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also extend the traditional representation of the resultant by the

zeros of the argument polynomials to formal resultants, defined as

the determinants of the Sylvester matrix for a pair of polynomials

whose actual degree may be lower than their formal degree due

to vanishing leading coefficients. For bivariate polynomials, the re-

sultant is a univariate polynomial resulting by the elimination of

one of the variables, and our main result is a bound on the largest

coefficientof thisunivariatepolynomial.Webringa simpleexample

that shows that our bound is attainable and that a previous sharper

bound is not correct.
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1. Introduction

The resultant is an algebraic tool used for analysis and derivation of various algorithms associated

with the greatest common divisor (gcd) problem. It is a classical concept that has been formulated

originally for a pair of polynomials by Euler and Bezout in the 18th century. Evenwith this respectable

age the resultant is a young addendum to the gcd problem that has been traced back to an algorithm

for finding common factor of integers in Euclid’s book Elements c. 300 BC. The resultant made a wide

impact on many algebraic algorithms and today it has generalizations to more than two polynomials,

to matrix and to multivariate polynomials. A revived interest in it stems from the instrumental role it

was found to play in adjusting gcd related algorithms tomodern symbolic computation environments.
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Let F be an arbitrary field, and let

a(z) = amz
m + am−1z

m−1 + · · · + a0
b(z) = bnz

n + bn−1z
n−1 + · · · + b0

(1)

be two (univariate) polynomials of degree m and n in F[z].
Definition 1. The resultant of a(z) and b(z), denoted by R(a, b), is the smallest degree polynomial of

the variables {ai, i = 0, . . . ,m} and {bi, i = 0, . . . , n} that vanishes if, and only if, a(z) and b(z) have
a common zero.

It is possible to obtain expressions for the resultant in terms of the zeros of one of the polynomials

or both. Let the factorization of the polynomials in (1) be

a(z) = am
m∏
i=1

(z − αi)

b(z) = bn
n∏

i=1

(z − βi)
(2)

where {αi}mi=1, {βi}ni=1 ∈ K ⊇ F are the zeros of a(z) and b(z), respectively.

Theorem 1. The resultant for the two polynomials a(z) and b(z) (1)with zeros as in (2)may be expressed

by any of the following three expressions:

R(a, b) = anm

m∏
i=1

b(αi) (3)

R(a, b) = (−1)mnbmn

n∏
i=1

a(βi) (4)

R(a, b) = anmb
m
n

m∏
i=1

n∏
j=1

(αi − βj) (5)

A simple derivation of (3) and (4) from Definition 1 is given in [1]. The third expression (5) follows

by substitution of (2) into (3).

There are other expressions for the resultant that do not involve the value of the zeros of its argu-

ment polynomials and thus emphasize better its purely algebraic entity. They present the resultant

by determinants of certain matrices that are easily formed from the coefficients of the polynomials.

They can be classified into two types: one that has become associated with the name of Sylvester and

another that was devised by Bézout. In his celebrated paper of 1764 [2] (whose title is apparently the

source for the term resultant), Bézout considered two ways to construct R(a, b). The first, that follows

a paper that Euler published earlier (in 1748), expresses R(a, b) by the determinant of a matrix of

size n + m. The second expresses R(a, b) by the determinant of an abridgedmatrix whose size is only

max(m, n) known today as the Bézoutian matrix, a name given to it already by Sylvester [3].

