
Fraction-Free Factorization of a Toeplitz Matrix

YUVAL BISTRITZ
Tel Aviv University

School of Electrical Engineering
ISRAEL

bistritz@tau.ac.il

Abstract: The paper presents a fast and efficient integer algorithm for the fraction-free triangular factorization
of a strongly regular Hermitian Toeplitz matrix. The algorithm enhances the ordinary fast Schur algorithm for
this factorization with the property that when it is applied to a matrix with (Gaussian or real) integer entries, the
algorithm is completed over the respective integral domain with integers of minimal length and an overall low
binary complexity.

Key–Words: Schur algorithm, Integer algorithms, Covariance matrix, LDU factorization.

1 Introduction

Consider a Hermitian Toeplitz matrix

Tn =

c0 c1 · · · cn
c?1 c0 · · · cn−1
...

. . .
c?n c?n−1 · · · c0

 (1)

defined by n + 1 complex numbers ci ∈ C (where ?

denotes complex conjugate). We assume that the ma-
trix is strongly regular, namely all Tm, m = 0, . . . , n
are nonsingular. Toeplitz matrices arise as the covari-
ance matrix in statistical modeling of signals for linear
prediction problem, in modelling layered media mod-
eling, in realization of lattices filters by reflection co-
efficients, in modeling and coding of speech (by LPC,
linear prediction coding), and more.
Fast algorithms that exploit the structure of the
Toeplitz matrix to solve a set Toeplitz equations
and/or obtain the inverse of the matrix in just or-
der n2 (rather than n3) flops (count of floating point
arithmetic operations) are collectively called Levin-
son algorithms [1]. Among them, the most widely
used version in signal processing is an algorithm that
finds T−1

n in a lower-diagonal-upper (LDU) factorized
form. This version is also known as the Levinson-
Durbin algorithm, referring to its independent deriva-
tion in this context by Durbin in [2]. Some years af-
ter the wide acceptance of the Levinson algorithm, it
has become realized, mostly through work of Kailath
and his associates, that another fast algorithm that has
been traced back to an earlier work by Schur [3] can
equally produce the same reflection coefficients and
hence the same lattice filter realization, see the narra-
tive [4] [5]. The latter papers appeared in a special

volume dedicated to the impact of the work of Schur
on signal processing and operator theory. This vol-
ume also contains translation to English of the perti-
nent couple of paper of Schur that are too referenced
in [3].

The paper introduces an integer version for the Schur
algorithm. By Schur algorithm we refer here to a fast
algorithm that obtains a triangular (LDU) factoriza-
tion Tn and by its corresponding Levinson algorithm
we refer to the algorithm that obtains the triangular
factorization of T−1

n . The two algorithms are inti-
mately related. For example they both produce the
same set of the aforementioned reflection coefficients
that give rise to same form lattice filter realizations
and they can be used to complement each other in ad-
ditional ways. The Schur algorithm has been noted to
have a relative advantage in parallel computation [4]
[6]. The two algorithms were subsequently extended
also to certain close-to-Toeplitz matrices called Quasi-
Toeplitz (QT) and to non-symmetric Toeplitz and QT
matrices, see [8] and references therein. This refer-
ence also proposed an interesting combination of the
Levinson and Schur algorithms to invert and factorize
QT matrices beyond the restriction to Toeplitz and at
most to a subclass of admissible QT matrices [7] that
Levinson algorithm can handle alone.

Integer preserving (IP) Levinson algorithms for
Toeplitz and admissible QT matrices were obtained
in [9] [10] [11]. The IP property means that for an
integer matrix the algorithm can be carried out over
the integers. The integers may be the ordinary inte-
gers, denoted by Z, or Gaussian integers defined by
ZG = {a + jb|a, b ∈ Z} (j =

√
−1). The terms IP

and fraction-free (FF) are often used interchangeably
to describe integer algorithms. In principle, an ordi-

