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Critical Stability Constraints for
Discrete-Time Linear Systems

Yuval Bistritz, Fellow, IEEE

Abstract—Critical stability constraints are a small set of condi-
tions that are enough to maintain the stability of a system when
some parameters are perturbed from a nominal stable setting. The
paper uses a recently introduced efficient integer-preserving (IP)
form of the Bistritz test to derive critical constraints for stability of
discrete-time linear systems. The new procedure produces polyno-
mial (rather than rational) constraints of particularly low degree
whose variates are the free parameters (or the literal coefficients) of
the system’s characteristic polynomial. Comparison with the mod-
ified Jury test, also an efficient IP stability test, shows that the con-
straints are obtained with less computation and, more contributing
to simplicity, the constraints appear as polynomials with degrees
lower by a factor of two.

Index Terms—Discrete-time systems, immittance algorithms, in-
teger-preserving (IP) computation, modified Jury test (MJT), sta-
bility constraints, stability test.

I. INTRODUCTION

ALGEBRAIC stability tests are methods to determine sta-
bility of a linear system without using numerical means like

calculation of zeros. One of their use is to obtain stability con-
straints for some literal coefficients of the characteristic polyno-
mial during the design of filter or a control for a system. Typically,
the number of constraints necessary and sufficient for stability is
equal to the order of the system.

Critical stability constraints are a simpler set of conditions that
can help a designer to determine the flexibility that he has in
changing parameters in an already stable system without loosing
its stability. In such a situation, knowing a nominal stable state re-
duces the number of constraints that must be attended. In fact, the
lower number of constraints becomes a fixed number (three and
even less) that is independent of the order of the system. It should
be noted though that the complexity of the constraints does raise
with the system’s order.

This paper focuses on critical stability constraints for discrete-
time systems. In this case, one is given the characteristic polyno-
mial with one or more undetermined parameters (e.g., some of
its coefficients are literal). It is also known that the polynomial
is “stable” (has all its zeros inside the unit-circle of the complex
plane) for a nominal set of coefficients. And the critical stability
constraints should contain (in as “simple” a setting as possible)
the answer to the question: to what extent the variable coefficients
may be perturbed without causing any of the zeros to move out-
side the unit-circle.

Critical stability constraints for linear systems (both contin-
uous and discrete) were considered by Jury in [1], [2]. The crit-
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ical conditions for discrete systems were initially posed on deter-
minants of Schur–Cohn and Inner matrices and he demonstrated
theircalculationfor lowdegreepolynomials ( ) [1], [2].
In order to derive stability constraints for a polynomial of any de-
gree in a systematic way, one needs an algebraic stability test (i.e.,
a recursive algorithms often also called a “tabular” test because
traditionally they were presented in a tabular format).

In principle, any decent algebraic stability test can be used
to obtain stability constraints for some undetermined parame-
ters. The arsenal of stability tests include the classical tests of
Schur–Cohn and the Marden–Jury tests that appeared in a variety
of version and were surveyed and classified in [3]. A more recent
addendum to the above pack is the Bistritz test (BT) [4], [5]. It dif-
fers fromall theabovetests in theformofrecursion(three-termre-
cursion of symmetric polynomials as opposed to two-term recur-
sion of polynomials with no symmetry) and in efficiency (about
half of the number of arithmetic operations compared to the most
efficient test in Schur–Cohn Marden–Jury class). The collective
term “immittance” (also “split”) is often used to distinguish var-
ious algorithms that stem from the BT formulation from their so
called “scattering” classical counterpart.

Trying to use some of the above tests to determine an intervals
of stability for one free parameter (we shall run such simple ex-
amples later) is enough to convey the feeling that not all tests are
equally well behaving for the task. This raises the question, that
wasnot trulyaddressedbefore,whatmakesonestability testmore
suitable than another for deriving critical stability constraints.
Thisquestiondependsonanotherone–whatconsiderationscount
in determining the relative efficiency of different stability tests
for this task. This paper is about raising this question, postulating
reasonable measures, and offering a new solution that is a best
performer according to the postulated requirements.

