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ABSTRACT
The paper presents several algebraic procedures to test whethera bivariate polynomial is continuous-discrete (C-D) stable (doesnot vanish in the product of the closed right half-plane times theclosed exterior of the unit-circle). This problem was solved inthe last ISCAS by a scattering-type tabular test based on Jury'smodi�ed stability test. Here an immittance-type counterpart forthe test, that relies instead on a modi�ed form of the author'stest, is presented. The immittance tabular test has a lower costof computation because it produces a sequence of matrices withpara-conjugate column-symmetry. Telepolation-based forms forthe two tabular tests are also presented. They carry out the C-Dstability test by a �nite number of Jury's or this author's 1-D sta-bility tests, respectively, plus a Routh zero location procedure. Asa consequence the overall complexity reduces signi�cantly (fromO(n6) to O(n4) for a bivariate polynomial of degree (n; n)).

1. INTRODUCTION
The paper considers the problem of determining whether a two-variable (2-V) polynomial of degree (n1; n2), say

Q(s; z) =
n1X
i=0

n2X
j=0 qijs

izj ; qn1;n2 6= 0 (1)
satis�es the condition

Q(s; z) 6= 0 8(s; z) 2 R� V (2)
where, with C denoting the complex plane, we denote

L = fs : Re s < 0 ; jsj <1g; ; R = C� L : (3)
and

U = fz : j z j < 1g ; V = C� U : (4)
We shall also denote the imaginary axis and the unit circle by

I = fs : Re(s) = 0g ; T = fz : jzj = 1g : (5)
The problem arises in testing stability of certain linear sys-tems that can be described by a linear differential-difference equa-tions, where Q(s; z) presents their characteristic polynomial [1].A polynomial that satis�es the condition (2) will be called C-D(continuous-discrete) stable. The problem is also closely relatedto determining stability of certain differential delay equations withcommensurate delay, see [2], [3].A tabular stability test for this problem was presented in theprevious ISCAS [4] based on the modi�ed Jury test [5]. This pa-per will �rst bring an alternative tabular test that relies instead on

a certain modi�ed form of this author's test [6]. It may be re-garded as the immittance-type counterpart of the scattering-typetest in [4]. The current tabular test has a similar order of complex-ity (O(n6) for n1 = n2 = n) but the actual count of operations islower because it produces matrices with certain symmetry insteadof matrices with no symmetry that are produced by the scatteringC-D stability test [4]. The paper will also consider simpli�cationfor both the scattering and the immittance tabular C-D stabilitytests by telepolation [7]. Using these procedures the testing of thecondition (2) will be carried by a collection of n+ 1 1-D stabilitytests reducing the overall complexity from O(n6) to O(n4).The procedures that will be presented here and the one in [4]are worthy also for testing stability of commensurate delay be-cause C-D stability provides suf�cient (though not necessary con-dition) for stability of such systems. However, the modi�cation ofthese procedures into a comprehensive stability test (necessary andsuf�cient conditions) for differential systems with commensuratedelay [2], [3] will be deferred to a future publication.
2. PRELIMINARIES

Our notation convention uses a same letter for both a polynomialand its matrix (or vector) of coef�cients. For example Q = (qi;k)will also denote the coef�cients matrix of the polynomial (1). Weuse z to denote a vector whose entries are powers in ascendingdegrees of the variable, z = [1; z; : : : ; zi; : : :]t (of length de-termined by context). It allows one to write d(z) = ztd andQ(s; z) = stQz. It is instructive for the derivation to regardQ(s; z) as a 1-V polynomial in C[z] (the set of univariate poly-nomials in indeterminate z and complex coef�cients) with coef�-cients over C[s]. To this end, the columns of Q will be denotedQ = [q0 ; q1 ; : : : ; qn2 ] which allows one to write Q(s; z) as
Q(s; z) =

n2X
k=0 qk(s)z

k = [q0(s); q1(s); : : : ; qn2(s)]z : (6)
We de�ne a �diamond� operation for a 2-V polynomials ofdegree (n1; n2) with mixed s� z indeterminates and for a matrix(of its coef�cients) as follows.
Q�(s; z) = zn2Q?(�s; z�1) ; Q� = KQ?J (7)

