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Abstract
Most techniques for speaker verification today use Gaus-

sian Mixture Models (GMMs) and make the decision by com-
paring the likelihood of the speaker model to the likelihood of
a universal background model (UBM). The paper proposes to
replace the UBM by an individual background model (IBM)
that is generated for each speaker. The IBM is created using
the K-nearest cohort models and the UBM by a simple new
adaptation algorithm. The new GMM-IBM speaker verifica-
tion system can also be combined with various score normal-
ization techniques that have been proposed to increase the ro-
bustness of the GMM-UBM system. Comparative experiments
were held on the NIST-2004-SRE database with a plain system
setting (without score normalization) and also with the combi-
nation of adaptive test normalization (ATnorm). Results indi-
cated that the proposed GMM-IBM system outperforms a com-
parable GMM-UBM system.
Index Terms: Model adaptation, Gaussian Mixture Models,
Kullback-Leibler divergence, speaker verification, cohort selec-
tion, score normalization.

1. Introduction
The Gaussian mixture model (GMM) is the most widely used
approach for statistical modeling of a text-independent speaker
verification system. In the standard GMM-UBM system, intro-
duced in [1], the verification is based on a likelihood ratio test
between a universal background model (UBM) and the speaker
model. The UBM is trained with a large amount of speech sam-
ples that embodies a large set of speakers in order to represent
the alternative to the target speaker. The target speaker GMM is
usually obtained by a certain Bayesian adaptation of the UBM
parameters to the speaker enrollment data.

The basic configuration was subsequently enhanced us-
ing score normalization techniques intended to compensate
the models for possible (speaker-dependent and speaker-
independent) session variabilities and thus to increase the ro-
bustness of the decision. The proposed score normaliza-
tion techniques include zero-normalization (Znorm), handset-
normalization (Hnorm), test-normalization (Tnorm), distance-
normalization (Dnorm), and their combinations [2]. The mostly
used normalization technique is the Tnorm approach [3] and its
two recent variants - the adaptive test-normalization (ATnorm)
[4] and the KL-Tnorm [5].

In the Tnorm approach, the normalization parameters are
estimated using the log-likelihood scores derived at test time
from a set of imposter models. The mean, µTnorm, and the
standard deviation, σTnorm, of the imposter scores are then
used to transform the target speaker score as follows

St(X) =
Lt(X)− µTnorm

σTnorm
, (1)

where Lt(X) is the log-likelihood with respect to the target
speaker model, for observation set X . Indeed, the Tnorm pro-
cedure does add computations to the testing phase, however, it
makes it up by improving the robustness of the decision. The
amount of computations is usually decreased by using a fast
scoring mechanism similar to the scoring used for GMM-UBM
in [1]. The ATnorm approach [4] follows earlier observations
that better performance is obtained when cohort normalization
uses speaker-specific selection of cohorts [6].

The method proposed in this paper may also be regarded as
aiming to exploit the advantage of selecting speaker-specific co-
horts but it follows an entirely different route that attains, as will
be demonstrated, better results. We generate speaker-specific
background models that replace the UBM for each speaker with
a tighter alternative. The suggested background model provides
a mixed representation of the general UBM and a set of K, most
similar, imposters related to the target speaker. The IBM is gen-
erated by adaptation of the UBM to a set of K-nearest speaker
models using a new algorithm that requires only the parame-
ters of these models. In the verification phase, the IBM of the
claimed speaker replaces the UBM and thus, with no increase
in computation. The new GMM-IBM speaker verification sys-
tem can be used in conjunction with various score normaliza-
tion techniques that were proposed for the GMM-UBM verifi-
cation system. In the reported experiments we studied a plain
GMM-IBM verification system and its combination with adap-
tive test normalization (ATnorm). In both settings (plain and
with ATnorm) the GMM-IBM system outperformed a compara-
ble GMM-UBM system. The proposed method of adding score
normalization to the GMM-IBM boosts its performance signif-
icantly for just a little increase in computational load.

The rest of this paper proceeds as follows. The next sec-
tion describes the algorithm for adapting a GMM to a set of
other models. Section 3 describes the creation of the GMM-
IBM speaker verification system and its combination with AT-
norm. Section 4 presents and analyzes experimental results on
the NIST-2004-SRE database and it is followed by conclusions.