The paper will present critical stability constraints for discrete-
time linear systems based on an integer-preserving (IP) form of
the BT in [6]. It will be argued and illustrated that integer preser-
vation is the most desirable property in a stability test in order to
deal with literal coefficients. Next, it will also be demonstrated
that the most adequate measure for simplicity of an IP test for
this task is having an algorithm with as low as possible growth
of the length of the integers. By these criteria, the best alterna-
tive scattering-type stability test available for critical stability is
the modified Jury test (MJT), a test that Jury presented in several
occasions and versions, including [7]–[9] (see the “C-type” cat-
egory in [3]) and the main reason for this is the fact that it is too
an efficient IP test [10].

Jury too maintained that the MJT is favorable for critical
stability constraints but he reached this conclusion from a dif-
ferent perspective. He designed this test to produce iteratively
the sequence of determinants of principal submatrices of the
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Schur–Cohn–Fujiwara (SCF)matrix (that in turnarealsoequal to
respective Inner determinants). As a consequence, they provide
an immediate algorithm to obtain the critical constraints that he
previously posed on the SCF principal minors. Premaratne and
Jury studied the relation of the BT to the SCF principal minors
in [11] and subsequently considered in [12] the use of the BT
and the MJT for critical stability constraints. They count in [12]
pros and cons for both the BT and the MJT without a conclusive
choice between the two. This paper will obtain critical stability
constraints that (by the proposed measures) are simpler and are
obtained more efficiently than using the original BT or the MJT.

II. NEW PROCEDURE FOR STABILITY CONSTRAINTS

A. Stability Constraints

Assume a real polynomial

(1)

Let the reciprocal of a polynomial be defined and de-
noted by . A polynomial is called sym-
metric if . A symmetric polynomial has coef-
ficients that exhibit symmetry with respect to their center, i.e.,

, .
The following stability test for real polynomials was pre-

sented in [6].
Algorithm 1: Assume (1) and assign to it a

sequence of symmetric polynomials
, as follows:

(2)
Set , and for do

(3)

Theorem 1: The polynomial (1) is stable if, and only
if, and Algorithm 1 yields for it

(4)

If is stable then the next conditions hold as well

(5)

Normal conditions are defined as the case when all the polyno-
mials produced by Algorithm 1 are with nonzero leading coef-
ficient . The second part of Theorem 1 implies that
normal condition are necessary conditions for stability (noting
that ).

Let , and denote the ring of integers1 and the fields of
rational and real numbers, respectively, and , , de-
note the set of polynomials with coefficients in the respective
domains. It was shown in [6] that Algorithm 1 is IP. Namely,
it has the property that if then
for all . In this it differs from the orig-
inal BT that assigns in general to a sequence of
symmetric polynomials that are in (except to the first two).

1The notation (instead of that was used also in [6]) is maybe a more widely
used notation for integers.

Algorithm 1 remains fraction-free even though it contains divi-
sions because the divisor is a common factor
to all the integer coefficients of the polynomial in the numerator
of (3). As a consequence, it will be seen that derivation of sta-
bility constraints for polynomials with literal coefficients with
the above test leads to a set of polynomial inequalities as op-
posed to a set of rational functions inequalities when using the
original form of the BT.

Furthermore, Algorithm 1 is an IP stability test with a very
restrained growth of coefficients length. To state this feature
length of an integer and a measure for length of coefficients in
an integer polynomial need to be defined (though not too rig-
orously as we are looking for mostly for a qualitative charac-
terization). The length of an integer can be measured by dec-
imal-size or its bit-size (or maybe by on base 10 or 2 of
the absolute integer). Let then characterize the length of co-
efficients of (say, is the length of the longest
coefficient of the polynomial). For further simplicity, Theorem
2 below assumes that characterizes also the lengths of ,

. 2 With these assumptions, the following characteriza-
tion was shown for Algorithm 1 in [6].

Theorem 2: Let present a common bound for the coeffi-
cient length of , and (as explained
above). Then, the length of the coefficients of
is bounded by , .

Accordingly, the longest coefficient that the algorithm pro-
duces for a polynomial bounded by is bounded by . To
appreciate how remarkable is this feature, it is also shown in [6]
that taking the naive approach to reach integer preservation (by
simply avoiding divisions) leads to a stability test with exponen-
tial growth of coefficients.

