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Abstract—Gaussian mixture models (GMMs) are widely used
in a variety of classification tasks where it is often important to
approximate high order models by models with fewer components.
The paper proposes a novel approach to this problem based on
a parametric realization of the maximum mutual information
(MMI) criterion and its approximation by a closed-form expres-
sion named variational-MMI (VMMI). The maximization of the
VMMI can be carried out in an analytically tractable manner and
it aims at improving the discrimination ability of the reduced set
of models, a goal that was not targeted in previous approaches that
simplify each class-related GMM independently. Two effective
algorithms are proposed and studied for the optimization of the
VMMI criterion. One is a steepest descent type algorithm, and
the other, called line search -functions (LSAF), uses concave
associated functions. Experiments held in two speech related tasks,
phone recognition and language recognition, demonstrate that the
VMMI-based parametric model reduction algorithms significantly
outperform previous non-discriminative methods. According to
these experiments, the EM-like LSAF-based algorithm requires
less iterations and converges to a better value of the objective
function compared to the steepest descent algorithm.

Index Terms—Continuous-discrete MMI, discriminative
learning, Gaussian mixture models reduction, hierarchical clus-
tering.

I. INTRODUCTION

G AUSSIAN MIXTURE MODELs (GMMs) have been
successfully used to model complex density functions

for a variety of classification tasks. The adequate representation
of large amounts of data with complex distributions requires
high order models with large number of Gaussian components.
A need to replace these high order models by models with
reduced number of Gaussian components arises when the clas-
sification tool is imported to simpler computational platforms
or has to meet real time processing constraints. Several studies
in recent years have developed parametric methods to produce
lower order models that approximate the given high order
models [1]–[9]. These methods, that sometimes are also re-
garded as learning mixture hierarchies (after [1] that considered
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learning the mixture parameters of level from the knowledge
of the parameters of the lower level ), offer an effective
and computationally less consuming alternative to learning the
reduced models anew from the data. These methods also offer
a good solution to situations where accessing the original data
is no longer an option (e.g. [10], [11]), and the only remaining
alternative is the expensive learning of models from Monte
Carlo simulated samples.
The problem that is being considered involves classification

of classes, where each class is presented by a mixture of
multivariate Gaussian density functions of dimension (the
length of vector ) and of order (the number of Gaussian com-
ponents) ,

(1)

where , and pre-
senting the weights. The goal of the parametric approximation
problem is to find a new set of models of reduced order
,

(2)

with , and weights , that approximate
the given set of high order models in some effective sense of
similarity.
In [12] we have introduced the idea of treating the above

problem by simplifying high order mixture models in a manner
that aims at improving the discrimination capabilities of the re-
duced order GMMs. The maximum correct association (MCA)
criterion that was proposed there, tries to fit each component
in the set of high order models to its “correct” reduced model.
All studies preceding [12], including those in [1]–[9], consider
the maximization of a certain similarity measure between each
reduced model and its corresponding high-order model

without attending to the discrimination quality of the re-
sulting set of reduced models. The MCA scheme was found to
provide better reduced model sets in tasks of phone classifica-
tion [12] and language authentication [13].
In this paper we address the above idea of discriminative

model reduction of GMM classes from the perspective of max-
imum mutual information (MMI). Namely, we require that the
mutual information between the data (represented by the set of
high order models (1)) and the relevant classes (modeled by the
set of reduced models (2)) is maximized. The MMI approach
that was proposed for discriminative training of GMMs in [14]
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provides a most effective method to train GMMs from empir-
ical data. Our derivation enhances theMMI approachwith a new
dressing in showing that it implies a hierarchical discriminating
criterion for deriving reduced order models, depending only on
the knowledge of higher order models parameters. The resulting
continuous-discrete MMI criterion produces an objective func-
tion that cannot be maximized by an analytically tractable al-
gorithm. To overcome this difficulty, we use the variational ap-
proach [15] to approximate the MMI objective function by a
closed-form objective function that we call variational maximal
mutual information (VMMI).
In its second part, the paper considers efficient ways to op-

timize the VMMI criterion. Since, the VMMI function is not
a convex (or concave) objective function, a straight forward
approach is to optimize it by some gradient algorithm. Here
we adopted to our need the generalized probabilistic descent
(GPD) algorithm [16] that obtained good results in our exper-
iments. The second optimization approach that we propose for
the VMMI criterion is based on associating it with certain con-
cave functions, which leads to a first-order optimization scheme
that follows the Line Search Associated Function (LSAF) ap-
proach in [17]. The resulting algorithm provides an EM-like pa-
rameter estimation procedure that is shown empirically to pro-
vide an efficient and robust optimization scheme that compares
favorably with the GPD based optimization.
The third part of the paper evaluates the above two opti-

mization algorithms for the VMMI objective function by ex-
periments held in two speech related tasks, phone recognition
and language recognition. In these experiments, both algorithms
outperform the advanced non-discriminative parametric model
reduction methods proposed recently in [3], [4], [6], as well as
low order models of comparable size trained directly from the
original data by traditional expectation-maximization (EM).
Actually, as it will become apparent, the VMMI criterion pro-

vides an information theoretic interpretation (and some general-
ization) to the MCA criterion in [12], [13] and the LSAF-based
optimization algorithm provides a more stable procedure that
better optimizes the classification ability of the reduced GMMs
than the optimization algorithms used previously in these refer-
ences.
The paper is constructed as follows. The next section brings

important background and details on non discriminative GMM
reduction. Section III derives the VMMI criterion and gener-
alizes it. Section IV describes its optimization by the GPD al-
gorithm. Section V derives (with supplements brought in the
Appendix) the LSAF algorithm for VMMI. Experimental re-
sults are presented in Section VI, and the paper ends with con-
cluding remarks.