Euler constructed for the pair of polynomials a(z) and b(z) (1) the followingmatrix of size (n + m),

Syl(a, b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

amam−1 . . . a0
amam−1 . . . a0

. . .
amam−1 . . . a0

bnbn−1 . . . b0
bnbn−1 . . . b0

. . .
bnbn−1 . . . b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ n rows

⎫⎪⎪⎬
⎪⎪⎭ m rows

(6)
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(regard blank spaces as filled with zeros) whose determinant is equal to the resultant,

R(a, b) = det Syl(a, b) (7)

The matrix (6) is called today the Sylvester matrix. For a simple proof that the presentation of R(a, b)
by (7) is commensurate with Definition 1, see [1]. The above expressionmakes apparent thatR(a, b) is
a polynomial whose variables are the coefficients ai and bi of the two polynomials but, by comparison

with the expressions in Theorem 1, obscures its common zero detection property. It is possible, as

some texts do, to take Eqs. (6) and (7) as definition for the resultant and then proceed from there to

show equivalence with Definition 1, with the expressions in Theorem 1, or to show just the corollary

“R(a, b) = 0 if and only if the two polynomials have a common zero", see [4,5] for proofs of some of

these direction.

The three expressions in Theorem 1 are the most transparent demonstration of the ability of the

resultant to detect commonzeros of the twopolynomials. But theydonot offer a convenient expression

to derive the resultant when the zeros are not known. Most applications of the resultant use the

determinant of the Sylvester or the Bezoutmatrix. Nevertheless, the expressions in Theorem 1 do play

a constructive role in the derivation of newalgorithms associatedwith resultants. In fact, the extension

presented in this paper of expressions for Theorem 1 to resultant of polynomials that occasionally

may have vanishing leading coefficients stems from a need for these generalized expressions that we

encountered during a certain study (more on that in amoment) thatwe could not find in the literature.

The paper will also consider resultants for bivariate polynomials. Given two bivariate polynomials

P(s, z),Q(s, z) ∈ F[s, z],
P(s, z) = ms∑

i=0

mz∑
j=0

pi,js
izj

Q(s, z) = ns∑
i=0

nz∑
j=0

pi,js
izj

(8)

their resultant is defined by the determinant of a corresponding Sylvester matrix, by regarding the

each bivariate polynomial as univariate polynomial in one of the variables (the ‘primary’ variable)

with coefficients that are univariate polynomials of the other (‘secondary’) variable. This means that

it is possible to form for the pair of polynomials (8) two different resultants, Rz(P,Q) that takes z as

the primary variable and is a (univariate) polynomial in s, and Rs(P,Q) that takes s as the primary

variable and is a polynomial in z.

It is noticed that the expressions in Theorem 1 require polynomials with non-vanishing leading

coefficients. In difference, the expression of the resultant by the Sylvester matrix is more tolerant to

vanishing leading coefficients. Consequently, it is possible to use the Sylvester formulation to define

the resultant for also polynomials that are degree deficient (i.e. polynomials with actual degree lower

than their formally assumed degree). The resulting extension, to which we refer as formal resultant, is

useful in automated evaluation of resultants because it allows a same procedure to proceed also when

occasionally one of the input polynomials has a vanishing leading coefficients. The paper will extend

the expressions in Theorem 1 and some more properties of the resultant to formal resultants.

Often algorithms associatedwith the resultant require a known-in-advance bound on themaximal

size of the resultant. Such a requirement ariseswhen devising of a procedure to compute the resultants

(or analgorithmrelated to it)withmodular arithmetics (inorder to speed itup, to increase computation

accuracy or to carry it out on a restricted platform). The paper will derive predeterminable bounds on

the magnitude of univariate and bivariate resultants.

This paper will use only Sylvester formulation. Since the Bezoutian and Sylvester matrix provide

equivalentways toexpress the resultant, it is inorder topoint outdifferencesbetween theSylvester and

the Bezout matrices that affect their relative suitability for certain tasks. It is usually more convenient

to express stability conditions for discrete-timeor continuous-time linear systemsbypositive definite-

ness of corresponding Bezoutmatrices than stating it on a sequence of determinants of corresponding

submatrices of the Sylvester matrix. Algorithms to test stability can also be nicely related to triangular

factorization of a corresponding Bezout matrices [6]. However, the process of reducing the size from

the Sylvester matrix to the Bezout matrix creates a matrix whose entries are no longer a simple layout

of the polynomial coefficients. The simple exhibition of the polynomial coefficients is often a desirable
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asset. The Sylvester formulation has been proved useful in establishing efficient gcd algorithm over

integral domains [7–9]. It was also used successfully in [10] to show that a modified form of the Schur

unit-circle stability test, known as the modified Jury test, is integer preserving and subsequently to

implement it with modular arithmetics.

