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On an Inviable Approach for Derivation of
2-D Stability Tests

Yuval Bistritz, Fellow, IEEE

Abstract—A tabular stability test for two-dimensional (2-D) dis-
crete systems that was published in these Transaction is shown to
be not correct. It is also shown that the claimed new method that
it introduced to extend stability conditions from one-dimensional
(1-D) to 2-D systems relies on a mathematically inviable argument.
The paper tries to find a similar but correct algorithm and stability
conditions. The outcome of the search after a stability test with sim-
ilar algorithm is a variant of the Maria–Fahmy 2-D stability test for
which a more concise set of necessary and sufficient conditions for
stability are obtained. The search after stability conditions of sim-
ilar appearance that can be posed on the correct algorithm, yields
new necessary conditions for 2-D stability that resemble stability
conditions associated with the “reflection coefficient” parameters
in the 1-D Schur test.

Index Terms—Continuous-discrete stability, multidimensional
systems, stability tests, two-dimensional (2-D) discrete stability.

I. INTRODUCTION

STABILITY testing of two-dimensional (2-D) discrete sys-
tems requires a verification on whether a bivariate polyno-

mial

(1)

has no zeros in the closed exterior of the unit bi-circle, viz.,

(2)

where with and
. A polynomial for which the condition in (2) holds will be

called 2-D stable.
The paper will show that a method proposed to test the above

condition in [1] is not correct. The paper also investigates how
this incorrect result was reached. It is shown that the claimed
new approach to extend stability conditions from one- to 2-D
systems relies on an inviable mathematical argument. Pointing
on fault in the underlying approach has a broader impact in that
it may save further futile research and in disqualifying additional
already published papers that used the incorrect approach. One
such instance that we noticed is the continuous–discrete stability
test in [2].

A second undertaking of this paper is to find a similar but
correct 2-D stability algorithm and stability conditions to what
was attempted in [1]. This route will lead to a couple of new re-
sults in 2-D stability as follows. Looking after a 2-D stability test

Manuscript received April 22, 2003; revised August 1, 2004. This paper was
recommended by Associate Editor J. Vandewalle.

The author is with Department of Electrical Engineering, Tel Aviv University,
Tel Aviv 69978, Israel (e-mail: bistritz@eng.tau.ac.il).

Digital Object Identifier 10.1109/TCSII.2005.852929

that uses a more or less similar recursion will lead to a refined
version for the first published tabular 2-D stability test—the
Maria–Fahmy test [3]. While searching for stability conditions
that can be posed on the algorithm and have a similar appearance
to those suggested in [1] will lead to a some interesting new nec-
essary conditions for 2-D stability that are related to conditions
that hold for the “reflection coefficients” in the Schur one-di-
mensional (1-D) stability test.

The paper is constructed as follows. The next section intro-
duces our notation and uses it to rephrase the method that was
proposed in [1]. Section III derives a correct similar algorithm
for testing 2-D stability. Section IV compares the two proce-
dures and identifies at what point and why the proof of the main
results in [1] is not viable. Finally, Section V derives the afore-
mentioned additional necessary conditions for 2-D stability.

II. PRELIMINARIES

The form used in (1) and (2) to define 2-D stability is not the
only conventions that has been used in the literature on 2-D sta-
bility. The paper [1] uses one of the alternative forms as follows.
A bivariate polynomial

(3)

is tested to whether it satisfies the condition of no zeros in the
closed interior of the unit bi-circle, viz.,

(4)

where with . To avoid ambi-
guity, a polynomial (3) for which the condition (4) holds will be
termed (2-D) anti-stable.

We used the “stable” convention (2) in all our previous
papers on 2-D stability, e.g., [4] and [5]. We shall mostly
adhere to this convention also here. It is the most convenient
convention to extend extension of 1-D stability conditions to
2-D stability conditions because it is consistent with regarding
a (1-D) discrete-time system as stable when its characteristic
polynomial (has all its zeros in ). A
univariate polynomial that has all its zeros in or will be
called (1-D) stable or anti-stable, respectively. The transition
between the two conventions involves a simple reversion of
rows and columns of the polynomial coefficients (an operation
to be defined in a moment). Translation of algorithms and
conditions from their “anti-stable” convention in [1] to “stable”
terms will be provided to facilitate comparisons.