Example: Suppose one wants to determine for the following
polynomial:

(6)

all values of (a real parameter) for which it is stable. For
brevity we skip the polynomials that Algorithm 1 creates and
only bring the resulting stability constraints required in The-
orem 1. They are given by the next set of inequalities

(7)

2If the length ofD (z) is bounded byB then it would be more correct to say
that the lengths ofR (z) andR (z) are bounded byB+1 andB+2, respec-
tively (as implied by one and two passes, respectively, of additive operations).
The implied (qualitatively not meaningful) correction can be easily obtained.
However, the assumption that B also characterizes the first two polynomials
in the sequence is exact for the following application of the bounds stated in
Theorem 2 to feature also the growth of the degree of literal coefficients in con-
straints expressed as polynomials.
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A solution to this set of inequalities necessitates numerical
means. It can be done by finding the zeros or by plotting the
polynomials as function of . It is enough to consider only
real zeros and intervals between them at which the polynomials
are positive. The solution is given by the common intersection
of all intervals at which the polynomials are positive. It is

(approximately) [1].
The way is factored above is not coincidental. It

follows from a useful general property. Namely, for
, is a factor of . This is so because

(8)

Strictly speaking, Theorem 2 relates to integers. For example,
suppose the above example is run with . Measuring
the length of the tested polynomial by
then it is noticed that indeed the largest number, that is the last

has length below . How-
ever, the underlying algorithm preserves coefficients over other
integral (integer-like) domains. For example, the coefficients
may also be polynomials in secondary variable(s) [13]. Thus, it
is possible to regard Theorem 2 as characterizing the growth of
also literal parameters in a polynomial, like in the above nu-
merical example, measuring the length for in polynomial-co-
efficients by its highest power in it. In the above example, the
length of in is . In this case, the power of
in the polynomials (that were omitted for brevity) at-
tains the length growth depicted by Theorem 2 at each step till
it ends with . Thus, the growth of coefficients provides
a useful characterization for the complexity of an IP stability
test as an algorithm to determine stability constraints on literal
coefficients. The situation becomes more complicated when the
number of literal coefficients is higher than one because in this
case the constraints become multivariate polynomials. Theorem
2 still offers a bound on the highest power of each parameter in
the polynomial constraints. The number of polynomials in the
set of inequalities increase with the order of the tested system.
However, here at least, the situation can somewhat be alleviated
because in many a practical situation it may suffice to attend to
only 3 or 2 (and even 1) critical constraints—our next topic.

B. Critical Constraints

Consider a polynomial with coefficients de-
pendent on , where “ ” stands for one or several parameters.

(9)

Assume that it is known that the polynomial is stable
for a nominal value of the parameter(s), viz.,

(10)

where we added here the assumption (with no loss
of generality because else can be considered). Critical
stability constraints aim to find a small number of condition that
are sufficient to determine the largest vicinity of
such that is stable . (We say “small” and not
“minimal” because it will become apparent that the minimal is
not necessarily the best choice.)

The derivation of critical stability constraints relies on the
continuous variation of the location of zeros of a polynomial as
function of continuous variation of its coefficients. Given that
at the polynomial has all its zeros inside the unit-circle, they
remain there as varies away from till zeros (one or more)
touch the unit-circle. The role of critical stability constraints is
to detect when the root locus touches the unit-circle in the above
described manner. Therefore, to proceed we need to know the
behavior of Algorithm 1 at the presence of unit-circle zeros. The
following lemma can be proved in much the same way as its
counterpart in the original test form [4, Th. 4.2] (or [5, Th. 2]). In
the following “UC zeros” mean zeros on the unit-circle and “RP
zeros” are reciprocal pairs of zeros with respect to it, ,

.
Lemma 1: If the recursion (3) is interrupted by a
(assuming normal conditions before) then contains all

the UC and RP zeros of . And conversely, if the total
number of UC and RP zeros of is , then the above re-
cursion will be interrupted by a (assuming normal
conditions till then).

The reservation about normal conditions in the above lemma
is made because Algorithm 1 needs to be amended in case
it faces abnormal polynomials (with vanishing leading coef-
ficients). However, the lemma and the algorithm are broad
enough to our current needs.