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 51 Volume 3, 2018

nary algorithm (designed for floating point numbers)
can be arranged to stay over integers simply by avoid-
ing division. An example is the forthcoming division-
free (DF) version of the Schur recursions brought be-
low (to serve as an intermediate stage toward reach-
ing the sought final form of the algorithm). The term
fraction-free provides a more descriptive distinction
between an algorithm that is over integers just because
it is DF (but produces integers of length growing at an
exponential rate) and an integer algorithm that actu-
ally uses divisions but nevertheless remains fraction-
free because the divisions act to recursively remove
common integer factors as soon as possible. In other
words, our FF Schur algorithm will involve cancella-
tion type divisions that act to reduce the length of the
involved integers. Efficiency of an integer algorithm
is determined by a measure that counts not just the
number of flops but also the length of the integers in-
volved (multiplication of longer integers costs more).
It is called computing time or binary complexity [12]
[13]. The cancelation of common integer factors can
be shown to reduce the length of the integers involved
from an exponential rate of growth (from step to step)
in a DF algorithm to just a linear rate of growth in the
FF SChur algorithm. We skip here details on the inte-
ger aspects of the proposed algorithm but they can be
shown to be comparable to the characterization of the
corresponding FF Levinson algorithm in [9] [10] [11].

2 The Ordinary Schur Algorithm

The triangular factorization of a strongly regular Her-
mitian matrix (1) is usually expressed by

Tn = P?
nDnPt

n (2)

where Pn is a unit-triangular matrix of size n+1 (that
for concreteness is assumed to be lower-triangular)
and t denotes transpose. The adjective “unit” means
that the triangular matrix has 1’s on its main diagonal.
Dn is a diagonal matrix with entries denoted by

Dn = diag[D0, D1, . . . , Dn] . (3)

The assumption that the matrix is strongly regular (i.e.
all its principal submatrices are non-singular) is equiv-
alent to the condition that all the entries of Dn are non-
zero. Indeed, the principal minors of the matrix are
given by

det Tm =

m∏
i=0

Di , m = 0, . . . , n (4)

In order to have a factorization over integers for an
integer Tn, we must abandon the above normaliza-

tion to a unit-triangular matrix. This introduces in-
finitely many LDU presentations for the matrix be-
cause the diagonal matrix can compensate on any ar-
bitrarily rescaling of each of the columns of the tri-
angular matrix. In [8] we pursued uniformly looking
Levinson and Schur algorithms with common trans-
mission lines parameterized by the celebrated reflec-
tion coefficients, see also [7] [14]. To this end, we
used there a scaled version of the Schur algorithm that
produces columns for the following not unit-triangular
factorization

Tn = U?
nD−1

n Ut
n (5)

The diagonal matrices Dn here and in (2) are the same.
This means that the lower-triangular matrix Un is re-
lated to the unit-triangular matrix by Un = PnDn.
Another convenience that we must too abandon is the
“no loss of generality” normalization c0 = 1 that
is made in virtually all previous reports on the LDU
factorization of Toeplitz matrices and their inverse,
including [8]. It is evidently restrictive for an in-
teger matrix. Fortunately, the only further change
in the form of the algorithm in [8] for a Hermitian
Toeplitz matrix is changing the initialization there into
D0 = c0. This modification ha been already included
in the forthcoming reference algorithm, Algorithm 1.
By this, we have reached a conceptually pleasing sep-
aration between changes that stem from abandoning
traditional conveniences in the ordinary that are no
longer appropriate for an integer algorithm from forth-
coming changes that aim to turn Algorithm 1 that is
still a “floating point” algorithm, into an efficient in-
teger algorithm.