The content of this paper stems from needs that we encountered during work on the implemen-

tation in modular arithmetics of the stability (and unit-circle zero location) test for one-dimensional

discrete-time system in [11] and the stability test for two-dimensional discrete-time systems in [12].

The goal of that study (yet to be published) is to enhance these procedures (already recognized as the

most efficient procedures for their tasks in terms of conventional counts of arithmetical operations)

by versions that are immune to numerical inaccuracy and hardware limitations. Formal resultants

arise in the analysis of the zero location procedure [11] because it admits degree-deficient polynomial.

Bivariate resultants occur in the corresponding two-dimensional stability test [12] because it follows

the interpolation of a scheme that acts like a stability test of a univariate polynomial with coefficients

that are polynomials in the second variable. However, the scope of presentation in this paper is not

restricted to the immediate needs thatmotivated it.Webring a fairly general setting that should render

the content useful for more applications. Needless to say that even tough we use only the Sylvester

formulation, the bounds and other results, once established, apply also for expressing the resultants

by matching Bezoutians.

The paper is constructed as follows. The next section considers resultant of univariate polynomials

and brings bound and other properties for a formal resultant. The third section considers resultants for

bivariatepolynomials. Itfirstobtainsaboundonthedeterminantofanarbitrary(univariate)polynomial

matrix and then derives amax-norm bound for the polynomial resultant of two bivariate polynomials.

2. Univariate polynomials

Let F be an arbitrary field, and let

a(z) = amz
m + am−1z

m−1 + · · · + a0

beapolynomial inF[z],wherewewantnot to exclude thepossibility thatam = 0. For apolynomiala(z)
written in the above form,m is called the formal degree of a(z) and am is its formal leading coefficient. If

the formal leading coefficient is different from zero, then the polynomial is said to be of full degree. If,

on the other hand, am = am−1 = · · · = am−λa+1 = 0 and am−λa
/= 0, then a(z) is said to be degree-

deficient andλa is the degree deficiency of a(z). Clearly,λa = fdeg a − deg a, where fdeg a is the formal

degree and deg a is the actual degree of a(z).
Theorem 1 provides relationship between the resultant and zeros of a(z) and b(z) with restriction

to full-degree polynomials. In difference, the expression of the resultant by Eqs. (6) and (7) has a larger

capacity to evaluate the resultant because it does not involve the zeros of the polynomial. In automated

evaluation of the resultant one wants to have a same routine to evaluate the resultant of any pair of

polynomials a(z) and b(z) of degrees m and n, irrespective of whether the formal leading coefficient

vanishes or not. We cover this extension by the term formal resultant.

Let a(z) and b(z) be two polynomials in F[z] with formal degreem and n and degree deficiency of

λa � 0 and λb � 0 respectively, and let K be a field (K ⊇ F) such that a(z) and b(z) can be factored

into linear terms over K

a(z) = am−λa

m−λa∏
i=1

(z − αi)

b(z) = bn−λb

n−λb∏
i=1

(z − βi)

(9)

where {αi}m−λa

i=1 ∈ K and {βi}n−λb

i=1 ∈ K are zeros of a(z) and b(z) respectively.

Definition 2. We call R(a, b), defined for polynomials (9) by Eqs. (6) and (7), a formal resultant when

the two polynomials are not declared as full-degree polynomials.

We next obtain extension of the expressions in Theorem 1 to a formal resultant.
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Theorem 2. The formal resultantR(a, b) for the polynomials (9)may be expressed by any of the following

three expressions (to be read with 00 = 1).