2. Parametric adaptation of Gaussian
mixture models

This section presents a new and efficient algorithm of the adap-
tation of a prior GMM to a set of K target GMMs. The
adaptation does not require any of the original samples or any
simulation of distributed observations. It uses directly and
only the parameters of the models. The new algorithm is in-
spired by recent works on simplifying a mixture model us-
ing alternating minimization as presented in [7]. It exploits
the fact that the Kullback-Leibler (KL) divergence measure be-
tween two Gaussian distributions has a closed form expres-
sion as follows. For two Gaussian distributions, N(µ1, C1)
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and N(µ2, C2) with vector dimension d, the KL-divergence
DKL [N(µ1, Σ1)||N(µ2, Σ2)] is given by

1
2

[
log |C2|

|C1| + (C2
−1C1)− d (2)

+ (µ1 − µ2)
T C2

−1(µ1 − µ2)
]

.

The parametric adaptation procedure is carried out as follows.
Consider a prior GMM Q(x),

Q(x) =

M∑
i=1

ξiqi(x) where qi(x) ∼ N(µi, C
Q
i ), (3)

and a set of K target GMMs, {P k(x)}K
k=1,

P k(x) =

Nk∑
i=1

wk
i pk

i (x) where pk
i (x) ∼ N(mk

i , Ck
i ). (4)

Let us regard the set of K target models as a single large GMM
which is a weighted sum of K mixture models,

K∑

k=1

γkP k(x).

The mixing coefficients γk ∈ [0, 1] with
∑K

k=1 γk = 1 are used
to calibrate the contribution of each target GMM to the adapted
model. The goal is to adapt the prior model to the mixed set of
target models. First we compute the association probabilities of
the target Gaussians to the prior model components. For prior
component i and target Gaussian component pk

j the association
probability is given by

Pr(i|pk
j ) =

ξie
−DKL(pk

j ||qi)

∑M
m=1 ξme−DKL(pk

j ||qm)
, (5)

where DKL(·||·) is the Kullback-Leibler divergence (2).
Next, Pr(i|pk

j ) are used to obtain the new estimates of the
adapted model in a controlled manner as follows. For each
i = 1, . . . , M we compute the weights by

ξ̂i = (1− α)ξi + α

K∑

k=1

γk

Nk∑
j=1

Pr(i|pk
j )wk

j ; (6)

the means by

µ̂i =
1

ξ̂i

[
(1− α)ξiµi + α

K∑

k=1

γk

Nk∑
j=1

Pr(i|pk
j )wk

j mk
j

]
;

(7)
and the covariance matrices by

ĈQ
i =

1

ξ̂i

(1− α)ξi

[
CQ

i + µiµ
T
i

]

+
1

ξ̂i

α

K∑

k=1

γk

Nk∑
j=1

Pr(i|pk
j )wk

j

[
Ck

j + mk
j mk

j

T
]

− µ̂iµ̂i
T ;

(8)

where α ∈ [0, 1] is the adaptation coefficient. Here, α is taken
for simplicity to be common for all the estimations of the GMM.
The adaptation coefficent controls the extent of the adaptation
in the final estimation where the use of a value strictly lower
than 1 preserves a certain amount of the old parameters.

3. Individual background model for
speaker verification

In order to reduce the number of false detect errors we aim to
provide a tighter alternative to the hypothesized speaker. We
construct an individual background model (IBM), by adapting
the parameters of the UBM to the parameters of the K-nearest
cohort models related to the specific speaker. By employing
this approach, we maintain a coupling relation between the new
IBM and the UBM, which proved to be a robust method for
making decision using the likelihood ratio test (LRT). Next, the
construction of the IBM is described, followed by an efficient
method to combine the GMM-IBM system with adaptive test
normalization scoring.

3.1. IBM construction

Our individual background model (IBM) is a model

Q̂(x) =

M∑
i=1

ξ̂iqi(x) where qi(x) ∼ N(µ̂i,
ˆCQ
i ), (9)

generated for each speaker by adapting the parameters of a
UBM, Q(x) as in Eq. (3), to the parameters of the K-nearest
speaker models, {P k(x)}K

k=1 of the form given in Eq. (4), in
a manner described in section 2. In order to select the near-
est models, we used the matched-based KL approximation de-
scribed in [8] to compute the distance between the speaker
model and the imposter model.

