
PHONE-BASED SPEAKER VERIFICATION
WITH VARIOUS ADAPTATION CONFIGURATIONS

Yossi Bar-Yosef and Yuval Bistritz

Department of Electrical Engineering
Tel-Aviv University, Tel-Aviv 69978, Israel

yossibaryosef@gmail.com, bistritz@eng.tau.ac.il

ABSTRACT

This paper introduces an examination of several adaptation
schemes for phone-based speaker verification. It is argued
that different phonemes convey different amount of valu-
able information about speaker classification. Thus, the
presented study tries to find more optimal settings to ex-
ploit this information. Experiments with short duration of
training and testing of clean and telephone text-independent
speech highlighted the superiority of one configuration over
the rest. This configuration implements a two-stage adap-
tation of phone models, outperforming the standard phone-
independent GMM-based system. The paper also considers
adaptation of a subset of the whole phonetic set, and its com-
parative improvement of performance. Experiments showed
that this partial adaptation approach, beyond reducing storage
requirement, significantly improves the overall performance.

Index Terms— Speaker verification, Gaussian Mixture
Models, Speaker phoneme model adaptation.

1. INTRODUCTION

The paper considers text independent phone-based speaker
verification. Speaker verification (SV) is a branch of speaker
recognition where the machine has to accept or reject the
claimed identity of a speaker given a sample of his speech.
The most common approach to text-independent speaker
recognition today is using Gaussian Mixture Models (GMMs)
[1]. A GMM-based SV system was found in recent evalu-
ations to be the best performer [2]. Even though in these
systems speakers are modelled each by a single GMM, it
has been observed that the Gaussian components tend to rep-
resent the underlying phonetic sounds of a speaker’s voice.
Speaker verification methods based on Hidden Markov Mod-
els (HMMs) proposed in [3] combine phonetic modelling of
speech with temporal information. Auckenthaler et al. [4]
compared a phone-independent approach based on GMMs
and phone-based approach using Hidden Markov Models
(HMMs). In all their experiments, the phone-independent
GMM system has consistently outperformed the phone-based

HMM system. However, they observed that the addition of
phonetic weighting, borrowed from the segmentation that
was carried out by the HMM system, improved the perfor-
mance of their phone-independent GMM system. Newman
et al. [5] which perform speaker verification through large
vocabulary continuous speech recognition (LVCSR), report
that this is a competitive alternative to available GMM SV
systems. Phone-based speaker verification typically involves
two stages. First, the speech is segmented to phone classes.
At the second stage, given phone-dependent models for each
speaker, the verification task is carried out by scoring each
frame with its corresponding phone model. The verification
procedure may be applied in several ways. Olsen used in
[6] phone-dependent radial basis function neural networks,
and considered different feature presentation for each phone
for improved performance. In [7], a two-staged SV system
was considered where speech was segmented to 8 different
speech classes and, correspondingly, each speaker was as-
signed 8 acoustic GMMs. The segmental GMM system could
not outperform the equivalent global GMM system. Jin et
al. [8] developed a multilingual speaker identification system
where the phone strings were derived from eight different
languages phone recognizers. The multilingual approach was
found to be powerful for speaker identification, especially
under non-matching conditions. Yet, it was noted that good
performance was achieved only for large amount of training
data. In a previous closely related study, D. Gutman and Y.
Bistritz [9] generated phone-dependent GMMs for the tar-
get speaker by applying adaptation of the speaker’s general
GMM, and phone-dependent background GMMs by adapting
the general background speakers’ GMM. This configuration
performed better than a standard GMM-based system when
small size models were used. This paper proposes and exam-
ines several phone-dependent configurations based on various
adaptation paths. Verification experiments were held on both
clean and telephone speech using small amount of training
and testing data. The systematic study reveals one of the sev-
eral new configurations, a certain doubly adapted scheme, as
best performer. The paper also examines adaptation of only
subsets of the whole set of phones. A Phone Knockout Rejec-
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tion procedure is used to select the most effective subsets of
phones. The experiments showed that this partial adaptation
approach, beyond reducing storage requirement per target
speaker, significantly improves the overall performance.