R(a, b) = (−1)nλaaλb
m bλa

n a
n−λb

m−λa

m−λa∏
i=1

b(αi) (10)

R(a, b) = (−1)nλa+(m−λa)(n−λb)aλb
m bλa

n b
m−λa

n−λb

n−λb∏
i=1

a(βi) (11)

R(a, b) = (−1)nλaaλb
m bλa

n a
n−λb

m−λa
b
m−λa

n−λb

m−λa∏
i=1

n−λb∏
j=1

(αi − βj) (12)

Proof. Denote by â(z) and b̂(z) the polynomials a(z) and b(z) with respect to their nominal degrees.

The resultant R(â, b̂) is equal to the determinant of the corresponding Sylvester matrix of size m −
λa + n − λb

Syl(â, b̂) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am−λa
am−λa−1 . . . a0

am−λa
am−λa−1 . . . a0

. . .
am−λa

am−λa−1 . . . a0
bn−λb

bn−λb−1 . . . b0
bn−λb

bn−λb−1 . . . b0
. . .
bn−λb

bn−λb−1 . . . b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ n − λb rows

⎫⎪⎪⎬
⎪⎪⎭ m − λa rows

(13)

By applying Theorem 1 to â(z) and b̂(z) we have

R
(
â,
)
b̂ = a

n−λb

m−λa

m−λa∏
i=1

b(αi)

R
(
â,
)
b̂ = (−1)(m−λa)(n−λb)b

m−λa

n−λb

n−λb∏
i=1

a(βi)

Thus, by comparing these equations to Eqs. (10) and (11), we must show that

det Syl(a, b) = (−1)nλaaλb
m bλa

n det Syl(â, b̂) (14)

For simplicity of the following, we specify submatrices of Syl(a, b) by participating columns and rows.

For example, in terms of this convention,

Syl(a, b) ≡ Sa, b(1 : m + n, 1 : m + n)

For the proof of (10) and (11) we consider in the following four cases.

Case 1: λa = 0, λb > 0.

In this case we must show that det Syl(a, b) = aλb
m det Syl(â, b̂). Since each submatrix Sa,b

(k : m + n, k : m + n) for 1� k � λb has only one non-zero element in the first column (Sa, b(k, k) =
am), then by successive expansion of the determinant det Syl(a, b) along the first column of each

submatrix we obtain

det Sa,b(1 : m + n, 1 : m + n)

= am det Sa,b(2 : m + n, 2 : m + n)

. . .
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= aλb
m det Sa,b(λb + 1 : m + n, λb + 1 : m + n)

= aλb
m det Syl(â, b̂)

Case 2: λa > 0, λb = 0.

In this case we must show that det Syl(a, b) = (−1)nλabλa
n det Syl(â, b̂). Since each submatrix

Sa,b([1 : n, n + k : m + n], k : m + n) for 1� k � λb has only one non-zero element in the first column

(Sa,b(n + k, k) = bn), then by successive expansion of the determinant det Syl(a, b) along the first

column of each submatrix we obtain

det Sa,b(1 : m + n, 1 : m + n)

= (−1)n+2bn det Sa,b([1 : n, n + 2 : m + n], 2 : m + n)

. . .

= [(−1)n+2bn]λa det Sa,b([1 : n, n + 1 + λa : m + n], λa + 1 : m + n)

= (−1)nλabλa
n det Syl(â, b̂)

Case 3: λa > 0, λb > 0.

Since am = bn = 0, the resultant must be zero.

det Syl(a, b) = (−1)nλa0λb0λa det Syl(â, b̂) = 0

Case 4: λa = 0, λb = 0.

