
LEVINSON ALGORITHM OVER INTEGERS
FOR STRONGLY REGULAR HERMITIAN TOEPLITZ MATRICES

Yaron Segalov and Yuval Bistritz

Department of Electrical Engineering
Tel Aviv University

Tel Aviv 69978, Israel
bistritz@eng.tau.ac.il

ABSTRACT
This paper presents a new version for the classical Levinson
algorithm for solution of a symmetric (Hermitian) Toeplitz
set of equations. The new version has the property that for a
Toeplitz matrix with (Gaussian) integer entries the algorithm
is carried out entirely over integers. The new algorithm has a
low binary complexity with a near-linear integer growth rate.
The integer preserving property provides an immediate means
to control the numerical accuracy of the solution and its asso-
ciated triangular factorization. It is also more attractive for
symbolic computation.

Index Terms— Toeplitz matrices, Levinson algorithm,
Linear prediction, Integer algorithms.

1. OVERVIEW

The Levinson Algorithm, originated in [1], is a fast method to
solve a set of equations

Rn[α0, . . . , αn−1, 1]T = [0, . . . , 0, En]T (1)

for the unknowns α0 . . . αn−1 and En, where Rn is a Hermi-
tian Toeplitz matrix of the form

Rn =

r0 r1 · · · rn

r?
1 r0 · · · rn−1

...
. . .

r?
n r?

n−1 · · · r0

 (2)

with ri ∈ C (the field of complex numbers) where ? de-
notes complex conjugate. This paper will assume that Rn is
strongly regular, namely that the given set of equations as well
as its subsets

Rm[am,0, . . . , am,m−1, 1]T= [0, . . . , 0, Em]T , m = 0, . . . n (3)

are nonsingular. The classical solution to the above set of
equations for a strongly regular Hermitian R will be detailed
as Algorithm 1 below.

The Levinson algorithm is a celebrated algorithm in signal
processing and other algebraic problems. In signal process-
ing, it is best known in the context of linear prediction. The

setting in this case is Rn > 0 (positive definite) with r0 =
1, . . . rn ∈ R (the real numbers) presenting the autocorrela-
tion of a (stationary) process (or its estimates from measure-
ments) whose current value y[n] is best estimated from past
values by the linear combination ŷ[n] = −

∑n−1
i=0 αiy[n− i],

and En is the minimal error autocorrelation (or the squared
prediction error).

The classical algorithm is an efficient algorithm that ex-
ploits the Toeplitz structure to solve the above set of equations
in O(n2) arithmetic operations. A more recent formulation
called the immittance domain or split algorithm, takes a dif-
ferent recursion form and exploits some inherent symmetry
in the problem to reduce the complexity by roughly a factor
of two [2], [3]. For distinction of the original algorithm from
the newer immittance, the classical algorithm is also called
the scattering domain form. The two types of algorithms and
their signal processing context are covered excellently in the
two textbooks [4] and [5]. This paper will focus on the scat-
tering domain Levinson algorithm.

The classical Levinson recursion obtains the solution to
(1) for a strongly regular Hermitian Toeplitz matrix by solv-
ing successively the set of equations (3). We bring it here in
polynomial notation using the polynomial sequence am(z) =∑m

i=0 am,iz
i, m = 0, . . . , n. We associate to a polyno-

mial am(z) the reciprocal polynomial denoted and defined by
a#

m(z) =
∑m

i=0 a?
m,m−iz

i.

Algorithm 1 [The original Levinson algorithm].
Initiation. a0(z) = 1, E0 = r0 and ∆0 = r1.
Recursion. For m = 1, . . . , n

km =
∆m−1

Em−1
(4a)

am(z) = zam−1(z)− kma#
m−1(z) (4b)

Em = Em−1

(
1− |km|2

)
(4c)

∆m =
m∑

i=0

am,iri+1 (4d)

Proc. of ICASSP-2008, pp. 3581-3584, Las Vegas, USA.

