C-D
(continuous-discrete) stable. The problem is also closely related
to determining stability of certain differential delay equations with
commensurate delay, see [2], [3].

A tabular stability test for this problem was presented in the
previous ISCAS [4] based on the modified Jury test [5]. This pa-
per will first bring an alternative tabular test that relies instead on

a certain modified form of this author’s test [6]. It may be re-
garded as the immittance-type counterpart of the scattering-type
test in [4]. The current tabular test has a similar order of complex-
ity (O(n®) for n1 = ns = n) but the actual count of operations is
lower because it produces matrices with certain symmetry instead
of matrices with no symmetry that are produced by the scattering
C-D stability test [4]. The paper will also consider simplification
for both the scattering and the immittance tabular C-D stability
tests by telepolation [7]. Using these procedures the testing of the
condition (2) will be carried by a collection of n + 1 1-D stability
tests reducing the overall complexity from O(n®) to O(n*).

The procedures that will be presented here and the one in [4]
are worthy also for testing stability of commensurate delay be-
cause C-D stability provides sufficient (though not necessary con-
dition) for stability of such systems. However, the modification of
these procedures into a comprehensive stability test (necessary and
sufficient conditions) for differential systems with commensurate
delay [2], [3] will be deferred to a future publication.

2. PRELIMINARIES

Our notation convention uses a same letter for both a polynomial
and its matrix (or vector) of coefficients. For example Q = (gi.x)
will also denote the coefficients matrix of the polynomial (1). We
use z to denote a vector whose entries are powers in ascending
degrees of the variable, z = [1,z,...,2",...]" (of length de-
termined by context). It allows one to write d(z) = z'd and
Q(s,z) = s'Qz. It is instructive for the derivation to regard
Q(s, z) as a 1-V polynomial in C[z] (the set of univariate poly-
nomials in indeterminate z and complex coefficients) with coeffi-
cients over C[s]. To this end, the columns of () will be denoted
Q=1q, q1,.-., qn,] Which allows one to write Q(s, z) as

Qs,2) =Y ai(s)2" =[a0(), @1 (), -+, ana (s)]z. (6
k=0

We define a “diamond” operation for a 2-V polynomials of
degree (n1,n2) with mixed s — z indeterminates and for a matrix
(of its coefficients) as follows.

QO(SVZ) :ZnZQ*(_Saz_l) ’

where .J denotes the reversion matrix with 1’s on the main anti-
diagonal and zeros elsewhere, K denotes a diagonal matrix with
diagonal elements (—1)* Jk = 0,1..., ie K = diag[l,—1,
1,—1,1,...] of size determined by context, and x denotes com-
plex conjugation. Note that the definitions are such that it is still
possible to write Q° (s, z) = s'Qz.

Q°=KQ*J ()
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We denote the para-conjugate operation for the 1-V polyno-
mial h(s) = s'h by

Ri(s)=h*(—s) , K =Kh' ®)

so that h¥(s) = s'h?. A polynomial h(s) that is not a constant is

called 1-C stable if “h(s;) = 0 implies s; € L or equivalently if

h(s) #0 VseR. )

For a 1-V polynomial d(z) = z'd of degree n and its coeffi-
cient vector d we denote the operation of conjugate-reciprocation
by

&) =z"d"(z"Y)  , & =Jd (10)
Again the reciprocated polynomial may be written as d* () =
z'd*. A polynomial d(z) that is not a constant is called 1-D stable
if the condition “d(z;) = 0 implies z; € U” or equivalently if

d(z) #0 VzeV. (11)

Note that the diamond operation amounts to either pre para-
conjugate and post reciprocal operation or to pre para and post
conjugate-reciprocal operation.

3. DISCRETE-CONTINUOUS STABILITY

We shall consider the stability condition (2) for complex coeffi-
cients Q(s, z) € C[s, z] (the set of bivariate polynomials in inde-
terminates s, z with complex coefficients), like in [4]. (All other
previous works that studied the condition (2) considered it for real
polynomial only.) Polynomials h(s) € C[s] and d(z) € C|[z] that
satisfy (9) and (11) will too be called 1-C stable and 1-D stable,
respectively.

Assume a (s, z) € C[s, z] as in (1). The condition on the
leading coefficient ¢y, ,n, 7 0 is a readily visible assumption. If
Gni,ms = 0 then Q(s,z) is not stable. (Note that s = oo be-
longs to R and a zero there implies an unstable 1-C polynomial
and hence also C-D instability.)

Lemma 1. The polynomial Q(s, z) (1) satisfies (2) (it is C-D sta-
ble) if, and only if, the following two conditions hold:

(i) Q(s,b) is I-C stable for some b € V.
(i) Q(s,2) #0V(s,2) eI x V.