The ordinary (i.e. not IP) Schur algorithm below ob-
tains the columns um = [um,0, . . . , um,n]t for the
lower-triangular matrix Un

Un =

u0,0 0 · · · 0
u0,1 u1,1 · · · 0

...
. . .

u0,n u1,n · · · un,n

 (6)

and the entries Dm for the diagonal matrix (3) for the
LDU factorization (5) in a recursive manner. The al-
gorithm here and in the sequel use polynomial recur-
sion (that if desirable, can be easily converted into a
recursive update expressions for the involved entries)
with the following convention. The recursion propa-
gates a pair of polynomials

um(z) = zn[0, . . . , 0, um,m, . . . , um,n, . . .]
t (7)

vm(z) = zn[0, . . . , 0, 0, vm,m+1, . . . , vm,n, . . .]
t

where z = [1, z, z2, . . .] (of length as needed). The
recursion keeps nullifying the least power coefficients

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 52 Volume 3, 2018

such that at step m the first m coefficients of um(z)
and the firstm+1 coefficients of the auxiliary variable
vm(z) are zeros as shown in (7). Each recursion step
gets as input the pair u(m−1)(z), v(m−1)(z) both of de-
gree n and produces as output a pair um(z), vm(z) of
degree increased by one. Since we need only the first
n + 1 coefficients for all m, computation of coeffi-
cients of powers higher than necessary can be avoided
by recursive truncation of the output polynomials be-
yond the power zn, for allm. We denote the truncated
polynomials by

u(m)(z) = zn[0, . . . , 0, um,m, . . . , um,n]t (7)

v(m)(z) = zn[0, . . . , 0, 0, vm,m+1, . . . , vm,n]t

where zn = [1, z, z2, . . . , zn]. In the implementa-
tion of the algorithm, in order to avoid more more
computation than necessary, it is also important not
to compute tthe first m and m + 1 coefficients of
u(m)(z), v(m)(z) that are zero by structure. So our
notation convention is not the most foolproof possi-
ble to ensure that only the minimal number of re-
quired coefficients is calculated. It however adheres
to the notation we used in [7] in order to attain a look-
alike Levinson and the Schur algorithms. As a conse-
quence, our forthcoming FF Schur algorithm will too
bear a formal resemblance to the FF Levinson algo-
rithm for a Toeplitz matrix in [9] [10] [11].

Algorithm 1. The ordinary Schur algorithm

Given Tn in (1) with ci ∈ C, set u(0)(z) =
zn[c0, c1, . . . , cn]t, v(0)(z) = u(0)(z)− c0, d0 = c0.
For m = 1, . . . , n do:

km =
vm−1,m

Dm−1
(8a)

[
um(z)
vm(z)

]
=

[
1 −k?m
−km 1

] [
zu(m−1)(z)

v(m−1)(z)

]
(8b)

u(m)(z) = zn[0, . . . , 0, um,m, . . . , um,n]t

v(m)(z) = zn[0, . . . , 0, 0, vm,m+1, . . . , vm,n]t

Dm = um,m (8c)

As was shown in [8], taking the coefficient vector of
u(m)(z) to be the (m + 1)-th column of Un (6) and
setting Dm m = 0, . . . , n into the diagonal matrix Dn

(3) produces the LDU factorization (5) for Tn.

3 FF Schur algorithms

We want to convert Algorithm 1 into an efficient in-
teger algorithm for (1) with ci ∈ ZG or ci ∈ Z. An
obvious way to get an integers algorithm is to avoid
divisions. The resulting DF recursion can be shown to
create integers of length that grows at an exponential
rate (due to a mechanism that will become apparent
through the material in the Appendix). We begin with
the DF recursions and then will use them to derive of
the sought efficient FF integer algorithm.
Suppose we take the Algorithm 1 and carry it our
without admitting divisions (they are introduced via
the reflection coefficients, km, (8a)). All the variables
of the DF recursions are tagged withˆ (to be removed
later in the FF version). The main replacements are
u(m)(z) → x̂(m)(z) and v(m)(z) → ŷ(m)(z). The
outcome is as follows.

Division-free recursions (an intermediate result). Set
ε−1 = 1, ε0 = c0 x̂0(z) = zn[c0, c1, . . . , cn]t, ŷ0(z) =
x̂0(z)− c0.