where J denotes the reversion matrix with 1's on the main anti-diagonal and zeros elsewhere, K denotes a diagonal matrix withdiagonal elements (�1)k ; k = 0; 1 : : :, i.e K = diag[1;�1;1;�1; 1; : : :] of size determined by context, and ? denotes com-plex conjugation. Note that the de�nitions are such that it is stillpossible to write Q�(s; z) = stQ�z.
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We denote the para-conjugate operation for the 1-V polyno-mial h(s) = sth by
h\(s) = h?(�s) ; h\ = Kh? (8)

so that h\(s) = sth\. A polynomial h(s) that is not a constant iscalled 1-C stable if �h(si) = 0 implies si 2 L� or equivalently if
h(s) 6= 0 8s 2 R : (9)

For a 1-V polynomial d(z) = ztd of degree n and its coef�-cient vector d we denote the operation of conjugate-reciprocationby d](z) = znd?(z�1) ; d] = Jd? (10)
Again the reciprocated polynomial may be written as d](z) =
ztd]. A polynomial d(z) that is not a constant is called 1-D stableif the condition �d(zi) = 0 implies zi 2 U� or equivalently if

d(z) 6= 0 8z 2 V : (11)
Note that the diamond operation amounts to either pre para-conjugate and post reciprocal operation or to pre para and postconjugate-reciprocal operation.

3. DISCRETE-CONTINUOUS STABILITY
We shall consider the stability condition (2) for complex coef�-cients Q(s; z) 2 C[s; z] (the set of bivariate polynomials in inde-terminates s; z with complex coef�cients), like in [4]. (All otherprevious works that studied the condition (2) considered it for realpolynomial only.) Polynomials h(s) 2 C[s] and d(z) 2 C[z] thatsatisfy (9) and (11) will too be called 1-C stable and 1-D stable,respectively.Assume a Q(s; z) 2 C[s; z] as in (1). The condition on theleading coef�cient qn1;n2 6= 0 is a readily visible assumption. Ifqn1;n2 = 0 then Q(s; z) is not stable. (Note that s = 1 be-longs to R and a zero there implies an unstable 1-C polynomialand hence also C-D instability.)Lemma 1. The polynomial Q(s; z) (1) satis�es (2) (it is C-D sta-
ble) if, and only if, the following two conditions hold:
(i) Q(s; b) is 1-C stable for some b 2 V.
(ii) Q(s; z) 6= 0 8(s; z) 2 I� V.

The above lemma appeared �rst in [8] with the values b =1.Then, with the value b = 1 in [2, Theorem 2:(2)], with b 2 T in[9], and in its above generality in [3]. The latter two referencescontain more simplifying conditions for C-D stability.In [4], the above lemma was used, in conjunction with Jury'smodi�ed 1-D stability test for complex polynomials [5], to obtaina tabular test for C-D stability that assigns toQ(s; z) a sequence ofn2 2-V polynomials fCm(s; z) =Pmk=0 c[m]k(s)zk, m = n2 �1; : : : ; 0g where Cm are matrices with no particular symmetry.Here, a tabular test that associate Q(s; z) with a sequence ofn2 2-V polynomials fEm(s; z) =Pmk=0 c[m]k(s)zk, m = n2 �1; : : : ; 0g where Em(s; z) = E�(s; z). This para-conjugate col-umn symmetry admits the computation of only half of the entriesof the coef�cient matrices Em (say only the left half columns).The new procedure is derived by using the author's 1-D stabil-ity test for complex polynomials [6] to examine the condition (ii)of Lemma 1. Assume that Q(s; 1) 6� 0 (implied if Q(s; 1) is 1-C

stable a necessary condition for C-D stability that will be testedbefore any further step is followed). Then de�ne
M(s; z) := Q\(s; 1)Q(s; z) = stMz (12)

whereQ\(s; 1) = Q?(�s; 1). Note that condition (ii) of Lemma 1holds if, and only if,M(s; z) 6= 0 8(s; z) 2 I�V. Then testing 1-D stability of ps(z) = Q(s; z) assuming s 2 Iwith the author's 1-D stability test leads eventually to the next algorithm and theorem.Algorithm 1. Immittance C-D stability table.Construct for D(z1; z2) a sequence of polynomials fEm(~s; z) =Pn�mk=0 e[m] k(~s)zk; m = 0; 1; : : : ; n(= n2)g, where Em = E]m8m, as follows.(i) Initiation. M(s; z) = Q?(�s; 1)Q(s; z)
E0(s; z)=M(s; z)+M�(s; z)) ; E1(s; z)=M(s; z)�M�(s; z)

z � 1
q0(s) = E0(s; 1) (13)