The remaining of our notation and terminology can be sum-
marized as follows. A polynomial like (1) is said to have degree

. A same letter is used to denote both the polynomial and
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its coefficient matrix (or vector). Thus, the above bivariate poly-
nomial may be written also as , with

of length depending on context. Similarly a
univariate polynomial can be written as . We denote

, where is the reversion matrix (a square matrix with
1’s on its anti-diagonal and zeros elsewhere) and ,
where denotes complex conjugate. Correspondingly, the next
polynomials are defined, and

. Similarly, for matrices and bivariate polyno-
mials we denote and and correspond-
ingly have and

.
It becomes apparent that is stable if, and only if, a

with coefficient matrix related to it by (or
) is anti-stable. Similarly, is stable if, and only if,

(or ) is anti-stable.
The method proposed in [1] to test 2-D stability consists of

an algorithm to build a table whose entries are univariate poly-
nomials and from stability conditions posed on this table. The
following Algorithm A duplicates the construction rules for [1,
Table I] as a recursion for bivariate polynomials.

Algorithm A [The Algorithm in [1] Arranged Into
a Polynomial Recursion]: Consider a in (3)
such that and express it as

. Assign to it a sequence of poly-
nomials, , by the
following recursions.

For do

(5)

The next Assertion A appears in [1, Th. 3].
Assertion A. [Main Result in [1], Not Correct]: Assume Al-

gorithm A is applied to a with . The con-
dition (4) holds for if, and only if, the following set of
conditions hold.

1) for .
2) for .
3) (are anti-stable) for

.
We shall later (in Section IV) convert Algorithm A and Asser-

tion A from its above “anti-stable” setting to “stable” convention
terms which will simplify their comparison with a proper 2-D
stability test of close form that will be derived in Section III.

We shall need the next Lemma for our derivation.
Lemma 1: is stable if, and only if the following are

true.

1) for all and some (6)
2) for all (7)
The above lemma, cited also in [1] (as Theorem 2 there) has

beenindeedthestartingpointofessentiallyallmethodsfor testing
2-D stability. It was introduced to this field by Huang [6] (with

) and extended to the above form by Strintzis [7].
In motivating their new approach, the authors of [1] count

two drawbacks in using Lemma 1: one is that it leads to the oc-
currence of complex polynomials; second—that at the end the
resulting 2-D stability tests require testing of several univariate

polynomials for a positivity condition. The new approach pro-
posed instead a 2-D tabular test on which the 2-D stability con-
ditions appear as 1-D stability conditions that real polynomials
extracted from the table have to satisfy.

The first assumed drawback is not precise. The lemma lead to
tabular tests with only real polynomials and arithmetics when
is real (and complex coefficients if is complex e.g., [4]). This
will be apparent also from our derivation in this paper that too
starts with Lemma 1. The second statement is essentially correct.
However, the testing of positivity conditions on has the same
complexity as testing 1-D stability [8]. Also, one positivity test
is enough. Incidently, the wish to carry out 2-D stability by a
collection of real 1-D stability tests that was expressed in the
conclusionof [1]hasbeenattained recently [9],notasacollection
of real 1-D stability tests that are posed on a 2-D stability table
but in a more fulfilling manner—a collection of 1-D stability tests
that replace the construction of the 2-D stability table.

The approach in [1] started with a certain simplification of
stability conditions posed on the Inner (or Schur–Cohn) deter-
minants that is possible when the tested polynomial is real [10].
It was assumed there that using stability conditions for real poly-
nomials will circumvent complex polynomials in the 2-D sta-
bility test. A major difficulty that the paper will track is that the
manner the paper extended the 1-D stability conditions to bi-
variate polynomials makes incorrect mathematical assumptions.
Irrespectively, a secondary difficulty that will also be revealed
is that the relations between Algorithm A and the Inners de-
terminants that were assumed are not correct (not even for real
polynomials).