The above lemma appeared first in [8] with the values b = oo.
Then, with the value b = 1 in [2, Theorem 2:(2)], with b € T in
[9], and in its above generality in [3]. The latter two references
contain more simplifying conditions for C-D stability.

In [4], the above lemma was used, in conjunction with Jury’s
modified 1-D stability test for complex polynomials [5], to obtain
a tabular test for C-D stability that assigns to Q(s, z) a sequence of
n2 2-V polynomials {Cy, (s, 2) = 37 cimir (8)2", m = ny —
1,...,0} where C,, are matrices with no particular symmetry.

Here, a tabular test that associate Q(s, z) with a sequence of
n2 2-V polynomials {E, (s,2) = Y1, cime (8)2", m = ny —
1,...,0} where E, (s, 2) = Eo(s, z). This para-conjugate col-
umn symmetry admits the computation of only half of the entries
of the coefficient matrices E,,, (say only the left half columns).

The new procedure is derived by using the author’s 1-D stabil-
ity test for complex polynomials [6] to examine the condition (ii)
of Lemma 1. Assume that Q(s,1) Z 0 (implied if Q(s,1) is 1-C

stable a necessary condition for C-D stability that will be tested
before any further step is followed). Then define

M(s,z) = Q%(s,1)Q(s,2) =s'Mz (12)

where Q%(s, 1) = Q*(—s, 1). Note that condition (ii) of Lemma 1
holds if, and only if, M (s, z) # 0¥(s, z) € Ix V. Then testing 1-
D stability of ps(2) = Q(s, z) assuming s € I with the author’s 1-
D stability test leads eventually to the next algorithm and theorem.
Algorithm 1. Immittance C-D stability table.

Construct for D(z1, 22) a sequence of polynomials {E,, (3, z) =
SRl e £(8)2", m = 0,1,...,n(= n2)}, where E,, = E},
Vm, as follows.

(i) Initiation. M (s, 2) = Q*(—s,1)Q(s, 2)

M (s, z)—M<> (s,2)

Eo(s, z)=M(s,2)+M° (s, 2)), Bi(s, z)= —

qo(s) = Eo(s,1) (13)
(ii) Recursion. Form = 1,...,n — 1 obtain E,,_1(s, z) by:

9 (8) = etm-170(5)el1 () am(5) = epmy 0(8)efy o(5)  (14)

9 (8)Em (8, 2)+Gin (8)2Em (5, 2)~Gm (5) Em—1(s, 2)

ZEm+1(S,Z) Qm—l(s)

The polynomials ¢, (s) in the denominators are always factors of
the numerator so that all E,, (s, z) are indeed polynomials. The
degree of Ey(s, z) is (2n1,n2) and the degrees of E.,, (s, z) for
m = 1,...n2 are (2mn1,n2 — m). The produced polynomials
posses the symmetry ES, (s, z) = E,, (s, z) for all m. For real /
complex Q(s, z) the coefficient matrices E,, are real / complex,
respectively.

Theorem 1 [Stability conditions for Algorithm 1]. Assume al-
gorithm 1 is applied to Q(s, z) (1) and let

€(s) := En(s,2) (15)

denote last polynomial that it produces. Q(s, z) is stable if, and
only if, the following three conditions hold.
(i) Q(s,b) is 1-C stable for some b € V.
(ii) Q(a, z) is 1-D stable for some a € L.
(iii) e(s) #0 Vsel

Note that €(s) is truly a 1-V polynomial (of s only) of degree
2n1na. The property ES, (s, z) = Ey (s, z) implies that e exhibits
para-conjugate symmetry e(s) = €*(—s) . Thus, in the real case
(Q is real) it is an even polynomial with vanishing odd powers of
s coefficients while in the complex case (@) is complex) even/odd
powers of s coefficients are purely real/imaginary.

A rigorous derivation of Algorithm 1 and a proof of Theorem
1 will not be given currently. They can be deduced starting with
the test in [6] and following a path analogous to the way the main
theorem in [10] was reached. The fact that Theorem 1 looks like
the main theorem in [4] is not coincidental. In fact, an alternative
proof for the above theorem can be reached after showing that both
the algorithm used here and in [4] terminate with an identical €(s)
that is the greatest common divisor of Q(s, z) and Q¥ (s, z) with
respect to the variable z. (Other equivalent terms are the resul-
tant or the determinant of the unit-circle Bezoutian of Q(s, z) and
Q° (s, z) with respect to the variable z.)