Since â(z) = a(z) and b̂(z) = b(z), we must have Syl(a, b) = Syl(â, b̂)

det Syl(a, b) = (−1)nλaa0mb
0
n det Syl(â, b̂) = det Syl(â, b̂)

This completes the proofs for (10) and (11). Finally, evaluating b(z) in (9) at z = αi we obtain

b(αi) = bn−λb

n−λb∏
j=1

(αi − βj)

Substituting b(αi) into (10) gives

R(a, b) = (−1)nλaaλb
m bλa

n a
n−λb

m−λa

m−λa∏
i=1

bn−λb

n−λb∏
j=1

(αi − βj)

= (−1)nλaaλb
m bλa

n a
n−λb

m−λa
b
m−λa

n−λb

m−λa∏
i=1

n−λb∏
j=1

(αi − βj)

This proves (12). �

The expressions (10)–(12) form the extension to degree-deficient polynomials of the expressions

(3)–(5), respectively.

Theorem 2 implies readily the next conclusion.

Theorem 3. Let a(z) and b(z) be polynomials in F[z] of formal degrees m and n and degree deficiency of

λa � 0 and λb � 0, respectively. Their formal resultant R(a, b) = 0 if, and only if, a(z) and b(z) have at

least one common (finite) zero or are both degree-deficient polynomials (“have at least one common zero

at infinity”).

We bring two more useful properties of the formal resultant.
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Theorem 4. Let a(z), b(z) ∈ F[z] with fdeg a = m, fdeg b = n, then

R(b, a) = (−1)mnR(a, b)

Proof. Evaluating (12) with a and b reversed gives

R (b, a) = (−1)mλbaλb
m bλa

n a
n−λb

m−λa
b
m−λa

n−λb

m−λa∏
i=1

n−λb∏
j=1

(βj − αi)

= (−1)mλb+(n−λb)(m−λa)aλb
m bλa

n a
n−λb

m−λa
b
m−λa

n−λb

m−λa∏
i=1

n−λb∏
j=1

(αi − βj)

= (−1)nλa+mnaλb
m bλa

n a
n−λb

m−λa
b
m−λa

n−λb

m−λa∏
i=1

n−λb∏
j=1

(αi − βj)

= (−1)mnR(a, b) �

Theorem 5. Let K1, K2 ∈ F and a(z), b(z) ∈ F[z] with fdeg a = m, fdeg b = n, then

R (K1a, K2b) = Kn
1K

m
2 R(a, b)

Proof. Follows immediately by direct substitution into (6) and taking K1 and K2 out of determinant or

by a straightforward evaluation of (10). �

Note that the last couple of properties bear for formal resultants the same appearance as for normal

(i.e. full-degree polynomials) resultants.

In the remaining of this section we want to derive bounds on the size of a formal resultant. To this

end, we shall assume polynomials that are defined over C, the field of complex numbers. The bound

will be on the absolute value of R(a, b) as function of the Euclidean norm (2-norm) or the max-norm

of its argument polynomials.

Definition 3. The 2-norm (or Euclidean norm) ‖ · ‖2 of a polynomial d(s) = ∑N
k=0 dks

k ∈ C[s] is

defined as the scalar ‖d‖2 =
(∑N

k=0 |dk|2
)1/2

.

Definition 4. Themax-norm (or∞-norm) ‖ · ‖∞ of a polynomial d(s) = ∑N
k=0 dks

k ∈ C[s] is defined
as the scalar ‖d‖∞ = max {|dk| : 0� k �N}.
Theorem 6 (Hadamard’s bound). Let S be a square matrix of size N. Then the absolute value of its

determinant is bounded by

| det (S)| �
N∏

i=1

⎛
⎝ N∑

j=1

|sij|2
⎞
⎠1/2

=
N∏

i=1

‖si‖2 (15)

where si is the ith row of S.