The IBM works with a smaller number of cohorts than
might be expected from the number of cohorts involved in score
normalization. In preliminary experiments, our setting per-
formed well with 8 to 16 nearest cohorts, figures that are by
far lower than 50 to 75 cohort models that were used in the
ATnorm approach in [4] and [5]. We used K = 15 models
in the subsequently reported experiments. The smaller num-
ber of nearest cohorts means a tighter alternative to the target
speaker compared to the ATnorm approach. A value of α < 1
is of course crucial in order to preserve the information of the
universal background model, which may be regarded as a far
cohort representation. In our experimental setting, good results
were obtained with values between 0.7-0.9. In the results re-
ported below α = 0.8 was used. An appropriate value for α
depends on other choices of the parameters, like the choice of
K, the number of nearest cohorts. This issue needs further in-
vestigation. We might add that we found α to also depend on
whether the models were created by update of means only or by
adaptation of the variances and weights in addition. The trend
seems to be that increasing the number of adapted parameters
requires lower values of the adapting factor. In the experiments
reported in this paper we used an equal weighting, γk = 1

K
, for

all cohort models. In the generation of both, the speaker model
and the IBM, only the means were updated.

3.2. IBM and ATnorm

The advantage of the Tnorm over the cohort normalization
technique is in that it also considers the variance of the log-
likelihoods of the tested sample among the large set of imposter
models [3]. Therefore, the performance of our GMM-IBM sys-
tem should also benefit from applying to it the ATnorm, in the
sense of obtaining a more robust decision threshold. In the IBM
case, every target speaker model is provided with a different
background model. Consequently, the normalization has to be



applied over the log of likelihood ratio scores. We start by gen-
erating an IBM for each speaker in the cohort set. Note that in
the case of an operational system, the cohort will be most likely
selected from the pool of target speakers. For each speaker (tar-
get or cohort), denoted by index s, the log-likelihood difference
is computed by

Λs(X) = Ls(X)− Libm
s (X) (10)

where Libm
s (X) denotes the log-likelihood with respect to the

speaker’s IBM. When denoting a target speaker by index t, and
its cohort models by indices ct, the normalization parameters,
µt and σt (mean and standard deviation, respectively), are com-
puted over the scores Λct(X) of the selected cohort set for the
specific target speaker, as in ATnorm. The normalized score of
the target speaker is then computed by

St(X) =
Λt(X)− µt(X)

σt(X)
. (11)

As already mentioned, a typical size of cohort set for AT-
norm, C, may run between 50 to 75. In GMM-IBM combined
with ATnorm, we apply a fast scoring mechanism by using the
original UBM as a reference as follows. First, the top-N com-
ponents are determined by scoring the observation against the
UBM. Next, all log-likelihoods of the speaker models and of
their related IBMs are scored using only the corresponding N
components. For a UBM of order M and ATnorm-cohort of
size C, the target score requires M + 2(1 + C)N Gaussian
computations. Thus, an extra of (1+C)N computations are re-
quired above a standard GMM-UBM system with ATnorm. In
a typical setting where M = 2048, C = 50, and N = 10: the
resulting overhead for incorporating ATnorm with GMM-IBM
is only 20%.

4. Experimental setup and results
Experiments were conducted, using the NIST-2004-SRE data
set [9], to examine the proposed GMM-IBM configuration. A
standard GMM-UBM was used as a baseline for performance
comparisons. A 25-dimensional feature vector based on Mel-
frequency cepstrum processing (MFCC) was used, including 12
cepstral coefficients (energy excluded), delta-log energy, and 12
cepstral derivatives, according to the ETSI standard [10]. Cep-
stral mean substraction and feature warping with 3 seconds win-
dow [11] were applied. An energy based voice activity detector
was used to remove non-speech frames. A gender-independent
universal background model (UBM) of 2048 Gaussians was
trained, and used to generate the target speakers’ GMMs, by
MAP adaptation of the means as in [1]. The UBM was also used
to generate the IBM as presented in section 3. The SPIDRE
corpus [12] and a randomly selected subset of the NIST-2004
data set were used for generating the UBM and for the gen-
eration of the cohort models. For reference, we used ATnorm
[4] for score normalization, where the C-nearest cohort models
were selected using match-based KL-approximation [8] also re-
ferred to as KL-Tnorm in [5]. Gender-dependent cohort model
pools were used (including 145 male and 148 female models)
for model selection. A cohort set of size C = 50 was used for
the ATnorm configuration.