A general algebraic approach to examine condition (iii) in The-
orem 1 is using the extension of the Routh test into a zero location



procedure for complex 1-V polynomials that also handle “singu-
lar” situations (because singularities are not inconsistent with con-
dition iii being true) [14]. The testing of this condition can be
carried out by approximately n* (for n; = na = n) flops. The
testing of condition (i) can be carried out by any of the tests in
the Schur-Cohn Marden and Jury class of stability tests (e.g. [5])
or more efficiently with the author’s test [6] in O(nZ). Condition
(ii) is a 1-C stability test that like condition (iii) can be handled by
the Routh test and too has O(n?) of complexity. Two convenient
choices for b in Theorem 1 are either b = 1 (check 1-C stability
for a polynomial whose coefficients are the sum of columns of ())
or b = oo (the last column of ). Two convenient choices for a
are a = 0 - the first row of () and a = oo - the last row of Q).

4. ILLUSTRATION

We recall that the test works for both real and complex coefficient
polynomials. Here we shall illustrate the test with the following
real polynomial of degree (3,3) that we used also in [4].

6 6 —10 15 1

: 5 8 =15 25 z

Q(s,z) =[ls s” 53] 2 9 4 7 22
z

11 -2 31/ 2

To test whether or not it is C-D stable we carry out the test that
consists of Algorithm 1 and Theorem 1 through the following four
steps.

Step 1: Test condition (i) in Theorem 1 for say Q(s,1) =
[17, 23, 7, 3]s and realize that it is 1-C stable.

Step 2: Test condition (ii) in Theorem 1 for say Q(0,z) =
[6,6, —10, 15]z and realize that it is 1-D stable.

Step 3: Apply algorithm 1. Form Q¢ and then obtain M (s, z)
12)

102 102 —170 255

15 —10 6 6 —-53 -2 =25 80

—25 15 -8 —5

Q%= - M=| —24 —33 63 —95
oy 11 —2 0
-3 -3 6 -9

Proceed with Algorithm 1 to obtain the sequence of 2-V polynomi-
als {s'E,,z,m = 0, ..., 3} with coefficient matrices as follows.
357 —68 —68 357

—133 23 —23 133
-390 99 99 -390

Eo = —32 26 —26 32
1 3 -3 -1
—~12 3 3 —12
T 5967 5967
1557  —1557
—49293  —49293
153 —119 153 —7704 7704
—27 0 27 71015 71015
—312 3 —312 283 —283
E, = -8 0 8 |, Ey = 30943 30943
71 25 -7l 1353  —1353
-1 0 1 5520 5520
-6 3 —6 268 —268
470 470
19 —19
L 18 18 |
E3 [646425,0,—8915057, 0, 35480226, 0, —27528155, 0,
—22357775, 0, —6569912, 0, —1050718, 0, —99997, 0, —5414,
0, —135]

Step 4: Examine whether €(s) = s*E3 # 0 for s € 1. The
condition can be shown to hold. Thus the tested polynomial is C-D
stable.

Algorithm 1 can be shown to require O(n®) operations as-
suming for simplicity n; = ne = n. Itis the dominant part in
the overall cost of the procedure. The testing of the condition (i)
and (ii), require O(n?) flops with actual number that depends on
the 1-C and 1-D stability test that is employed. The testing of con-
dition (iii) by the Routh zero location procedure requires O(n*)
operations. Using a more accurate evaluation of the cost of com-
putation would show that the computational cost of this tabular test
compares to the cost of the immittance 2-D stability test in [10].
The cost of the tabular test in [4] has too O(n®) with a cost figure
that compares to the cost for the scattering 2-D tabular test [13].
Thus the current tabular test here is more efficient than the test in
[4] by a factor similar to the computational advantage of the 2-D
tabular stability test in [10] over the 2-D tabular test in [13]. This
advantage stems from the “diamond” symmetry (para-conjugate
column) symmetry of the matrices E,, that admits the computa-
tion of (roughly) only half of the entries of the matrices.

5. TELEPOLATION

In this section we shall briefly show how the above tabular test, as
well as the test in [4], can be simplified by telepolation. This ap-
proach has been introduced in [7] to simplify the immittance 2-D
tabular test in [12]. It was also used in [11] to simplify the test
in [10] and to simplify the the Hu-Jury 2-D stability test in [13].
In all these cases interpolation was applied to an “efficient” tabu-
lar test (i.e. one with O(n®) complexity and a single “positivity”
condition) to replace the construction of the table by a finite col-
lection of certain 1-D stability tests. This procedure also reduced
the overall complexity to O(n*).

The immittance-type tabular test presented here, as well as the
scattering-type test in [4], qualify for a similar treatment. The idea
is to circumvent the algorithm for the construction of the table and
instead obtain the polynomial €(s) that celebrates in Theorem 1 by
interpolation.