III. A COMPARABLE PROPER 2-D STABILITY TEST

The Schur procedure to test 1-D stability have appeared in
the literature in many forms since it was introduced (more than
80 years ago). Its offsprings consist typically of an algorithm
that builds for the tested polynomial a sequence of polynomials
of descending degrees (often presented by a table whose rows
are the polynomials coefficients) and from stability conditions
posed on the coefficients of the produced polynomials. The
many tests that followed from the Schur procedure can be
classified into four types, labeled from “A” to “D” in [11]. The
D-type is the best candidate to obtain an algorithm similar to
Algorithm A because it is the only one among the four types
that like Algorithm A involves no division. Our starting point is
therefore the prototype algorithm for D-type 1-D stability tests
in [11] that is cited below as Algorithm 1 and Theorem 1.

Algorithm 1: Construct for a polynomial
(with complex coefficients) a sequence of polynomials

as follows. Set
then for do

(8)

Alternatively, since all are real for , the
algorithm may also written as follows:

(9)
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Theorem 1 [1-D Stability Conditions for Algorithm 1:
is stable if, and only if, Algorithm 1 produces for it

(10)

Proof of Theorem 1 can be deduced from the zero location
rules proved for Algorithm 1 in [11] (which, by the way, has
a tricky shape quite unsuspected considering the above simple
stability conditions). A direct and simple proof for Theorem 1
follows from stability conditions posed on the so called “reflec-
tion coefficients” (once the latter are taken to be known). This
short proof is brought next (also because it introduces equations
that will be used later in Section V to obtain some new 2-D sta-
bility condition). The reflection coefficients are parameters as-
sociated with that can be obtained from the sequence that
Algorithm 1 produces as follows:

(11)

It is well known that is stable if, and only if

(12)

Various proofs are available for the above assertion (including
one in [11]). A Proof for Theorem 1 follows readily from using
the 1-D stability conditions (12) with the next relation

(13)

that are obtained by comparing leading coefficients in (9).
To pursue a 2-D stability test based on Lemma 1 and Algo-

rithm and Theorem 1, it is useful to replace the second condition
of Lemma 1 with and regard

as a univariate polynomial in with coefficients that
are “balanced polynomials” dependent on ,

. (A balanced polynomial is a polynomial
in the two variables and or and related to the
univariate polynomial of degree by .
Changing with is legitimate because clearly
the condition (7) holds if, and only if, “ for all

”. The advantage of balanced polynomial is
that for . As a consequence, we can
test the second condition in Lemma 1 by the applying the above
1-D stability test to the univariate polynomial
(with balanced polynomial coefficients). The next algorithm is
readily obtained from Algorithm 1 (it can be realized by formal
replacement of each complex conjugate operation with the re-
version operation).

Algorithm 2: Assign to the tested polynomial, written as
, a sequence of polynomials

, using the
following recursions:

(14a)

For do

(14b)

After Algorithm 2 has been established as suggested, it be-
comes apparent that replacing everywhere by does not affect

the sequence of coefficient matrices that the algorithm produces.
This follows because powers of that present the difference be-
tween balanced and normal polynomials of always cancels out
between the two sides of the (14). For example, in the first step
of the recursion

and so forth.
From the manner Algorithm 2 was obtained from Algorithm 1

it follows that Theorem 1 in conjunction with Lemma 1 implies
the following conditions for 2-D stability.

Theorem 2 [2-D Stability Conditions for Algorithm
2]: is stable if, and only if, the following set of
conditions hold.

1)
2)
3) (or for

) where are produced by applying
Algorithm 2 to .

The next theorem reveals that the above set of necessary and
sufficient conditions for 2-D stability is too large.

Theorem 3 [Tighter 2-D Stability Conditions for Algorithm
2: is stable if, and only if, the following set of con-
ditions hold.

1)
2)
3) (or )

where is the last polynomial that has
degree 0 in (and degree in ) that Algorithm 2
produces for .