For m = 1, . . . , n do:

δ̂m = ŷm−1,m (9a)

[
x̂m(z)
ŷm(z)

]
=

[
ε̂m−1 −δ̂?m
−δ̂m ε̂m−1

] [
zx̂(m−1)(z)

ŷ(m−1)(z)

]
(9b)

x̂(m)(z) = zn[0, . . . , 0, x̂m,m, . . . , x̂m,n]t

ŷ(m)(z) = zn[0, . . . , 0, 0, ŷm,m+1, . . . , ŷm,n]t

ε̂m = x̂m,m (9c)

Let a|b denote that integer a divides integer b without
remainder, and a|x`(z) to mean that a is a common in-
teger divisor for all the coefficients of the polynomial
x`(z). Then the next lemma is proved in the appendix.

Lemma 1. For an integer Tn in (1) (i.e. ci in ZG or in
Z) the above DF recursions produce ε̂m in Z such that
ε̂m is a common factor of all the integer coefficients
of the polynomials from x̂(m+2)(z) ŷ(m+2)(z) and on,
i.e.

ε̂m|x̂(m+2+i)(z), ŷ(m+2+i)(z) , i = 0, 1, ..., n−m−2

Lemma 1 is proved in the appendix where it is further
explained that it implies that Algorithm 2 is indeed
fraction-free as stated in the next theorem.

Theorem 2 (Algorithm 2 is FF). For Tn in (1) with
ci ∈ ZG or ci ∈ Z, all the coefficients that Algorithm
2 produces are in ZG or Z, respectively, and all the
computation can be completed over the respective in-
tegral domain.

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 53 Volume 3, 2018

Algorithm 2. FF Schur algorithm for Tn

Set ε−1 = 1, ε0 = c0, x0(z) = zn[c0, c1 . . . , cn]t,
y0(z)=x0(z)− c0
For m = 1, . . . , n do:

δm = ym−1,m (10a)

[
xm(z)
ym(z)

]
=

1

εm−2

[
εm−1 −δ?m
−δm εm−1

][
zx(m−1)(z)

y(m−1)(z)

]
(10b)

x(m)(z) = zn[0, . . . , 0, xm,m, . . . , xm,n]t

y(m)(z) = zn[0, . . . , 0, 0, ym,m+1, . . . , ym,n]t

εm = xm,m (10c)

The next proposition draws the relationship between
the new and the classical Schur algorithms.

Proposition 3. The following relations between the
FF Schur algorithm, Algorithm 2, and the ordinary
Schur algorithm in Algorithm 1 hold[
x(m)(z)

y(m)(z)

]
=εm−1

[
u(m)(z)

v(m)(z)

]
, m = 0, . . . , n (11a)

and by consequence,

εm = εm−1Dm , m = 1, . . . , n (11b)

δm = εm−1km , m = 1, . . . , n (11c)

Proof. First note that if (11a) is true then it im-
plies (11b) because εm = xm,m = εm−1um,m

(8c)
=

εm−1Dm. Eq. (11a) implies also (11c) because

δm
(10a)
= ym−1,m = εm−2vm−1,m

(8a)
= εm−2Dm−1km

that with (11b) gives (11c). The main relation (11a)
can be proved by induction as follows. By defini-
tion, x0(z) = ε−1u0(z) and y0(z) = ε−1v0(z).
Next, x(1)(z) = ε0zx0(z) − δ?1y0(z) = c0{zu0(z) −
k?1v0(z)} = ε0u(1)(z) and y(1)(z) = −δ1zx0(z) −
ε0y0(z) = c0{−k1zu0(z) + v0(z)} = ε0v(1)(z). As-
sume that (11a) holds for m = 0, 1, . . . ` − 1. Then
for m = `,

ε`−1u(`)(z) = zu(`−1)(z)− k?` v(`−1)(z) =

ε`−1

{
z
x(`−1)(z)

ε`−2
−
y?`−1,`(z)

ε`−1

y(`−1)(z)

ε`−2

}
=

1

ε`−2

{
ε`−1zx(`−1)(z)− δ?` y(`−1)(z)

}
= x(`)(z)

Similarly,

ε`−1v(`)(z) = −k`zu(`−1)(z) + v(`−1)(z) =

ε`−1

{
−
y`−1,`(z)

ε`−1
z
x(`−1)(z)

ε`−2
+
y(`−1)(z)

ε`−2

}
=

1

ε`−2

{
−δ`zx(`−1)(z) + ε`−1y(`−1)(z)

}
= x(`)(z)

This completes the proof.