The setting was comprised of 400 target models (148 male,
252 female) that were trained using 400 single-sided conversa-
tions, and 698 single-sided test conversations (279 male, 419 fe-
male) drawn from the NIST-2004 database [9]. The duration of
each conversation unit was approximately 5 minutes taken from

various channel and handset type sources. In the NIST-2004
data set, multi-lingual speakers were included (Arabic, Man-
darin, Russian, and Spanish along with English). The reported
tests were performed over all conditions (which include cross-
language trials). In order to increase the number of trials, every
target model was tested against every available test session of
the same gender. A total of 41292 male trials (of which 513
same speaker) and 105588 female trials (of which 824 same
speaker) were performed.

We begin by illustrating the impact of choosing a different
adaptation coefficient, α, in the generation of the IBM. Figure
1 brings detection error tradeoff (DET) plots of a basic GMM-
IBM system obtained for some different values of α. The best
performance was found to be in the range [0.7, 0.9] presented
in this figure by the value α = 0.8.
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Figure 1: Results of GMM-IBM with variable adaptation coef-
ficient, α, on NIST-2004. The cohort set size for the IBM is
K = 15.

The performance of comparable GMM-IBM and GMM-
UBM systems in our experiments are presented in Table 1 and
in Figure 2. The generation of the IBM in these experiments
used the value α = 0.8 for the adaptation coefficient and a
close-cohort set of size K = 15. Table 1 presents the equal er-
ror rate (EER) (in %) and the minimum decision cost function
(DCF) as defined in NIST-2004 evaluation [9]. Figure 2 brings
the corresponding DET plots.

The GMM-IBM configuration is seen to perform better than
a standard GMM-UBM system. The plain GMM-IBM even
compares well with a GMM-UBM system that uses ATnorm
attaining a similar EER with only a slightly lower DCF figure.
However, the DET curve tends in favor of the GMM-IBM to-
ward the low miss detection rates. When the IBM is combined
with ATnorm, further improvement is achieved and all figures
outperform the figures of a GMM-UBM with ATnorm. Again,
it is observed that the ATnorm affects the performance mostly
in the area of lower false alarm rates. In both cases, the new
GMM-IBM configuration offers a substantial improvement over
a corresponding GMM-UBM configuration.

The explanation for the improved performance of the



System EER improv. minDCF improv.
(%) over over

UBM UBM
UBM (baseline) 14.5 - 0.0550 -
IBM 13.0 10% 0.0515 6.4%
UBM+ATnorm 13.2 9% 0.0490 11%
IBM+ATnorm 12.1 16.5% 0.0460 16.4%

Table 1: EER and minDCF for GMM-IBM system compared
to the baseline GMM-UBM without score normalization and
GMM-IBM compared to GMM-UBM with ATnorm.
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Figure 2: DET curves comparing GMM-IBM to GMM-UBM
without and with adaptive test-normalization (ATnorm).

GMM-IBM (in the framework of likelihood ratio test with a
single decision threshold) is that the IBM is strongly coupled to
the UBM as it is generated by adaptation of the UBM to cohort
models that were also adapted from the same UBM. Hence, the
resulting score variability is not increased dramatically when
using different backgrounds in testing. However, the GMM-
IBM system provides a better discrimination between a true
speaker and close imposters.

5. Conclusions
The paper proposed a GMM-based speaker verification system
with individual background model constructed for each target
speaker. The individual background model (IBM) is generated
by adaptation of the universal background model (UBM) to the
parameters of K-nearest cohort models using a new parametric
adaptation method. The paper studied the performance of the
proposed GMM-IBM system in a plain setting (without score
normalization) and also in combination with adaptive test nor-
malization (ATnorm). In experiments that were conducted on a
customary speaker verification task in both settings (plain and
with ATnorm), the GMM-IBM system outperformed the corre-
sponding GMM-UBM system.
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