(ii) Recursion. Form = 1; : : : ; n� 1 obtain Em�1(s; z) by:
gm(s) = e[m�1] 0(s)e\[m] 0(s) ; qm(s) = e[m] 0(s)e\[m] 0(s) (14)

zEm+1(s; z)=gm(s)Em(s; z)+g\m(s)zEm(s; z)�qm(s)Em�1(s; z)qm�1(s)
The polynomials qm(s) in the denominators are always factors ofthe numerator so that all Em(s; z) are indeed polynomials. Thedegree of E0(s; z) is (2n1; n2) and the degrees of Em(s; z) form = 1; : : : n2 are (2mn1; n2 �m). The produced polynomialsposses the symmetry E�m(s; z) = Em(s; z) for all m. For real /complex Q(s; z) the coef�cient matrices Em are real / complex,respectively.Theorem 1 [Stability conditions for Algorithm 1]. Assume al-gorithm 1 is applied to Q(s; z) (1) and let

�(s) := En(s; z) (15)
denote last polynomial that it produces. Q(s; z) is stable if, andonly if, the following three conditions hold.(i) Q(s; b) is 1-C stable for some b 2 V.(ii) Q(a; z) is 1-D stable for some a 2 I.(iii) �(s) 6= 0 8s 2 I.Note that �(s) is truly a 1-V polynomial (of s only) of degree2n1n2. The propertyE�m(s; z) = Em(s; z) implies that � exhibitspara-conjugate symmetry �(s) = �?(�s) . Thus, in the real case(Q is real) it is an even polynomial with vanishing odd powers ofs coef�cients while in the complex case (Q is complex) even/oddpowers of s coef�cients are purely real/imaginary.A rigorous derivation of Algorithm 1 and a proof of Theorem1 will not be given currently. They can be deduced starting withthe test in [6] and following a path analogous to the way the maintheorem in [10] was reached. The fact that Theorem 1 looks likethe main theorem in [4] is not coincidental. In fact, an alternativeproof for the above theorem can be reached after showing that boththe algorithm used here and in [4] terminate with an identical �(s)that is the greatest common divisor of Q(s; z) and Q�(s; z) withrespect to the variable z. (Other equivalent terms are the resul-tant or the determinant of the unit-circle Bezoutian of Q(s; z) andQ�(s; z) with respect to the variable z.)A general algebraic approach to examine condition (iii) in The-orem 1 is using the extension of the Routh test into a zero location



procedure for complex 1-V polynomials that also handle �singu-lar� situations (because singularities are not inconsistent with con-dition iii being true) [14]. The testing of this condition can becarried out by approximately n4 (for n1 = n2 = n) �ops. Thetesting of condition (i) can be carried out by any of the tests inthe Schur-Cohn Marden and Jury class of stability tests (e.g. [5])or more ef�ciently with the author's test [6] in O(n2). Condition(ii) is a 1-C stability test that like condition (iii) can be handled bythe Routh test and too has O(n2) of complexity. Two convenientchoices for b in Theorem 1 are either b = 1 (check 1-C stabilityfor a polynomial whose coef�cients are the sum of columns of Q)or b = 1 (the last column of Q). Two convenient choices for aare a = 0 - the �rst row of Q and a =1 - the last row of Q).
4. ILLUSTRATION

We recall that the test works for both real and complex coef�cientpolynomials. Here we shall illustrate the test with the followingreal polynomial of degree (3,3) that we used also in [4].