Proof. The following proof is due to Knuth [13]. Consider the matrix C = SSH . Clearly, det(C) =
| det (S)|2. Each element of the matrix C is given by cij = ∑N

k=1 siks
∗
jk . In particular, cii = ∑N

k=1 |sik|2.
Thus, in terms of elements of C we must show that

| det (S)|2 = det(C) �
N∏

i=1

cii

We may assume that cii > 0 for all i. If cij /= 0 for some i /= j, we can replace row i of matrix S by

(si1 − γ sj1 · · · siN − γ sjN), where γ = cij/cjj . This operation has the effect of Gauss elimination on
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matrix C and does not change the value of the determinant of S. It can be readily shown that it acts

to replace the value of cii by the smaller value cii − |cij|2/cjj so it tends to sharpen the bound. These

replacements can be performed in a systematic way for increasing i and for j < i until the matrix C is

diagonal and its determinant is given by the product of its elements on the main diagonal. �

Theorem 7 (Bound for univariate polynomials resultant). Let a = ∑m
j=0 ajz

j and b = ∑n
j=0 qjz

j be two

polynomials inC[z], fdeg a = m, fdeg b = n.Anupperboundon theabsolute valueof the resultantR(a, b)
is given by

|R(a, b)| � ‖a‖n
2‖b‖m

2 �(m + 1)n/2(n + 1)m/2‖a‖n∞‖b‖m∞ (16)

Proof. The first inequality follows from applying Eq. (15) to S = Syl(a, b), the Sylvester matrix for

the polynomials a(z) and b(z) of the form (6) and the fact that R(a, b) = det Syl(a, b). The second

inequality uses the inequality ‖a‖2 �(m + 1)1/2‖a‖∞ that holds for any polynomial a of degree m.

�

3. Bivariate polynomials

The resultant for a pair of bivariate polynomials (8), can be defined in twodifferentways, depending

on the variable that is eliminated. To be specific, we shall consider the resultant Rz(P,Q) of P(s, z) and
Q(s, z) that represents the elimination of the variables z. This resultant is defined as follows. First, the

two polynomials are written as univariate polynomials in z with coefficients that are polynomials in

s, vis.

P(s, z) =
mz∑
j=0

pj(s)z
j

Q(s, z) =
nz∑
j=0

qj(s)z
j

where deg pj(s) �ms, 0� j �mz and deg qj(s) � ns, 0� j � nz . Then, the Sylvester matrix (6) becomes

Syl(P,Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pmz
(s)pmz−1(s) . . . p0(s)

pmz
(s)pmz−1(s) . . . p0(s)

. . .
pmz

(s)pmz−1(s) . . . p0(s)
qnz (s)qnz−1(s) . . . q0(s)
qnz (s)qnz−1(s) . . . q0(s)

. . .
qnz (s)qnz−1(s) . . . q0(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ nz rows

⎫⎪⎪⎬
⎪⎪⎭ mz rows

(17)

The resultant Rz(P,Q) is defined by

Rz(P,Q) = det Syl(P,Q) (18)

Since the (non-vanishing) entries of the Sylvester matrix are now polynomials of s, the resultant

Rz(P,Q) is a polynomial in F[s] that, when convenient, we shall also denote by

r(s) = Rz(P,Q) (19)

Theorem 8. Let P(s, z),Q(s, z) ∈ C[s, z] with degz P = mz , degzQ = nz and degs P = ms, degsQ = ns
and let r(s) be the resultant of P and Q with respect to z, then

fdeg r(s) = (mz + nz)max(ms, ns) (20)
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Proof. This follows from definition (17) noticing that the determinant is formed as sum of entries that

each is at most the product of mz + nz polynomials from the set of polynomials pk(s), 0� k �mz and

qk(s), 0� k � nz of degree not higher then max(ms, ns). �

The following theorem presents an upper bound on the determinant of an arbitrary polynomial

matrix. A bound on the size of the resultant for bivariate polynomials will follow from it as a special

case.