Termination. The solution to (1) consist of
{α0, . . . , αn−1, 1} = {an,0, . . . , an,n−1, 1} and En.

Algorithm 1 is an efficient algorithm that may be run on
a computer but it is not designed for any specific arithmetic
environment. This paper will derive a new version for this
algorithm that is designed to perform optimally in integer
arithmetical environment. Recent years attest a growing in-
terest in reexamination of various algebraic algorithms from
a computer algebraic aspect. This led to adaptation of several
classical algorithms to perform over integers beginning in [6]
with Euclid’s algorithm. Close to the current context of the
Levinson algorithm are the version of the Jury stability test
in[7], the Bistritz stability test in [8] and solving a Hankel set
of equations [9]. An integer algorithm is not limited to but
excels in integer environment or in the presence of symbolic
parameters with symbolic computation packages. In our sim-
ple illustrative example for our new Levinson algorithm, we
shall illustrate how it can be readily applied to combat degra-
dation in numerical accuracy in floating point calculation due
to rounding error.

It is also well known that Algorithm 1 also produces a
triangular factorization of the inverse of the Toeplitz matrix.
We can write (following the setting in [10]) Rn,

R−1
n = AΛ−1AH (5a)

where the columns of A are the sequence of solution vectors
for (3)

A =

0
BBB@

1 a1,0 · · · an,0

0 1 · · · an,1

...
. . .

0 0 · · · 1

1
CCCA (5b)

and Λ is a diagonal matrix with the corresponding sequence
of Em’s

Λ =

0
BBB@

E0 0 · · · 0
0 E1 · · · 0
...

. . .
0 0 · · · En

1
CCCA (5c)

Naturally, our integer version for the Levinson algorithm
will also imply a corresponding triangular factorization over
the integers for the inverse of an integer Toeplitz matrix.

2. THE INTEGER LEVINSON ALGORITHM

Suppose that we are given the set of equations (1) for a ma-
trix Rn with integer entries. That is, ri ∈ Z (the integers)
if Rn is real or ri ∈ Z[i] (the Gaussian integers) if Rn is
complex. We are looking for an efficient way to solve such a
set of equations over integers. That is, we wish to complete
all computations (as far as possible) without resorting to the
quotient field of rational numbers. We shall call an algorithm
with this property integer-preserving (IP). To start, we rewrite
(1) as

Rn[φ0, . . . , φn]T = [0, . . . , 0, Ẽ]T (6)

and we seek a solution such that Ẽ, φi ∈ Z for real R and
φm ∈ Z[i] when R is complex. As we freed the solution vec-
tor from its previous fixation to monic polynomial (φn is no
longer fixed), the unknowns are unique only up to a common
(integer) scaling factor. Among all possible solutions, the nat-
urally desirable solution is the one with “smallest” integers.
Concurrently, we want to find this small sized integer solution
by an efficient algorithm that performs in a systematic manner
that is not dependent on the input numbers. This at once rules
out the idea of first finding somehow any integer solution, and
then obtain the minimal sized solution by removing common
integers using the oldest of all algorithm - Euclid’s greatest
common divisor algorithm (gcd) for integers. The worst part
of first reaching a solution with unnecessarily large integers is
an enormous increase of the computational cost. Our interme-
diate division-free algorithm will illustrate this point. The use
of gcd, step by step, would both increase computation as well
as produce a minimal sized integer solution that depends also
on specifics of the input matrix. Instead, this paper will cul-
minate on a revised form of the classical Levinson algorithm
that works over integers and has an inherently restricted in-
crease of coefficients size from step to step. Consequently, it
produces systematically a small integers solution to (6).

For the following, we need to set (at least qualitatively)
some measure for the size of an integer. A qualifying measure
for the length `(φ) of an integer φ ∈ Z[i] may be the number
of bits that is required for binary presentation of |φ|. It may
also be the number of its decimals or any other measure that
behaves similar to log |φ| for addition and multiplication of
integers. Correspondingly, for an integer polynomial φ(z) =∑n

i=0 φiz
i, we shall use `(φ(z)) = maxi`(φi) to measure

the size of its coefficients.
The simplest way to turn Algorithm 1 into an algorithm

over integers is by denying all divisions. We shall call this
extension the Division-Free version and denote the sequence
of polynomials it produces by {dm(z) =

∑m
i=0 = dm,iz

i,
m = 0, . . . , n}.