Proof: The conditions are necessary for stability as a
subset of the conditions in Theorem 2. To prove sufficiency
we prove that the conditions 1)–3) here imply the larger set in
Theorem 2. Assume they hold and nevertheless the conditions
in Theorem 2 do not hold. That means that some of the
may have zeros on . Consider then the balanced form of the
algorithm (i.e., with replacing everywhere). Then,
are real for all . Say is the highest index of balanced
polynomial that vanishes on . Condition 2) implies that at

for all . Let then be the rightmost
zero (i.e., the zero on closest to ), . It
follows from the relations

[it is the counterpart of (13)] that . Let
then be the rightmost zero on of . (Note
that it will be closer to , i.e., the
where denotes real part of .) Then again one has

. Therefore, must vanish
on the arc of between and . Keep repeating this
argument leads to that for some on with

. A contradiction to the given
condition 3).

Example: Here is a simple numerical illustration for the
above 2-D stability test (Algorithm 2 and Theorem 3). This ex-
ample will later serve also as a counter example to the validity
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of the method in [1]. Consider the next polynomial of degree

The polynomial is not 2-D stable. To furnish this fact it is enough
to provide a zero with . Such a
zero occurs at (approximately) and

.
Testing this polynomial with Algorithm 2 and Theorem 3 pro-

ceeds as follows. First is evidently 1-D
stable. Similarly, can also be de-
termined to be 1-D stable. Next, Algorithm 2 is performed. It
produces

It remains to check whether . This condition
is false (its 4 zeros are all on the unit-circle). Therefore, the test
determines as not 2-D stable.

Algorithm 2 with Theorem 2 are essentially a replica of the
first 2-D stability test that was proposed by Maria and Fahmy in
[3]. The single positivity test in Theorem 3 is new for this test. It
can be deduced from (14) that the polynomials that the algorithm
produces are of degree has degree for

. As a result, the overall cost of computation has an
even more severeexponentialgrowth with thedegree of the tested
polynomial (it contain as its most dominant term). This
makes this test by far less efficient than second generation tabular
tests like [12], [4], [5] that have only complexity [for a
polynomial of degree ] or the more recent third generation
tests that were obtained as their interpolated counterparts in [5]
and [13] that require only operations.

IV. COMPARISON WITH [1]

This section first shows that the previous numerical illustra-
tion provides a counterexample to the validity of the method
proposed in [1]. Then, a careful comparison of the method in
[1] with the 2-D stability test in the previous section is held to
reveal difficulties in the manner of derivation in [1]. Finally, the
question of whether (and to what extent) can the stability con-
dition in the previous section be brought to terms with the con-
ditions attempted in [1] is addressed.

Counter Example: Consider again the numerical example in
the previous section. The method in [1] would test the polyno-
mial

through the following steps. The degree of this polynomial was
chosen to be equal to the degree of a polynomial worked out in
detail in Example 1 in [1] in order to facilitate the comparison
of the subsequent steps here with respective steps detailed in
Example 1 there.

Algorithm A starts with . The next bi-
variate polynomial it produces is

Now we turn to examine the conditions in Assertion A. The
polynomials used to build the polynomials required in Asser-
tion A are obtained from

and , and
taken from . Using them one obtains

that is positive at both and
is anti-stable, and that is too pos-
itive at both and is anti-stable. Next,

and
are again both positive at both . (In principle, Algorithm A
can be continued for one more step and produce

that is too
anti-stable, but this last step was not requested in [1].)
Since all the sufficient conditions in Assertion A (i.e., in [1,
Th. 3]) hold, this theorem implies that is anti-stable
(has no zeros in the closed interior of the bi-disk). This conclu-
sion is in disagreement with the conclusion from Algorithm 2
and Theorem 3 that determined for this numerical example that

is not 2-D stable. Using the reciprocal of
the point with which in the pre-
vious numerical illustration where shown as a zero of
proves that at a point in the interior of the
bi-disk. Thus, the above is a counter-example to the validity of
the method proposed in [1].

The proof for [1, Th. 3] (i.e., Assertion A) uses another the-
orem (Theorem 4) there that employs 1-D stability conditions
that Jury posed on Inner determinants [10]. The Inner is a matrix
of size that can be assigned to a polynomial of degree
such that its 1-D stability can be determined from positivity of
the determinants of a sequence of submatrices of sizes
ordered in an inner-wise nested manner. It was advanced by Jury
as an alternative to the resultant matrix (again a ma-
trix with differently arranged for quadrants). The Inners and the
resultants contain the same information as the unit-circle Be-
zoutian, also known as the Schur–Cohn or Schur–Cohn–Fuji-
wara (SCF) matrix [10], [14]. The SCF matrix is of size
only and features the property that its sequence of principal mi-
nors is equal to the values of the sequence of determinants of
the inner submatrices (choosing a consistent assignment, else
the two sequences may differ by signs and scaling that runs
along the sequence). Necessary and sufficient conditions for 1-D
stability is positive definiteness of the SCF matrix.