Theorem 9 (Bound for the determinant of a polynomial matrix). Let D be a square matrix of size N with

elements in C[s] given by

Di,j(s) =
ns∑

k=0

d
(i,j)
k sk , 1� i, j �N (21)

Then the determinant of D is a polynomial Δ(N)(s) of formal degree nsN, and the maximum absolute value

of its coefficients ‖Δ(N)‖∞ is bounded by

‖Δ(N)‖∞ �N!(ns + 1)N−1‖D‖N∞ (22)

where ‖D‖∞ = maxi,j,k |d(i,j)
k |.

Proof. It is easy to realize that the formal degree of Δ(N)(s) is nsN. To simplify the proof for (22), we

define for an arbitrary polynomial d(s) = ∑N
k=0 dks

k an operator 〈| · |〉 as follows

〈|d(s)|〉 =
N∑

k=0

|dk|sk

Expanding the determinant Δ(N)(s) of formal degree nsN along the first column of D we obtain

Δ(N)(s) =
N∑

i=1

(−1)i+1Di,1(s)Δ
(N−1)
i (s)

Then,

∥∥∥〈∣∣∣Δ(N)(s)
∣∣∣〉∥∥∥∞ �

∥∥∥∥∥∥
N∑

i=1

〈∣∣∣Di,1(s)
∣∣∣〉 〈∣∣∣Δ(N−1)

i (s)
∣∣∣〉
∥∥∥∥∥∥∞

�N‖D‖∞

∥∥∥∥∥∥
⎛
⎝ ns∑

k=0

sk

⎞
⎠max

i

〈∣∣∣Δ(N−1)
i (s)

∣∣∣〉
∥∥∥∥∥∥∞

�N(N − 1)‖D‖2∞

∥∥∥∥∥∥∥
⎛
⎝ ns∑

k=0

sk

⎞
⎠2

max
i

〈∣∣∣Δ(N−2)
i (s)

∣∣∣〉
∥∥∥∥∥∥∥∞

...

�N!‖D‖N∞

∥∥∥∥∥∥∥
⎛
⎝ ns∑

k=0

sk

⎞
⎠N

∥∥∥∥∥∥∥∞
where in the above, each line involves expansion of the remaining determinant along its first column.

Therefore,

‖Δ(N)‖∞ =
∥∥∥〈∣∣∣Δ(N)(s)

∣∣∣〉∥∥∥∞ �N!
∥∥∥∥∥∥∥
⎛
⎝ ns∑

k=0

sk

⎞
⎠N

∥∥∥∥∥∥∥∞
‖D‖N∞
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Note that I(ns,N) :=
∥∥∥∥(∑ns

k=0 s
k
)N∥∥∥∥∞ is a well defined integer function of ns and N only and conse-

quently the above is already a predeterminable legitimate (and sharper) bound for the determinant of

a polynomial matrix. The inequality in (22) follows because I(ns,N) �(ns + 1)N−1 (strictly forN > 1).

�

The upper bound on the size of Rz(P,Q) will be expressed by the max-norm of its bivariate

polynomials defined as follows.

Definition 5. The max-norm ‖ · ‖∞ of a bivariate polynomial T(s, z) = ∑M
i=0

∑N
j=0 ti,js

izj , ti,j ∈ C is

defined as the scalar ‖T‖∞ = max {|ti,j| : 0� i �M, 0� j �N}.
Theorem 10 (Bound for bivariate polynomials resultant). Let P(s, z),Q(s, z) ∈ C[s, z] with degz P =
mz , degz Q = nz and degs P = ms, degs Q = ns. Denote the resultant of P and Q with respect to z as

defined in (17) and (18), by r(s) = Rz(P,Q). Then

‖r‖∞ �(mz + nz)!(max(ms, ns) + 1)mz+nz−1‖P‖nz∞‖Q‖mz∞ (23)