Using (11b) repeatedly gives εm =
∏m

`=0D` that can
be compared to (4) to conclude the important fact that
the algorithm produces directly

εm = det Tm , m = 0, . . . , n (12)

Thus the εm’s are same as those in the FF Levinson
algorithm for a Toeplitz matrix [9] [10]. Same is true
also for the δm’s here and there. Upon comparing the
coefficient of the power zm in the upper line of equa-
tion (10b) we get

εm =
ε2m−1 − |δm|2

εm−2
(13)

In the FF Levinson algorithm, the computation of the
δm involves an inner product between two vectors and
(13) saves there an alternative possible computation of
εm by a second inner product [9] [10]. In the current
FF Schur algorithm both δm and εm are obtained di-
rectly (without “side computation” of inner products).
This is the FF dressing for a similar advantage of the
ordinary Schur algorithm over the ordinary Levinson
algorithm for concurrent computation [4] [6]. The FF
Schur algorithm provides a tool to compute the reflec-
tion coefficients km in an error-free manner via (11c).
As is well known, all |km| < 1 is a necessary and
sufficient condition for the matrix to be positive defi-
nite and they are not likely to take integer values also
in more general situations. However, the FF algorithm
offers a way to reach their value expressed by the ratio
of two integers computed in an error-free manner.

Theorem 4. Algorithm 2 produces the next LDU fac-
torization

Tn = X?
n E−1

n Xt
n (14)

where Xn is a lower-triangular matrix whose
columns are the coefficient vectors of x(m)(z), m =
0, . . . , n, viz.

Xn =

x0,0 0 · · · 0
x0,1 x1,1 · · · 0

...
. . .

x0,n x1,n · · · xn,n

 (15)

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 54 Volume 3, 2018

and En is a diagonal matrix given by the product
En = Èn Ėn

Èn=diag [ε−1, ε0, · · · , εn−1] (16)

Ėn=diag [ε0, ε1, · · · , εn] (17)

Proof. Proposition 3 implies the matrix relations

Xn = Un Èn , Ėn = ÈnDn .

The IP factorization (14) follows by setting the above
relations into the factorization (5).

Thus, Algorithm 2 produces a FF Gaussian/real in-
teger LDU factorization for a Gaussian/real integer
Toeplitz matrix. Note that the diagonal matrices are
real also in the complex case, see (13). Writing the
diagonal as the product of the indicated two diagonal
matrices is useful to express the factorization in terms
of the minimal possible length of integers. The al-
gorithm can be shown to have a restrained growth of
the length of integers similar to the FF Levinson algo-
rithm in [9] [10] [11].

4 A Numerical Examples

Algorithm 2 is easy to program and running it with
some decent size matrices is the way to learn its ef-
fectiveness. Here is a toy numerical example (useful
to test your programming). The application of Algo-
rithm 2 to the next integer Hermitian Toeplitz matrix

T3 =

7 3 + j 1 + 2j 1 + j

3− j 7 3 + j 1 + 2j
1− 2j 3− j 7 3 + j
1− j 1− 2j 3− j 7

runs as follows. The initialization is: x(0)(z) = 7 +
(3 + j)z + (1 + 2j)z2 + (1 + j)z3, y(0)(z) = (3 +
j)z+(1+2j)z2 +(1+j)z3 and ε0 = 7. Stepm = 1:
δ1 = 3+j, x(1)(z) = 39z+(16+2j)z2+(3+12j)z3,
y(1)(z) = (−1 + 8j)z2 + 6z3, ε1 = 39. Step m = 2:
δ2 = −1 + 8j, x(2)(z) = 208z2 + (90 + 18j)z3,
y(2)(z) = (38− 18j)z3, ε2 = 208. Step m = 3: δ3 =
38− 18j, x(3)(z) = 1064z3, y(3)(z) = 0, ε3 = 1064.
Thus the algorithm produces the factorization
T3 = X?