Theorem 3: Given (10), the largest vicinity of stability of
obeys, and can be determined by, either of the following

three sets of critical conditions:

1) , , ;
2) , ;
3) .

Here, are obtained for by Algorithm 1.
Proof: Since is stable, Algorithm 1 is normal for

. In particular , for , can not occur.
Consider the location of zeros of as varies away from

. At all zeros are inside the unit-circle. Stability breaks
either when one or more real unit-circle zero (with or without
multiplicity) or when one or more complex conjugate pair of
zeros (with or without multiplicity) migrate to the unit-circle.
According to Lemma 1, both situations imply a vanishing sym-
metric polynomial. In this situation the converse is also true.
Namely, a vanishing polynomial can not imply in our case RP
zeros (because for there are no zeros outside the unit-circle).

Real zeros on the unit-circle can occur either at or
at . Let . Since

, .
Thus, as long as no zero(s) at can occur
as we move away from . For ,

and implies that as
long as zeros can not break away from
the unit-circle also at . Assume next the case of complex
zeros. Namely, assume that the zero location of the polynomial

first crosses the unit-circle for some with one (or
more) complex-conjugate pair of zeros. Say the multiplicity of
this pair (or one of several distinct pairs) is . It then will
nullify for . Thus, irrespective
of its multiplicity, it will be detected (also) by .
Since . is equivalent to
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and also to . This completes the proof
that 1) is an adequate set of critical constraints.

To prove 2) we need to show that in 1) is
superfluous. A implies for all
(as realized by setting into (3)). Therefore, in particular,

. Namely, zeros at are detected
by the second constraint in 2).

It remains to prove that the single constraint in 3) is also
enough. implies , as can be realized
from (8). Therefore, may replace .

implies for all . There-
fore, such a zero is detected by any for
even. (Note that the odd degree polynomials in Algorithm 1
vanish always at by being symmetric polynomial.)
Thus, in particular, covers also the constraint

.
Set 2) is better than set 1) simply because it omits one of the

conditions in 1). Set 3) looks even more attractive in its math-
ematical conciseness. But, it is not necessarily more useful, for
at least the problem at hand here. (Obtaining requires an
extra step of the algorithm creating a higher degree polynomial
that is anyway known to be factorable into and .)

Example: To illustrate the critical constraints in Theorem 3,
consider again the polynomial (6) and assume that we know that
it is stable at (say). Then, according to set 1) we have to
examine

(11)
and depicted in Example 1. According
to 2), can be dropped of the set. Finally, as illus-
tration for the argument used to prove 3), it is noticed that the last
constraint in (7), , indeed covers
the two constraint and .

III. STABILITY CONSTRAINTS WITH MJT

Here, we bring a brief account on the use of the MJT to de-
termine critical stability constraints. We shall use a more loose
presentation because most of the things that we said here can be
found in one or more of the references that were cited.

As already mentioned, Jury presented on several occasions
(and several versions), including [7]–[9], a modified form of the
Marden–Jury test that aims to produces explicitly the principal
minors of the Schur–Cohn matrix. The next presentation follows
the C-prototype form in [3] where the relation between the var-
ious MJT tests and their relation to the Schur–Cohn principal
minors are rigorously proved.

Algorithm 2: Assign to (1) a sequence of poly-
nomials , as
follows:

(12)

For do

(13)
Theorem 4: is stable if, and only if, for all

.

It can also be shown (see [3] for details) that the leading co-
efficients of the polynomials that Al-
gorithm 2 produces are the principal minors of the SCF matrix,
an symmetric matrix that can be built for such
that its positive definiteness is necessary and sufficient for sta-
bility. More pertinent to the current application, than its rela-
tion to the principal minors of the SCF matrix, is the fact that
the MJT is IP, as was proved in [10]. Namely, if
then , . Let presents the
length of then the length of the coefficients of
is bounded by , . This property was too stated
in [10]. It is easily verified as follows. Let denote the co-
efficient length measure for . We have (with

), and (no division yet)
then for , the recursion includes division and it follows
that . The solution of this differ-
ence equation for the given initial conditions is .
Thus, coefficients in Algorithm 2 grow at twice the rate of re-
spective degree polynomials in Algorithm 1, cf. Theorem 2.