Algorithm 2 [Division-Free Levinson Algorithm].
Initiation. d0(z) = 1, Ě0 = r0 and ∆̌0 = r1.
Recursion. For m = 1, . . . , n

dm(z) = zĚm−1dm−1(z)− ∆̌m−1d
#
m−1(z) (7a)

Ěm = Ě2
m−1 − |∆̌m−1|2 (7b)

∆̌m =
m∑

i=0

dm,iri+1 (7c)

Termination. {α0, . . . , αn−1, 1} = {dn,0, . . . , dn,n}/dn,n

and Ěn/dn,n.
It is evident that Algorithm 2 is integer preserving. If all

ri ∈ Z[i] then all dm,i ∈ Z[i] simply because the algorithm

involves no divisions. Algorithm 2 however has an exponen-
tial coefficient growth, as it follows readily from (7a) that
`(dm(z)) > 2`(dm−1(z)). Next, we show that common fac-
tors exist in all coefficients of dm(z). Then we shall see how
they can be eliminated recursively and lead to an IP algorithm
with more restrained growth of coefficients.

Proposition 1 (Common factors in the division-free recur-
sion). With the onset of algorithm 2, Ěm divides all poly-
nomials from dm+2(z) and onward.

Ěm | dm+2+j(z) ∀j ≥ 0 (8)

Proof. We perform two division-free steps (7) with equalities
modulo Ěm. We shall denote (mod Ěm) equality by ∼= for
convenience.

dm+1,i = Ěmdm,i−1 − ∆̌md?
m,m−i

∼= −∆̌md?
m,m−i

Ěm+1 = Ě2
m − |∆̌m|2 ∼= −|∆̌m|2

∆̌m+1 =
m+1∑
j=0

dm+1,jrj+1
∼= −∆̌m

m+1∑
j=0

d?
m,m−jrj+1

Another step of (7a) results in

dm+2,i = Ěm+1dm+1,i−1 − ∆̌m+1d
?
m+1,m+1−i

∼= ∆̌2
m∆̌?

md?
m,m+1−i − ∆̌m∆̌?

mdm,i−1

m∑
j=0

d?
m,m−jrj+1

∼= |∆̌m|2
m∑

j=0

(d?
m,m+1−idm,j − dm,i−1d

?
m,m−j)rj+1

Analyzing the expression within brackets inside the summa-
tion, using (7a) backwards for all four elements, and then
some algebra we can show that

dn,id
?
n,j − d?

n,n−idn,n−j =�
Ě2

n−1−|∆̌n−1|2
�
(dn−1,i−1d

?
n−1,j−1−d?

n−1,n−1−idn−1,n−1−j)

Hence we conclude from (7b) and the previous equations that
dm+2,i

∼= 0. From this point on, since Ěm+2 = ∆̌m+2 ≡
0(mod Ěm), clearly all subsequent polynomials vanish.

Using this last result, the following improved IP variant
of the Levinson algorithm can be stated. The sequence of
polynomials produced by this algorithm will be denoted by
{fm(z) =

∑m
i=0 = fm,iz

i, m = 0, . . . , n}.

Algorithm 3 [Fraction-Free Levinson Algorithm].
Initiation. f0(z) = 1, ε0 = r0, δ0 = r1 and ε−1 = 1.
Recursion. For m = 1, . . . , n do:

fm(z) =
1

fm−1,m−1

[
εm−1zfm−1(z)−δm−1f

#
m−1(z)

]
(9a)

εm =
ε2m−1 − |δm−1|2

εm−2
(9b)

δm =
m∑

i=0

fm,iri+1 (9c)

Termination. The solution to (1) is given by αn,i = fn,i/fn,n

i = 0, . . . , n , and En = εn/fn,n.
Note that inspecting the leading coefficient in (9a) reveals

that fm,m = εm−1, so that the two can be used interchange-
ably.