3 E−1
3 Xt

3 (14) with

X3=

7 0 0 0

3 + j 39 0 0
1 + 2j 16 + 2j 208 0
1 + j 3 + 12j 90 + 18j 1064

and E3 given by the product of È =
diag [1, 7, 39, 208] and Ė = diag [7, 39, 208, 1064].

5 concluding remarks

The paper presented an efficient fraction-free algo-
rithm for the triangular (LDU) factorization of a
strongly regular Hermitian Toeplitz matrix. The pre-
sented FF Schur algorithm is usable also for not in-
teger matrices but is designed to provide an efficient
fraction-free algorithm for an integer (Gaussian or
ordinary) that involves integers of minimal possible
length (in general). This is a sought property for com-
puter algebra systems (and for computation with sym-
bols). It also provides error-free computation for in-
teger matrices and can improve the accuracy of com-
putation also for not-integer matrices. A matrix with
decimal entries of acceptable accuracy can always be
scaled up into an integer matrix. Then the reflection
coefficients can be obtained with no further loss of ac-
curacy (they are not affected by the scaling) and af-
ter a similarly accurate integer LDU factorization has
been reached it can be inversely scaled to an LDU with
floating point values of improved accuracy. Extension
of the current algorithm to FF Schur algorithms for
nonsymmetric and to close to Toeplitz matrices as in
[8] is planned for another publication.

APPENDIX: PROVING THE FRACTION-FREE
PROPERTY

We begin by preparing some properties of the DF re-
cursions needed for the proof of Lemma 1.

Lemma 5. The recursions in (9) have the following
(a)-(c) properties.

(a) ε̂m = ε̂2m−1 − δ̂mδ̂?m (18)

(b) x̂(m)(z)x̂
?
(m)(w)− ŷ(m)(z)ŷ

?
(m)(w) = (19)

ε̂m{zwx̂(m−1)(z)x̂
?
(m−1)(w)− ŷ(m−1)(z)ŷ(m−1)(w)}

(c) x̂(m)(z)ŷ(m)(w)− ŷ(m)(z)x̂(m)(w) = (20)

ε̂m{zwx̂(m−1)(z)ŷ(m−1)(w)− ŷ(m−1)(z)x̂(m−1)(w)}

Proof. Property (a) is obtained by comparing the co-
efficient of zm at the two sides of the upper part of
(9b), x̂m,m = ε̂m−1xm−1,m−1− δ̂?mym−1,m and using
the definitions of ε̂m and δ̂m there. To obtain (b), use
K = diag[1,−1] and (9b) to rewrite (b) as follows

[x̂(m)(z), ŷ(m)(z)]K[x̂(m)(w), ŷ(m)(w)]t = (21)

[zx̂(m−1)(z), ŷ(m−1)(z)]Θ
t
mKΘ?

m·
[wx̂(m−1)(w), ŷ(m−1)(w)]t

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 55 Volume 3, 2018

Then evaluate for it

Θt
mKΘ?

m = (ε̂2m−1 − δ̂mδ̂?m)K
(18)
= ε̂mK (22)

This proves property (b). To prove (c), evaluate the
l.h.s. of property (c), using J =

[
0 1
1 0

]
,

[x̂(m)(z), ŷ(m)(z)]K[ŷ(m)(w), x̂(m)(w)]t =

[zx̂(m−1)(z), ŷ(m−1)(z)]Θ
t
mKJΘmJ ·

[ŷ(m−1)(w), wx̂(m−1)(w)]t

But JΘmJ = Θ?
m and then at the center we have

again, using (22), Θt
mKΘ?

m = ε̂mK. This completes
the proof of property (c).