2. PHONE-BASED SPEAKER VERIFICATION

2.1. MAP Adaptation of GMMs

For a D-dimensional feature vector, x, a probability density
of a GMM is defined as a weighted sum of M gaussian den-
sities:

p(x | λ) =
M∑

i=1

wipi(x) (1)

where pi(x) is a unimodal Gaussian density, parameterized
by a mean vector μi, , a covariance matrix Σi, and mixture
weights wi that add to unity. The model, λ, is collectively
denoted as λ = {wi, μi,Σi}, where i = 1, . . . ,M . Max-
imum a Posteriori (MAP) adaptation approach is used to up-
date the model parameters to a new data. The MAP adaptation
introduced by Gauvain and Lee in [10], relays on the assump-
tion that the old model is well trained and that a supervised
adjustment to the new data is required. The MAP adaptation
is obtained in two steps. In the first step the new sufficient
statistics are estimated. In the second step the new statistic
estimates are combined with the old parameters using a data-
dependent mixing. Given a GMM with diagonal covariances,
λ, and training vectors X = {x1, . . . , xT }, the probabilistic
alignment of the training vectors into the mixture component
i is computed as

Pr(i | xt, λ) =
wipi(xt)∑M

j=1 wjpj(xt)
, (2)

where pi(xt) is the Gaussian density of the mixture compo-
nent i given vector xt. Then Pr(i | xt, λ) is used to compute
the weight, mean, and variance:

ni =
T∑

t=1

Pr(i | xt, λ) (3)

Ei(x) =
1
ni

T∑

t=1

Pr(i | xt, λ)xt

Ei(xx′) =
1
ni

T∑

t=1

Pr(i | xt, λ)xtx
′
t ,

Next, the new statistics for mixture i is used to create the
adapted parameters for the mixture i by combining the origi-
nal parameters with the estimated parameters as follows:

ŵi = [α(w)
i ni/T + (1 − α

(w)
i )wi]γ (4)

μ̂i = α
(m)
i Ei(x) + (1 − α

(m)
i )μi

σ̂2
i = α

(v)
i diag(Ei(xx′)) + (1 − α

(v)
i )(σ2

i + μ2
i ) − μ̂2

i ,

The adaptation coefficients {α(w)
i , α

(m)
i , α

(v)
i } control the

balance between the old and new estimates, and γ is a scal-
ing factor ensuring that all weights sum to unity. For each
parameter and each mixture, {α(ρ)

i }, ρ ∈ {w,m, v}, is the
data-dependent adaptation coefficient, which is defined as:

α
(ρ)
i =

ni

ni + r(ρ)
, (5)

where r(ρ) is a fixed relevance factor for parameter ρ. We
used a single adaptation coefficient, αi = α

(w)
i = α

(m)
i =

α
(v)
i = ni

ni+r .

2.2. GMM-Based Speaker Verification

Reynolds et al. presented in [1] a GMM-based system in
which a single Universal Background Model (UBM) is used
to represent the alternative hypothesis. The UBM is a large
GMM trained on a large pool of speakers’ speech represent-
ing the speaker-independent feature distribution. The target
speaker model is derived by adapting the parameters of the
UBM using the speaker’s training data. At testing, for a se-
quence of T feature vectors, X = {x1, . . . , xT }, where λhyp

is the model that characterizes the hypothesized speaker and
λhyp characterizes the alternative hypothesis, the log likeli-
hood ratio (LRT) is calculated as

Λ(X) = log p(X | λhyp) − log p(X | λhyp) (6)

where

log p(X | λ) =
T∑

t=1

log p(xt | λ) (7)

Then Λ(X) is normalized by dividing it by T , and compared
to a decision threshold which is set to adjust the tradeoff be-
tween rejecting true claimant utterances (False Reject errors)
and accepting impostor utterances (False Accept errors).

2.3. Phone-Based Modelling and Testing

The first stage of our phone-based speaker recognition sys-
tem, both at training and at testing, involves phonetic seg-
mentation of the speech. At training, the entire collection
of features extracted from the speech frames, X , are classi-
fied into K clusters of phones, X1, . . . , XK and each clus-
ter is used for training a phone model. Segmentation is car-
ried out identically at training and at testing. The speaker’s
phone-GMMs are generated using MAP adaptation which is
most suitable to use when having small amount of training
data. Each phone cluster is used for adapting a well-trained
GMM to a phone-dependent GMM. We defined several differ-
ent configurations of phone-based adaptation of GMMs. The
adaptation is always carried out in the technique described in
section 2.1. However, unlike the standard phone-independent
system, where adaptation is used only for adapting a universal
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Fig. 1. Models categorization and adaptation schemes for
speaker verification.

background model to the data of each speaker, in the follow-
ing configurations the procedure is used in more subtle ways
and at times more than once.