Proof. By applying the max-norm bound in Theorem 9 to the special case of the determinant of the

matrix Syl(P,Q) with sizemz + nz and polynomial entries of maximal degree max(ms, ns), we obtain

at once the bound

‖r‖∞ �(mz + nz)!(max(ms, ns) + 1)mz+nz−1‖D‖mz+nz∞ (24)

where ‖D‖∞ = max(‖P‖∞, ‖Q‖∞). The bound (23), that is sharper when ‖P‖∞ /= ‖Q‖∞, is ob-

tained by adjusting the proof outlined for Theorem 9 to the specifics of the Sylvestermatrix (17). In the

first nz inequalities (presenting evaluation of determinants along the first nz rows) we collect powers

of ‖P‖∞
(∑ns

k=0 s
k
)
and in the subsequent mz inequalities (evaluation along the remaining mz rows)

we collect powers of ‖Q‖∞
(∑ns

k=0 s
k
)
. This gives

‖r‖∞ �(mz + nz)!‖P‖nz∞‖Q‖mz∞

∥∥∥∥∥∥
⎛
⎝ ms∑

k=0

sk

⎞
⎠nz

⎛
⎝ ns∑

k=0

sk

⎞
⎠mz

∥∥∥∥∥∥∞
(25)

Next, use∥∥∥∥∥∥
⎛
⎝ ms∑

k=0

sk

⎞
⎠nz

⎛
⎝ ns∑

k=0

sk

⎞
⎠mz

∥∥∥∥∥∥∞
� I(max(ms, ns),mz + nz) �(max(ms, ns) + 1)mz+nz−1

to obtain (23). �

It is notable that during the above proof we obtained a legitimate predeterminable bound (25) that

is usually a strictly sharper bound than (23). However, the simpler looking bound (23) might be good

enough for most of its anticipated applications. Usually, the tightness of the bound is not too crucial

as long as the bound is valid. For example, suppose one wants to compute the resultant of a pair of

integer polynomials using modular arithmetics. A tighter bound may admit the choice of a smaller

prime (or relative primes run in parallel) and hence smaller residue numbers. But the smallness of the

numbers can also be controlled by increasing the number of modular parallel channels. On the other

hand, if these primes are chosen based on an assumed bound that is not true, the recovery of the true

numbers from the residues will fail when the computation contains an integer that exceeds the single

prime or the product of relative primes.

Numerical example. Consider the following polynomials

P(s, z) = 1 + s + s2 + (1 − s + s2)z

Q(s, z) = 1 − s + s2 − (1 + s + s2)z
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Formz = nz = 1,ms = ns = 2, ‖P‖∞ = ‖Q‖∞ = 1here, (23)predicts for r(s) = Rz(P,Q) thebound
‖r‖∞ �(1 + 1)!(2 + 1)1 · 1 · 1 = 6. (The two other expressions, (24) and (25), produce the same

bound.) Zippel in [1, Proposition 78] proposed the sharper bound ‖r‖∞ �(mz + nz)!‖P‖nz∞‖Q‖mz∞ that

predicts for this example that ‖r‖∞ � 2. The resultant can be calculated easily for this simple example,

r(s) = det

(
(1 − s + s2) (1 + s + s2)

−(1 + s + s2) (1 − s + s2)

)
= 2 + 6s2 + 2s4

Thus the currently derived bound is attainable and the previously proposed bound is not correct.

4. Conclusion

We extended the traditional representation of the resultant from full degree polynomials to formal

resultants that incorporate the case where the formal leading coefficients of the polynomials may

be equal to zero. Expressions for the formal resultant of a pair of univariate polynomials in terms of

zeros of the polynomials as well as some more properties were obtained. We also derived bounds on

the size of univariate and bivariate resultants that are determinable in advance from the size of their

argument polynomials. In the process, we also obtained a bound on the determinant of an arbitrary

polynomial matrix. We shall show elsewhere a use of the results in this paper to carry out the unit-

circle zero locationmethod in [11] and the stability test for two-dimensional discrete-time systems [12]

with modular arithmetics. The present results should prove similarly useful for also other algorithms

associated with resultants.
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