Using the SCF matrix instead of Inners admits an explanation
of why the Proof in [1] is not viable in terms of basic knowl-
edge of algebra of matrices. The SCF matrix is a Hermitian
complex matrix for a complex univariate polynomial (and a real
symmetric matrix for a real polynomial). Positive definiteness is
equivalent to the condition that all the determinants of its main
submatrices (all the principal minors) are real and positive. This
condition is also equivalent to that all its eigenvalues being real
and positive. Thus, in particular real eigenvalues are necessary
conditions for a matrix to be positive definite. It is also clear that
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nonsingularity of the matrix (i.e., no zero eigenvalues) is not a
sufficient condition for positive definiteness.

The derivation in [1] uses a simplified setting of the condi-
tions posed on Inners that Jury showed that can be used for
real (as opposed to complex) coefficient univariate polyno-
mials. The proof there proceeds by regarding the polynomial

in Algorithm as a univariate
polynomial in the indeterminate whose coefficients are the
polynomials . It then sets these coefficients into the
simplified Inner matrix for real polynomials and uses some sort
of continuity argument on what happens to the eigenvalues as
the value of the polynomials vary. In corresponding
terms, one assigns to the above univariate polynomial a real
SCF matrix (with polynomial entries) and examines what
happens as vary. As long as take real values
(as long as is real) the corresponding SCF matrix will have
real eigenvalues. However, when take complex values,
insisting on using the real SCF (that, amounts in using Jury’s
simplified Inners for a real polynomial) the assigned SCF
matrix becomes a complex matrix that is symmetric but not
Hermitian. (Its lower triangular is the transpose but not the
conjugate transpose of its upper triangular.) The argument in [1]
that concentrates on watching whether the eigenvalues vanish
or not as the coefficients vary becomes meaningless because
for complex entries the eigenvalues are no longer guaranteed
to remain real. Consequently, they truly also cease to provide
any information on the location of the zeros of the examined
complex univariate polynomial.

To facilitate comparison of the method in [1] with the method
that was obtained in Section III it is possible to eliminate artifi-
cial differences by translating Algorithm A and assertion A from
the “anti-stable” to the “stable” convention. Using the following
substitutions:

(15)

Algorithm A and Assertion A take the next forms.
Algorithm : Consider a such that and

express it as . Assign to it a
sequence of polynomials

, using the following recursions:

(16a)

For do

(16b)
Assertion (Not Correct): Assume algorithm is applied

to with . is stable if, and only if, the
following set of conditions hold.

1)
2)
3) (are both stable) for

.
In stating Assertion we substituted the translation of first

two conditions in [1] (or Assertion A) by more concise equiva-
lent conditions as follows. Direct translation of condition 1) in

Assertion A gives for . It
therefore amounts to that all the reflection coefficients

of the real polynomial have moduli
less than one which holds if and only if is stable, see
(12). [Thus, condition 1) in Assertion A is equivalent to “
is anti stable”.] By a similar justification, condition 2) was re-
placed by “ is stable” (and in Assertion A a corre-
sponding “ is anti-stable” is possible).

Note that each instance that Algorithm 2 has the sharp oper-
ator , Algorithm has instead only the reversion operator .
Recall that Algorithm 2 has been obtained from Algorithm 1 re-
garding the tested polynomial as a univariate polynomial whose
coefficients are complex valued ‘balanced polynomials’ for in-
determinate variable . Algorithm is therefore similar to
Algorithm 1 when the polynomial coefficients take real values.