Proposition 2. Algorithm 3 is integer preserving. Namely,
if rm ∈ Z[i],m = 0, . . . , n then all fm,i ∈ Z[i] and all
εm ∈ Z.

Proof. Algorithm 3 follows from the integer-preserving Al-
gorithm 2 after carefully noting that the common factors ex-
posed in Proposition 1 can also be removed recursively. This
implies fm,i ∈ Z[i]. To realize that εm ∈ Z observe that
since r0 is real (by the assumption that R is Hermitian) all
dm,m, Ěm, fm,m are real also in the complex case.

Proposition 3. The coefficients of fm(z) produced by Al-
gorithm 3 are upped-bounded by `(fm(z)) = mB +
1
2m log(m), m = 1, . . . , n, where B is the bound for the
largest entry of the integer matrix.
The proof is beyond the current scope.

Triangular factorization. Next, we wish to use the results of
algorithm 3 for reaching an IP version of the factorization (5)
using the following triangular and diagonal matrices:

F =

f0,0 f1,0 · · · fn,0

0 f1,1 · · · fn,1

...
. . .

0 0 · · · fn,n

E = diag

[
ε0, ε1, . . . , εn

]
The scale of the fraction-free polynomial fm(z) with regard
to the monic polynomial am(z) at each recursion step is fm,m

known to be equal to εm−1. Thus

F = GA (10)
G = diag

[
1, ε0, · · · , εn−1

]
and applying to (5), the IP triangular factorization becomes

R−1 = F(GE)−1FH = FD−1FH (11)
D = GE = diag

[
ε0, ε1ε0, · · · , εnεn−1

]
Numerical Illustration. Rather then just bringing a numer-
ical example that describes the new algorithm for the case
of an integer Toeplitz matrix, let us also illustrate how it can
readily be used to increase numerical accuracy. Suppose we
are given a set of equations (1) with decimal numbers,
0
BBBB@

1 0.8 0.6 0.4 0.2
0.8 1 0.8 0.6 0.4
0.6 0.8 1 0.8 0.6
0.4 0.6 0.8 1 0.8
0.2 0.4 0.6 0.8 1

1
CCCCA

0
BBBB@

α0

α1

α2

α3

1

1
CCCCA

=

0
BBBB@

0
0
0
0
Q

1
CCCCA

(12)

We can scale it into an integer matrix and then solve it by the
IP algorithm. In any computational environment that accepts
instruction for integer format this approach may be enough to
proceed to a solution without further degradation in numeri-
cal accuracy caused by rounding errors. The given Toeplitz
matrix with decimal entries, say T, can be converted into an
integer matrix R = fac · T by some scaling factor. In the
above example, taking fac = 5, gives R4 = 5T4,

R4 =

0
BBBB@

5 4 3 2 1
4 5 4 3 2
3 4 5 4 3
2 3 4 5 4
1 2 3 4 5

1
CCCCA

The application of Algorithm 3 to solve (1) with the above R4

begins with f0(z) = 1; ε0 = 5; δ0 = 4. The recursion results
in

f1(z) = 5z − 4; ε1 = 9; δ1 = −1
f2(z) = 9z2 − 8z + 1; ε2 = 16; δ2 = −2
f3(z) = 16z3 − 14z2 + 2; ε3 = 28; δ3 = −4
f4(z) = 28z4 − 24z3 + 4; ε4 = 48

Thus, the solution to (1) or (12) is given by the coef-
ficient vector of the polynomial α(z) = f4(z)/28 =
1
28 [4 , 0 , 0 , −24 , 28]T , and E4 = ε4/28 = 12/7 or
Q = E4/fac = 12/35, respectively. The algorithm also
provides the triangular factorization (11) for R−1

4 with

F =

0
BBBB@

1 −4 1 2 4
0 5 −8 0 0
0 0 9 −14 0
0 0 0 16 −24
0 0 0 0 28

1
CCCCA

D =

0
BBBB@

5 0 0 0 0
0 45 0 0 0
0 0 144 0 0
0 0 0 448 0
0 0 0 0 1344

1
CCCCA

Since T−1 = fac ·R−1, the integer triangular factorization of
R−1 can be used also to write a factorization for the inverse
of the decimal matrix.