Q(s; z) = [1 s s2 s3]
2
64

6 6 �10 155 8 �15 252 2 �4 71 1 �2 3

3
75
2
664

1zz2z3

3
775

To test whether or not it is C-D stable we carry out the test thatconsists of Algorithm 1 and Theorem 1 through the following foursteps.Step 1: Test condition (i) in Theorem 1 for say Q(s; 1) =[17 ; 23 ; 7 ; 3]s and realize that it is 1-C stable.Step 2: Test condition (ii) in Theorem 1 for say Q(0; z) =[6 ; 6 ; �10 ; 15]z and realize that it is 1-D stable.Step 3: Apply algorithm 1. FormQ� and then obtainM(s; z)(12)

Q�=
2
64

15 �10 6 6
�25 15 �8 �57 �4 2 2
�3 2 �1 �1

3
75;M=

2
6664

102 102 �170 255
�53 �2 �25 80
�24 �33 63 �951 1 �2 0
�3 �3 6 �9

3
7775

Proceed with Algorithm 1 to obtain the sequence of 2-V polynomi-als fstEmz;m = 0; : : : ; 3g with coef�cient matrices as follows.

E0 =

2
666664

357 �68 �68 357
�133 23 �23 133
�390 99 99 �390
�32 26 �26 321 3 �3 �1
�12 3 3 �12

3
777775

E1 =

2
66666664

153 �119 153
�27 0 27
�312 3 �312
�8 0 8
�71 25 �71
�1 0 1
�6 3 �6

3
77777775
;E2 =

2
6666666666666666664

5967 59671557 �1557
�49293 �49293
�7704 770471015 71015283 �28330943 309431353 �13535520 5520268 �268470 47019 �1918 18

3
7777777777777777775

Et3=[646425; 0;�8915057; 0; 35480226; 0; �27528155; 0;
�22357775; 0; �6569912; 0;�1050718; 0; �99997; 0;�5414;0;�135]

Step 4: Examine whether �(s) = stE3 6= 0 for s 2 I. Thecondition can be shown to hold. Thus the tested polynomial is C-Dstable.Algorithm 1 can be shown to require O(n6) operations as-suming for simplicity n1 = n2 = n. It is the dominant part inthe overall cost of the procedure. The testing of the condition (i)and (ii), require O(n2) �ops with actual number that depends onthe 1-C and 1-D stability test that is employed. The testing of con-dition (iii) by the Routh zero location procedure requires O(n4)operations. Using a more accurate evaluation of the cost of com-putation would show that the computational cost of this tabular testcompares to the cost of the immittance 2-D stability test in [10].The cost of the tabular test in [4] has too O(n6) with a cost �gurethat compares to the cost for the scattering 2-D tabular test [13].Thus the current tabular test here is more ef�cient than the test in[4] by a factor similar to the computational advantage of the 2-Dtabular stability test in [10] over the 2-D tabular test in [13]. Thisadvantage stems from the �diamond� symmetry (para-conjugatecolumn) symmetry of the matrices Em that admits the computa-tion of (roughly) only half of the entries of the matrices.
5. TELEPOLATION

In this section we shall brie�y show how the above tabular test, aswell as the test in [4], can be simpli�ed by telepolation. This ap-proach has been introduced in [7] to simplify the immittance 2-Dtabular test in [12]. It was also used in [11] to simplify the testin [10] and to simplify the the Hu-Jury 2-D stability test in [13].In all these cases interpolation was applied to an �ef�cient� tabu-lar test (i.e. one with O(n6) complexity and a single �positivity�condition) to replace the construction of the table by a �nite col-lection of certain 1-D stability tests. This procedure also reducedthe overall complexity to O(n4).The immittance-type tabular test presented here, as well as thescattering-type test in [4], qualify for a similar treatment. The ideais to circumvent the algorithm for the construction of the table andinstead obtain the polynomial �(s) that celebrates in Theorem 1 byinterpolation.As a polynomial of degree 2M ,M := n1n2, �(s) can be de-termined from any 2M + 1 sample values bi = �(si) at differentsampling points si; i = 0;�1 : : :�M by solving the set of equa-tions
[1; si; s2i : : : ; s2Mi ]� = bi i = 0;�1 : : :�M (16)