There is a secondary layer of difficulty in [1]. It can be shown
that [1, Th. 3] assumes incorrect relations between the Inner
determinants and the first and last coefficient of
in Algorithm A. The relations there are not correct even for a
polynomial with simple (not polynomial) real coefficients. The
correct relations can be worked out from relations in [11] be-
tween the leading coefficients in the sequence of polynomials
produced by C-type prototype test there (which are equal to the
principal minors of the Schur–Cohn matrix and therefore are
also equal to the inner determinants) and the leading coefficients
in the D-type test there (cited here as Algorithm 1 and Theorem
1). A quicker but sufficient evidence that the relations in [1, Th.
3] can not be true, can be drawn from the observation that there
is inconsistency in the degrees of the polynomials in the relation

between the two sides of (12) and (13) in [1]. At the left-hand
side the th polynomial has degree because it presents
the determinant of a polynomial matrix of size
with entries that are polynomials of degree ; At the right-hand
side, the polynomial has degree (equal to the degree in
of and ).

V. FURTHER NECESSARY CONDITIONS FOR 2-D STABILITY

The last question that will be addressed is: what stability con-
ditions, if any, can be attached to polynomials that look like the
polynomials in [1] (i.e., in Assertion here).
Thus, we seek relation between 2-D stability and properties of
polynomials and

, where and are created by Algorithm
2.

Applying the conditions (13) to ,
regarded as a univariate polynomial with ‘balanced polynomial’
coefficients dependent on , imply the conditions

(17)

It is possible to relax the above conditions and replace balanced
polynomials with normal polynomials (dependency on by de-
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pendency on ). As a consequence, it is possible to replace con-
dition 3) in Theorem 2 by

(18)

(19)

Since these are symmetric polynomials of even degree, the no
zeros on condition amounts to having half of the zeros in
and half in . Next, it follows from (11), (12) that for

Therefore, conditions (18)–(19) imply the conditions

(20)

(21)

Thus, it can also be said (using Rouche’s theorem) that the poly-
nomials in (21) have half of their zeros in and half in . We
summarize these findings as the next theorem.

Theorem 4 [More Stability Conditions for Algorithm 2]:

1) is stable if, and only if, the conditions 1) and 2)
of Theorem 3 and : the conditions in (18)–(19) hold.

2) The conditions in (20) and (21) as well as the stronger
condition that the polynomials in (21) have half of their
zeros in and the other half in are necessary conditions
for stability of .

With (20) and (21), we reached polynomials of a form that
corresponds to those in condition 3) of Assertion . The condi-
tion (20) and that half of the zeros of the polynomials in (21) are
in and half in (and no zeros on ) present necessary con-
ditions for 2-D stability but not sufficient for stability because
they do not imply those in (18) and (19). Therefore, in difference
from (19), these conditions are not a sufficient set of conditions
for 2-D stability not even in combination with conditions 1) and
2). Therefore, they can not substitute conditions 3) in Theorem
3. In particular, it is apparent that 1-D stability of the polyno-
mials in (20) and (21) [like in condition 3) of Assertion ] is
neither necessary nor sufficient for 2-D stability. At the same
time, testing zero location of a polynomial with respect to the
unit circle (in order to determine how many are in and in
or on ) need not be more complicated than testing whether it
is 1-D stable [8].

VI. CONCLUSION

The paper showed that the method to test 2-D stability that
was proposed in [1] is incorrect. The paper also identified that

the new approach that was used there to extend stability condi-
tions from 1-D to 2-D systems is not correct. Unfortunately, it
seems that this incorrect approach was already used is several
other cases. One instance is a method to test continuous-discrete
stability conditions in [2]. Additional papers (that we have not
seen) referenced in [1] and [2] that deal with related issues and
are authored or co-authored by the same author(s) might also be
afflicted. After the review of this paper was completed we dis-
covered another paper in this transaction [15] that proposes to
improve the algorithm in [1]. The counterexample in this paper
can be used to verify that the stability condition there are too not
correct.

The search after similar but correct 2-D stability test and
stability conditions led to a couple of new results. One is an
improved form for the Maria–Fahmy 2-D stability table [3]
showing for it a tighter set of necessary and sufficient condi-
tions for stability. The other is a new set of necessary condition
for 2-D stability that hold for certain univariate polynomials
that extend condition that hold for the “reflection coefficient”
parameters in the Schur 1-D stability test.
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