Running the classical Algorithm 1 for T4 in floating num-
bers (on Matlab r) gives, already for this low order system,
a less accurate solution with the following numbers for the
factorization (5) of T−1

Λ =

0
BBBB@

1 0 0 0 0
0 3.6000e − 001 0 0 0
0 0 3.5556e − 001 0 0
0 0 0 3.5000e − 001 0
0 0 0 0 3.4286e − 001

1
CCCCA

A =

0
BBBB@

1 −8.0000e − 001 1.1111e − 001 1.2500e − 001 1.4286e − 001
0 1 −8.8889e − 001 7.4940e − 016 −4.4409e − 016
0 0 1 −8.7500e − 001 8.5646e − 016
0 0 0 1 −8.5714e − 001
0 0 0 0 1

1
CCCCA

Notice, how the solution to (12), given by the last column of
A with Q given by the last entry of the diagonal matrix Λ,
differs from its solution by the new algorithm (e.g. how it
misses a4,1 = a4,2 = 0).

We remind that the new algorithm was derived for a
Toeplitz matrix with complex entries. Space limitation does
not admit a second numerical illustration with Gaussian
(‘complex’) integers.

3. SUMMARY

An efficient integer-preserving version of the classical Levin-
son algorithm was presented. It features a restrained (almost
linear) growth rate for the size of integers with an implied
high binary efficiency. A computer implementation of this al-
gorithm in an integer environment can benefit from smaller
computational load, due to the restricted increase of coeffi-
cient size (whose maximum size may be pre-determined from
the inputs). The new version is more suitable than the clas-
sical algorithm to handle computation with symbolic param-
eters and is immune to rounding error that in the classical
algorithm is noticeable already with small input sizes.

4. REFERENCES
[1] N. Levinson, “The Wiener RMS error criterion in filter design

and prediction”, J. Math. Phys., vol. 25, pp. 261-278, 1947.

[2] Y. Bistritz, H. Lev-Ari, and T. Kailath “Immittance domain
Levinson algorithms,” IEEE Trans. Information Theory, vol.
35 (3), pp. 674-682, May 1989.

[3] P. Delsarte and Y. Genin, “The split levinson algorithm”, IEEE
Trans. on Acoustics, Speech and Signal Processing, vol. ASSP-
34 (3), pp. 470-478, June 1986.

[4] S. J. Orfanidid Optimum signal processing: An introduction,
2nd Edition, MacMillan, 1988.

[5] C. W. Therrien, Discrete random signals and statistical signal
processing, Prentice-Hall, 1992.

[6] W. S. Brown and J. F. Traub, “On Euclid’s algorithm and the
theory of sub-resultants”, J. ACM, vol. 18, pp. 505-514, 1971.

[7] P. G. Anderson, M.R. Garey and L.E. Heindel, “Computational
aspects of deciding if all roots of a polynomial lie within the
unit circle”, Computing vol. 16, pp. 293-304, 1976.

[8] Y. Bistritz, “An efficient integer-preserving stability test for
discrete-time systems”, Circuits Systems Signal Processing,
vol. 23 (3), pp. 195-213, 2004.

[9] L. Gemignani, “Solving Hankel systems over the integers”, J.
Symbolic Computation, vol. 18, pp. 573-584, 1994.

[10] Y. Bistritz, “Reflection on Schur-Cohn matrices and Jury-
Marden tables and classification of related unit circle zero loca-
tion criteria” Circuits Systems Signal Processing, vol. 15, (1),
pp. 111-136, 1996.