Example: Applying Algorithm 2 to our running example (6)
gives according to Theorem 4 the following constraints as nec-
essary and sufficient for stability:

(14)

It is notable that the degrees of the above polynomials follow,
as argued before for also Algorithm 1, the growth of coefficients
size, that this time is ruled by . The MJT
can be used to obtain the following critical stability constraints.

Theorem 5: Given (10), the largest vicinity of stability
of obeys, and can be determined by, either of the two
sets of stability constraints

i) , ,
ii)

where are obtained for by Algorithm 2.
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Proof: The set i) corresponds to the critical constraints
that Jury obtained in [1] by the aforementioned fact that
is the determinant of the leading subma-
trix of the SCF matrix [3]. A proof for ii) that is simultane-
ously also an alternative proof for i) can follow from recog-
nizing Algorithm 2 as a greatest common divisor algorithm be-
tween and . Their common zeros are either UC
or RP zeros. A total of such zeros imply a symmetric
followed by a . Similar to the characterization of
Algorithm 1 in Lemma 1, there is here too an “if and only if”
relation between this situation and having UC or RP
zeros. Since the algorithm is run with literal coefficients and
is known to be stable normal termination of the algo-
rithm is granted. Thus, condition i) is implied by an argument
similar to the proof for Theorem 3. When vanishes also

vanishes. will vanish also for any zero on the
unit-circle that and are meant to detect in
the set i). It follows that the single condition ii) is enough to
maintain stability.

Note that i) and ii) look like 1) and 3), respectively, in The-
orem 3. The set 2) there is a special bonus that the immittance
approach admits (due to the special role that plays in it.)
Again, the single constraint i.e., ii) is less rewarding for deter-
mining stability constraints than the original set of constraints
i) that Jury proposed.

Example: Suppose it is known that (6) is stable for some
nominal value of its coefficients (say ). Then, according
to Theorem 5, the stable vicinity of this nominal value can be de-
termined by the examination of only three conditions: the two
in (11) plus the constraint on the polynomial of
degree 12 in in (14). The alternative (ii) suggests to examine
instead just the single constraint , the last polyno-
mial of degree 14 in the list of constraints (14).

There is less computation involved in obtaining the set
of inequalities (7) than required to obtain the set (14) for
a superposition of two reasons. One stems from the fact that
Algorithm 1 runs symmetric polynomials and thus requires
the calculation of only half of the coefficients. This is the
usual advantage of immittance algorithms over corresponding
scattering algorithms – an inherent ability to capture symmetry
and exploit it to reduce the amount of computation. The second
reason stems from the fact that Algorithm 1 creates constraints
that are polynomials of lower degree in , a direct consequence
of the fact that it features a more restrained growth of coefficients
size.

The fact that the growth rate of the coefficients in the MJT
test is two times higher than their growth in Algorithm 1 im-
plies that the constraints (that we remind that for different lit-
eral coefficients imply -variate polynomials) will appear with
double degree than respective constraints obtained with the new
BT. This has a more severe impact on the use of the MJT for sta-
bility constraints because it complicates a subsequent effort to
extract from the constraints simplified expressions for the stable
vicinity .

IV. CONCLUSION

The paper considered critical stability constraints for dis-
crete-time linear systems. It introduced a new approach that is
based on an efficient IP variant of the BT. The integer-preser-
vation property offers stability constraints for a polynomial
with literal coefficients in the form of polynomials instead of
rational functions when using a test without this property. Its
efficiency is due partly to exploiting symmetry and mostly
to featuring a linear growth of coefficients as function of the
degree of the tested polynomial (as opposed to a potentially
exponential growth in a naive integer preserving algorithm).
The growth rate of coefficients is more restrained (by a factor
of two) than with the MJT (that is too an efficient IP stability
test). As a consequence, the proposed method outperforms the
determination of critical constraints with the MJT not just by
the familiar advantage of immittance algorithms over scattering
algorithms (that stems from exploiting symmetry) but by also
producing critical constrains that are polynomials of the literal
coefficients with half of their degree in the MJT.

More research is needed to find whether the latter advantage
indicates that there is a better scattering-type stability test yet
to be discovered or it indicates that the immittance approach
possesses some qualities that have no scattering counterpart.
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