To begin with, we partition the models into four categories
differentiated by their relation: Background or Speaker, and
by dependency: phone-independent or phone-dependent. The
4 model categories are illustrated in Figure 1: 1) Universal
Background Model (UBM) is a large GMM trained once and
used for all target speakers in the verification task. 2) Speaker
Model (SM) is the speaker-dependent GMM generated by us-
ing all the features from the training data of a specific speaker.
3) Phone-dependent Universal Background Model (PUBM)
represents the speaker-independent distribution of features re-
lated to a specific phone. 4) Phone-dependent Speaker Model
(PSM) represents the distribution of features related to a spe-
cific phone of a specific speaker.

Next, we focus on five configurations of phone-adapted
modelling which are defined in Table 1. In the remaining
of the paper they are being referred to as Cfg1 to Cfg5, for
brevity. The adaptation path is denoted by the ”operator” →.

Cfg. Backgroung PSM
Name Modelling Modelling
Cfg1 UBM → PUBM SM → PSM
Cfg2 UBM UBM → PSM
Cfg3 Direct PUBM PUBM → PSM
Cfg4 UBM → PUBM PUBM → PSM
Cfg5 UBM UBM → SM → PSM

Table 1. Five system configurations.

The verification procedure consists of two stages. First,
the test utterance frames are segmented into phone segments
by the speech recognition module. In the second stage the log
likelihood is calculated for each frame using its correspondent
phone adapted model of the hypothesized speaker. All frame
scores are summed together and normalized by the total frame

number. In the configurations that use PUBM (Cfg1, Cfg3
and Cfg4), the background score is calculated in the same
manner. When using UBM as a background model (Cfg2
and Cfg5), the frame classification is not relevant.

3. EXPERIMENTS AND RESULTS

For phonetic segmentation we used the speech Recognition
Experimental System (RES)[11] with 39 mono-phones.

The feature vector for speaker verification consisted of
12 mel-cepstrum coefficients, 12 delta mel-cepstrum coeffi-
cients, and a delta log-energy coefficient. For the telephone
speech, cepstral analysis was performed over mel-filters in
the pass-band 300-3400 Hz. For each of the configurations,
verification was performed using several model orders, on a
logarithmic scale: 4 to 128, except for Cfg3 which was tested
with model sizes of 1 to 16. A single adaptation rate pa-
rameter for the weights, means, and variance, with a rele-
vance factor of r = 12 is used. Experiments were conducted
on the phonetically-rich databases TIMIT (clean speech) [12]
and NTIMIT (includes utterances recorded in TIMIT, passed
through actual telephone lines) [13]. Using those databases
allows us to consider the same speech samples differentiated
only by transmission environments. 88 male speakers are
used to train the Universal Background Model (UBM) and
350 male speakers were trained as target speakers. We present
results in which training was done on approximately 20 sec-
onds of speech. Testing trial was performed with approxi-
mately 3 seconds of speech, 2 true trials and 3 imposter trials
for each target speaker.

In Table 2 we present the performance of the five phone-
based system configurations by their Equal Error Rate (EER)
measure, each configuration with the best performing model
order. UBM-SM configuration represents the standard phone-
independent system. Configuration Cfg1 could not perform
well in high order models, demonstrating the problem of
adapting a speaker’s model which is not well trained due to
insufficient data. Generating phone-dependent speaker mod-
els by adapting the large UBM, as in Cfg2, dose not result
in good performance. In contrast to Cfg2, the configura-
tions Cfg4 and Cfg5 use a two-stage adaptation. In Cfg4,
phone-dependent speaker models are generated from mod-
els that already discriminate phones. In Cfg5, the phone-
dependent speaker models are generated from models that
already discriminate speakers. They both perform better
than Cfg2. The best performing configuration is Cfg5, which
consistently outperforms the phone-independent system. An
improvement of 31% was measured over the baseline config-
uration for clean speech, and 14% improvement for telephone
speech.

The following observations characterize the results re-
ported in this section: 1) Configurations, in which the phone-
dependent speaker models were generated through an adap-
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Clean Speech Telephone Speech
Cfg. Order EER (%) Order EER (%)

UBM-SM 128 1.6 128 8.0
Cfg1 16 1.9 8 10.6
Cfg2 8 2.6 32 10.3
Cfg3 8 1.7 16 7.6
Cfg4 4 1.7 64 7.9
Cfg5 128 1.1 128 6.9

Table 2. EERs (in %) in clean and telephone speech.

tation path starting from the background models, provided
superior performance over a decoupled configuration where
speaker model is trained independently, applying that the
coupling between the background model and the target model
is most important. 2) Phone-based adaptation of a speaker
model should start with a well-trained GMM. Otherwise, this
will lead to a worse phone-dependent modelling, resulting in a
severe degradation in performance. 3) A significant improve-
ment in performance was measured using a new approach of
double-stage adaptation path. This approach superimposes
the benefits of the two principles observed above: (i) It gen-
erates a phone-independent speaker model by adapting the
UBM to the speaker’s speech, thus maintaining the ”cou-
pling” between the background model and the target model;
(ii) It starts with an already well-trained phone-independent
speaker GMM and adapts it to the phone data of that target
speaker. The second adaptation stage provides a robust fine-
tuning of the GMM’s parameters to represent more accurately
each speaker’s phone.