Proof of Lemma 1. For Tn with entries in ZG or Z
the DF recursions remain over the respective integral
domain because it involves no division. The fact that
ε̂m ∈ Z (also for input in ZG) becomes apparent from
(18). In the following we say that a is congruent to b
if a = b modulus ε̂m and denote this by a ∼= b. We
can then conclude that ε̂m|x̂(m+2)(z), ŷ(m+2)(z) if we
prove that x̂(m+2)(z) ∼= 0 and ŷ(m+2)(z) ∼= 0. The re-
quired successive substitutions is simplified by notic-
ing that the structure of the recursion allows to drop
from a sum of terms any term that is already recog-
nized to be congruent to 0, because a term that contain
the factor ε̂m inherits it to all forthcoming summands
in which it participates. We used this technique also to
establish the FF property for the Levinson algorithms
[9] [10] [11]. It was first introduced as a tool to derive
efficient two-dimensional discrete stability tests [15]
and afterward was used also to derive FF stability tests
for discrete and continuous linear systems [16] [17]
[18].
From step m to step m+ 1 we obtain

x̂(m+1)(z) = ε̂mzx̂(m)(z)−δ̂?m+1ŷ(m)(z)

∼=−δ̂?m+1ŷ(m)(z) (23)

ŷ(m+1)(z) = −δ̂m+1zx̂(m)(z)+ε̂mŷ(m)(z)

∼=−δ̂m+1zx̂(m)(z) (24)

from where we also obtain

ε̂m+1 = x̂m+1,m+1

(23)∼= −δ̂?m+1δ̂m+1 (25)

At the next step, from m+ 1 to m+ 2, we get

δ̂m+2 = ym+1,m+2

(24)∼= −δ̂m+1x̂m,m+1 (26)

and

x̂(m+2)(z) = ε̂m+1zx̂(m+1)(z)− δ̂?m+2ŷ(m+1)(z)

(25)(23)(26)(24)∼=
(
−δ̂?m+1δ̂m+1

)(
−zδ̂?m+1ŷ(m)(z)

)
−(

−δ̂?m+1x̂
?
m,m+1

)(
−δ̂m+1zx̂(m)(z)

)
=

zδ̂m+1δ̂
?
m+1

{
ŷ?m,m+1ŷ(m)(z)− x̂?m,m+1x̂(m)(z)

} ∼= 0

The congruence to 0 follows because the term in the
curly bracket is equal to the coefficient of wm in (19).
Similarly,

ŷ(m+2)(z) = −δ̂?m+2zx̂(m+1)(z) + ε̂m+1ŷ(m+1)(z) ∼=(
−δ̂m+1x̂m,m+1

)(
−zδ̂?m+1ŷ(m)(z)

)
−(

−δ̂?m+1δ̂m+1

)(
−δ̂m+1zx̂(m)(z)

)
=

zδ̂m+1δ̂
?
m+1

{
−x̂?m,m+1ŷ(m)(z)+ŷm,m+1x̂(m)(z)

}∼=0

This time the congruence to 0 follows because the
term in the curly bracket is recognized as the coef-
ficient of wm in (20). This completes the proof of
Lemma 1 that ε̂m|x̂(m+2)(z), ŷ(m+2)(z) ut
It can be concluded that this factor propagates
and multiplies in the DF recursions such that
ε̂1+i
m |x̂(m+2+i)(z), ŷ(m+2+1)(z), i = 0, 1, 2, Con-

sequently it causes a severe exponential rate of growth
of the integers in the DF recursions.
Finally, the claimed IP property of Algorithm 2 stated
in Theorem 2 follows from Lemma 1 after realizing
that the common factor ε̂m exposed at step m+ 2 can
(and should) be removed as soon as it was formed (i.e.
at step m + 2). Removing ε̂m at step m + 2 does not
interfere with the a similar cycle that makes ε̂m+1 a
removable common integer factor at step m + 3 and
so forth.
Acknowledgements: This research was supported by
the Israel Science Foundation (grant No. 1698/16).

References:

[1] N. Levinson, “The Wiener RMS error criterion
in filter design and prediction”, J. Math. Phys.,
vol. 25, pp. 261-278, 1947.

[2] J. Durbin, “The Fitting of Time-Series Models”,
Rev. the Int. Stat. Inst., vol. 28(3), pp. 233-244,
1960.