As a polynomial of degree 2M, M := nins, e(s) can be de-
termined from any 20 + 1 sample values b; = €(s;) at different
sampling points s;,¢ = 0,+1 ...+ M by solving the set of equa-
tions

2M

1,887 ..., Mle=b; i=0,21...«M  (16)

This is a Vandermonde set of equations for which efficient
O(N2) solutions (here N = 2M) are known [15].

The key requirement is to obtain sample values of €(s) from
which this polynomial can be interpolated. For s; € I sample
values €(s;) can be obtained by applying the next algorithm to
pes () i= M(sq, 2).
Algorithm 2. Assume p(z) is a polynomial of degree n with com-
plex coefficients and that p(1) # 0. Form p(z ) p(1)*p(z) and
construct a sequence e,,(z) = > .o emqz>,m = 0,1,...,n
of symmetric polynomials as follows.

eo(2) = P(2) +9*(2) , @0 = eo(1)
e1(2) = p%(i)z__’?)(z) (7

Form =1,...,n — 1 obtain e,,4+1(2):

* 2
gm = €m—-1,06mo0 > 4dm = |6m10|



Zemi1 = (gm + gmz)ez(z) — gmem—1(2) 8
m—1

It is apparent that Algorithm 2 presents the projection of Al-
gorithm 1 for s fixed to s = s;. Thus the last entry e, o that
Algorithm 1 produces is equal to e(s;), i.e. b; = €y,0.

Algorithm 2 is the companion 1-D stability test that was used
also in [11] to telepolate the 2-D tabular stability test in [10]. The
next theorem is proved in [11].

Theorem 2. Assume Algorithm 2 is applied to a complex polyno-
mial p(z) of degree n such that p(1) # 0. Then p(z) is stable if,
and only if,

m=20,1,...,n. (19)

Furthermore, Re{em 0} > 0 for all m, are necessary conditions
Sor stability of p(z).

Algorithm 2 and Theorem 2 can be used as the accompanying
1-D stability test for the telepolation of the current tabular C-D
stability test. During the use of the accompanying stability test to
acquire a sample value ¢(s;), one should watch for any violation
of a necessary condition for 1-D stability of ps,(z) = M(s;, 2)
(according to Theorem 2) because in any such case Q(s, z) can
be declared at once as not C-D stable and the telepolation-based
stability testing procedure reaches an earlier termination.

In the complex case (@) is complex) the number of required 1-
D stability tests is 20 + 1. In the real case (Q is real), only M + 1
1-D stability tests are needed because it is enough to obtain sample
values for b; = €(s;), s; = 0,1,... M. Then, using the fact that
€(s;) = €(—s;), it is possible to choose the remaining M sample
points as s_; = —s; for which the already obtained sample values
b; = e(s—;) can be used.

It is possible to simplify similarly also the scattering tabular
C-D test presented in [4]. This time the accompanying 1-D sta-
bility test that has to be used is the modified Jury test depicted as
Algorithm 1 and Theorem 1 in [4]. Namely, it can be shown that
applying this 1-D stability test to ps, (z) (s; € I) produces at its
end b; = cp,n-

Note that each 1-D stability test requires O(n?) flops to test
a polynomial of degree n. Assume for simplicity ny = ny =
n then M = n? tests require O(n*) flops. So sample values
are acquired in O(n*) flops. The recovery of e(s) (solution of
the interpolation set of equation) requires too O(n*) flops. Thus
the telepolation-based C-D test can be completed in O(n*) flops.
The actual number of flops will be lower for the immittance-type
telepolation-based C-D test than for its scattering-type counterpart
because sample values are obtained by the immittance 1-D stabil-
ity test (i.e. by the above Algorithm 2) in less arithmetic operations
than by the modified Jury test.

6. CONCLUSION

The paper presented several procedures to determine whether a
bivariate polynomial stable in the continuous-discrete sense (does
not vanish in the closed right half-plane times the closed exterior of
the unit-circle. First a tabular test that forms the immittance coun-
terpart of the scattering-type tabular test that was presented for this
problem in [4]. Both tabular tests have O(n®) complexity (for a
bivariate polynomial of degree (n, n)) but the immittance test has
a lower cost because it produces matrices with para-conjugate col-
umn symmetry. Next, the paper showed simplification for both

the tabular tests by telepolation (interpolation). The telepolation-
based procedures test C-D stability by a finite collection of (mod-
ified Jury or Bistritz) 1-D stability tests plus a Routh test for no
zeros on the imaginary axis. Both telepolation-based procedures
reduce the computational cost from O(n®) to O(n*) where the
immittance version requires again less computation than the scat-
tering version.
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