This is a Vandermonde set of equations for which ef�cientO(N2) solutions (here N = 2M ) are known [15].The key requirement is to obtain sample values of �(s) fromwhich this polynomial can be interpolated. For si 2 I samplevalues �(si) can be obtained by applying the next algorithm topsi(z) := M(si; z).Algorithm 2. Assume p(z) is a polynomial of degree nwith com-plex coef�cients and that p(1) 6= 0. Form p̂(z) = p(1)?p(z) andconstruct a sequence em(z) = Pn�mi=0 em;izi, m = 0; 1; : : : ; nof symmetric polynomials as follows.
e0(z) = p̂(z) + p̂](z) ; q0 = e0(1)

e1(z) = p̂(z)� p̂](z)
(z � 1) (17)

Form = 1; : : : ; n� 1 obtain em+1(z):
gm = em�1;0e?m;0 ; qm = jem;0j2



zem+1 = (gm + g?mz)em(z)� qmem�1(z)qm�1 (18)
It is apparent that Algorithm 2 presents the projection of Al-gorithm 1 for s �xed to s = si. Thus the last entry en;0 thatAlgorithm 1 produces is equal to �(si), i.e. bi = en;0.Algorithm 2 is the companion 1-D stability test that was usedalso in [11] to telepolate the 2-D tabular stability test in [10]. Thenext theorem is proved in [11].Theorem 2. Assume Algorithm 2 is applied to a complex polyno-

mial p(z) of degree n such that p(1) 6= 0. Then p(z) is stable if,
and only if,

em(1) > 0 ; m = 0; 1; : : : ; n: (19)
Furthermore, Refem;0g > 0 for all m, are necessary conditions
for stability of p(z).Algorithm 2 and Theorem 2 can be used as the accompanying1-D stability test for the telepolation of the current tabular C-Dstability test. During the use of the accompanying stability test toacquire a sample value �(si), one should watch for any violationof a necessary condition for 1-D stability of psi(z) = M(si; z)(according to Theorem 2) because in any such case Q(s; z) canbe declared at once as not C-D stable and the telepolation-basedstability testing procedure reaches an earlier termination.In the complex case (Q is complex) the number of required 1-D stability tests is 2M+1. In the real case (Q is real), onlyM+11-D stability tests are needed because it is enough to obtain samplevalues for bi = �(si); si = 0; 1; : : :M . Then, using the fact that�(si) = �(�si), it is possible to choose the remainingM samplepoints as s�i = �si for which the already obtained sample valuesbi = �(s�i) can be used.It is possible to simplify similarly also the scattering tabularC-D test presented in [4]. This time the accompanying 1-D sta-bility test that has to be used is the modi�ed Jury test depicted asAlgorithm 1 and Theorem 1 in [4]. Namely, it can be shown thatapplying this 1-D stability test to psi(z) (si 2 I) produces at itsend bi = cn;n.Note that each 1-D stability test requires O(n2) �ops to testa polynomial of degree n. Assume for simplicity n1 = n2 =n then M = n2 tests require O(n4) �ops. So sample valuesare acquired in O(n4) �ops. The recovery of �(s) (solution ofthe interpolation set of equation) requires too O(n4) �ops. Thusthe telepolation-based C-D test can be completed in O(n4) �ops.The actual number of �ops will be lower for the immittance-typetelepolation-based C-D test than for its scattering-type counterpartbecause sample values are obtained by the immittance 1-D stabil-ity test (i.e. by the above Algorithm 2) in less arithmetic operationsthan by the modi�ed Jury test.

6. CONCLUSION
The paper presented several procedures to determine whether abivariate polynomial stable in the continuous-discrete sense (doesnot vanish in the closed right half-plane times the closed exterior ofthe unit-circle. First a tabular test that forms the immittance coun-terpart of the scattering-type tabular test that was presented for thisproblem in [4]. Both tabular tests have O(n6) complexity (for abivariate polynomial of degree (n; n)) but the immittance test hasa lower cost because it produces matrices with para-conjugate col-umn symmetry. Next, the paper showed simpli�cation for both

the tabular tests by telepolation (interpolation). The telepolation-based procedures test C-D stability by a �nite collection of (mod-i�ed Jury or Bistritz) 1-D stability tests plus a Routh test for nozeros on the imaginary axis. Both telepolation-based proceduresreduce the computational cost from O(n6) to O(n4) where theimmittance version requires again less computation than the scat-tering version.
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