[3] I. Schur, “Über potenzreihen, die in innern des
einheitskreises beschränkt sind” Journal für die
Reine und Angewandte Mathematik, vol. pp. 147

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 56 Volume 3, 2018

205-232, 1917 and vol. 148 pp. 122-145,1918.
[English translation in I Schur Methods in Op-
erator Theory and Signal Processing, Opera-
tor Theory: Advances and Applications, I. Go-
hberg (ed.) vol. 18, pp. 31-88, Basel, Switzer-
land: Birkhaüer Verlag, 1986.

[4] T. Kailath, “A Theorem of I. Schur and its Im-
pact on Modern Signal Processing,” in I. Schur
Methods in Operator Theory and Signal Pro-
cessing, Operator Theory: Advances and Ap-
plications, I. Gohberg (ed.), Vol. 18, pp. 9-30,
Birkhaüser Verlag, Basel, 1986.

[5] H. Lev-Ari and T. Kailath, “Triangular factor-
ization of structured Hermitian matrices”, in I.
Schur Methods in Operator Theory and Signal
Processing, Operator Theory: Advances and
Applications, I. Gohberg (ed.), Vol. 18, pp. 301-
324, Birkhaüser Verlag, Basel, 1986.

[6] S-Y Kung and Y-H Hu, “A highly concurrent
algorithm and pipelined architecture for solv-
ing Toeplitz systems”, IEEE Trans. Acoustics,
Speech, and Signal Processing, ASSP-31 (1),
pp. 83-96, 1983.

[7] H. Lev-Ari and T. Kailath, “Lattice Filter
Parametrization and Modeling of Nonstationary
Processes” IEEE Trans. on Information Theory,
vol. IT - 30 (1), 1984.

[8] Y. Bistritz and T. Kailath, “Inversion and fac-
torization of non-Hermitian quasi-Toeplitz ma-
trices” Linear Algebra and its Applications, vol.
98, pp. 77-121, 1988.

[9] Y. Segalov and Y. Bistritz, “Levinson algo-
rithm over integers for strongly regular hermi-
tian Toeplitz matrices” Proc. of the 2008 IEEE
Int. Conference on Acoustics, Speech, and Sig-
nal Processing, ICASSP-2008, Las Vegas, USA.

[10] Y. Bistritz and Y. Segalov, “Fraction-free inver-
sion of a Toeplitz matrix” Proc. of the 2010
IEEE Int. Symposium on Circuits and Systems,
ISCAS-2010, Paris, France.

[11] Y. Bistritz and Y. Segalov, “Integer Levinson al-
gorithms for quasi-Toeplitz matrices” Proc. of
the 2010 American Control Conference ACC-
2010, Baltimore, USA.

[12] P. G. Anderson, M.R. Garey and L.E. Heindel,
“Computational aspects of deciding if all roots
of a polynomial lie within the unit circle”, Com-
puting vol. 16, pp. 293-304, 1976.

[13] S. Basu, R. Pollack and M. F. Roy, Algorithms
in Real Algebraic Geometry, 2nd Ed., Springer-
Verlag, 2008.

[14] T. Kailath, F. Bruckstein and D. Morgan “Fast
matrix factorization via discrete transmission
line”, Linear Algebra and its Applications, vol.
75, pp. 1-25, 1986.

[15] Y. Bistritz, “Stability testing of two-dimensional
discrete linear system polynomials by a two-
dimensional tabular form,” IEEE Trans. on Cir-
cuits Syst. I:Fundam. Theory Appl., vol. 46
(June), pp. 666-676, 1999.

[16] Y. Bistritz, “An efficient integer-preserving sta-
bility test for discrete-time systems”, Circuits
Syst. Signal Process., vol. 23 (3), pp. 195-213,
2004.

[17] Y. Bistritz, “Fraction-free unit-circle stability
tests”, Circuits Syst Signal Process, vol. 33, pp.
3783–3807, 2014

[18] Y. Bistritz, “Optimal fraction-free Routh tests
for complex and real integer polynomials IEEE
Trans. on Circuits and Systems - I, vol. 60 (9),
pp. 2453-2464, 2013.

Yuval Bistritz
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 57 Volume 3, 2018