4. PHONE SELECTION FOR SPEAKER
VERIFICATION

Different phonetic classes carry different amount of useful in-
formation to speaker discrimination and have different impact
on the speaker verification task. Using only a subset of the
most discriminative phones while reducing or even omitting
the contribution of the remaining phones has been shown to
improve performance. For example, in [4] it was found that
considering only a subset of 10 to 15 phones provides better
results than using the whole set of phones. Performance of
subsets of phones were previously considered also in [9].

We defined a selection procedure referred to as the Knock-
out Rejection procedure, in which we start with the full set
of phone classes and then apply an iterative procedure for
rejecting phones. The phone without which we obtain the
best subset is discarded in each iteration. The Knockout re-
jection procedure requires N(N+1)

2 − 1 evaluations. In our
case (N = 38, excluding silence ), 740 evaluations were con-
ducted for each system configuration. This procedure is far
more optimal than a simple selection of the N-best phones,
and produced substantially better results. The effort invested
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Fig. 2. EER (in %) using subsets of phones.

in applying this procedure is justified since the process is to
be carried out once, before launching an operational system.

Phone selection results are presented in Figure 2 , showing
the EER (in %) achieved by a subset of n selected phones.
In clean speech, the best subset selected was consistently
smaller in size than the best subset selected in the telephone
environment. Furthermore, the percentage of improvement
achieved by the selection procedure was considerably higher
in clean speech. This result implies that a significant amount
of speaker-discriminative information found in the higher fre-
quency band (above 3400Hz). The lose of this information
in telephone environment causes the effect of having more
phones with little high band speaker-discriminative informa-
tion contributing to the overall performance. Phone classes
that were damaging the overall performance in the case of
clean speech turned out to be contributing to performance
improvement in the case of telephone speech. Hence, a larger
subset of phones was selected to obtain best performance,
and still, the improvement percentage in telephone speech
was relatively smaller. Results showed that the most valuable
phones in all system configurations are /n/ and /s/, in both
speech environments. On the other hand, we observed the
changes in phone importance when considering telephone
speech instead of clean speech. For example, the phones
/z/, /th/, and in some cases other fricatives have lost of their
importance in favor of /ih/ and /iy/. This outcome is not sur-
prising since fricatives have considerable information in the
higher frequency band, which is lost in telephone environ-
ment.
The configuration that turned out to be using the larger sub-
sets of phones was Cfg3. In this case, almost all the phones
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contribute to the total score, implying that this modelling
technique is more robust in modelling each phone class pa-
rameters. But still, its mean performance is lower in the case
of sparse training data. The configuration that achieved the
top improvement by applying the phone selection procedure
was Cfg5, in both cases of clean and telephone speech (64
% and 17% respectively). In Cfg5 larger subsets of phones
were used for the verification task in comparison to the stan-
dard UBM-SM configuration. This observation implies that
the modelling technique of Cfg5 improves the modelling of
the speaker’s phonetic sounds in a way that more phonetic
clusters can contribute to the overall score computed for the
verification task. The overall improvement in the EER of
Cfg5 with phone selection over the baseline configuration
was 75% in clean speech and 30% in telephone speech.

5. CONCLUSIONS

The paper considered phone-based speaker verification with
various adaptation configurations. Experiments on clean and
telephone speech with short duration training and testing ut-
terances were held. The best performing setting, was a config-
uration consisted of doubly-adapted phone models, that con-
sistently outperformed the phone-independent GMM-based
system. In this configuration, first a general target speaker
model was obtained by adapting the parameters of the univer-
sal background model to the speaker’s speech. Next, finely-
tuned phone models were obtained by adapting the speaker’s
general GMM to his/her available clusters of phone data. A
subsequent part of the paper studied the use of smaller sets
of phones to improve performance. The paper has demon-
strated clearly that a well designed phone-dependent GMM
speaker verification system outperforms a comparable regular
phone-independent systems. At the same time, phone-based
speaker verification system is more expensive than a phone-
independent standard system in terms of storage and com-
putation. Storage restrictions may be partially alleviated by
using only a subset of phone models. Also, the phone recog-
nition layer does not pose difficulty when speaker verification
is incorporated in an automatic speech recognition system or
in applications that involve prompted text.
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