II. NON DISCRIMINATIVE GMM REDUCTION

Assume we have a single high order source model,
, with Gaussian components
, and we seek a reduced target

model , with components of
, such that . A reasonable ap-

proach to obtain the reduced GMM is to minimize the distance
between the two probability density functions. The distance
between two probability densities and is usually

measured by their relative entropy also known as the Kull-
back-Leibler (KL) divergence, and is given by the expression

(3)

The divergence between two multivariate -dimensional
Gaussian distributions and ,
has the following closed-form expression:

(4)

Unfortunately, no similar closed-form expression is available
for the KL-divergence between two mixtures of Gaussians.
Several studies addressed the simplification of Gaussian

mixture models, where most of them suggested some ad-
equate closed-form approximation for the KL-divergence.
Goldberger and Roweis [2] introduced a component grouping
algorithm that minimizes an approximation of the KL-diver-
gence based on Gaussian matching. Later, a soft version of
the Gaussian-matching clustering appeared in [3] and in [4].
Bruneau et al. [5], used a parametric EM algorithm based
on the variational-Bayes method for component reduction.
Dognin et al. [6] followed the variational KL approximation,
introduced by Hershey et al. [15], to suggest a so called
variational expectation-minimization (varEM) algorithm for
GMM simplification in the framework of speech recognition.
Goldberger et al. too presented in [4] an EM algorithm based
on the unscented-transform approximation of the KL-diver-
gence. Variations of Bregman divergence where investigated
by Nielsen et al. [7] in a -means clustering approach, and later
by Garcia et al. [8] with extensions to exponential families
and soft Bregman clustering. Zhang and Kwok [9] obtained
model simplification by minimizing an upper bound of the
approximation error using the distance.
In the remaining of this section we consider the variational

EM method described in [6], shown there to maximize a
variational approximation of the likelihood measure between
a source GMM given a desired target GMM. The resulting al-
gorithm also coincides with previous reduction algorithms that
were presented in [3] and in [4] (where it was named GMAC).
In the following, we detail the variational approach because
the introduced expressions provide relevant background for
the further adoption of this technique to our proposed discrim-
inative criterion. The varEM algorithm was shown to present
well the best performance attainable in a speech recognition
application [6] (approaching performance of a standard max-
imum-likelihood training from raw data). Therefore, we shall
also take its performance as a baseline to which we compare
our new results.
The cross-entropy (also the expected log-likelihood) between

the source and target models is defined by

(5)
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As described in [15], a variational approximation for
can be obtained by introducing variational distribution param-
eters, , subjected to . By Jensen’s in-
equality we obtain a lower bound for (5) as follows

(6)

where is the KL-divergence between the two
Gaussian components, and , and is the entropy of
Gaussian . The maximum of the lower bound with
respect to the variational parameters occurs at the values
(see e.g. [18, Ch. 10])

(7)

Setting the above value into gives themaximum value
for this lower bound

(8)

The expression (8) provides a closed-form approximation
for the cross-entropy because the KL-divergence
between each pair of multivariate -dimensional Gaus-
sians has the closed-form expression (4). It can there-
fore be used to approximate the KL-divergence (3), via

, by

(9)

The varEM algorithm in [6] searches for the reduced model
that maximizes (8), which presents a lower bound

for the cross-entropy in (5). The algorithm performs expecta-
tion-maximization iterations over the parameters
of as follows. The E-step (expectation step) computes the op-
timal values in (7), based on the current parameters of ,
that maximize in (6). Then the M-step (maximization
step) maximizes in (8) with respect to the parameters
of , using the following update formulas:

(10)

(11)

(12)

The algorithm alternates between the E-step (7) and the M-step
(10)–(12) until the convergence of .

III. DISCRIMINATIVE REDUCTION OF GMM CLASSES

Our goal in this section is to find a target set of
reduced GMMs (2) that best approximates a given source set

of high order GMMs (1) in the sense of maximum
mutual information. We first derive a maximum mutual infor-
mation (MMI) criterion to this parametric framework. Then, we
use the variational technique to approximate the resulting MMI
criterion by a closed-form objective function to be called varia-
tional-MMI (VMMI). Finally, we generalize the latter objective
function such that it admits interpolation between the discrimi-
native VMMI function and the non-discriminative function con-
sidered in the previous section.

A. Maximum Mutual Information (MMI)

The mutual information between two continuous random
vectors and with joint pdf is defined by

(13)

We wish to maximize the mutual information between
regarded as a continuous variable that presents the data, and
presenting the discrete set of classes,

having a-priori probabilities for each class .
Expressing by the conditional distribution , it is
possible to write the above mutual information expression as
follows

(14)
Next, to achieve the discretization with respect to ,
we set into the integrands the marginal distribution of ,

, where is the delta of dirac, and
marks the discrete prior class probability of class . We use

the familiar property of this operator when integrated over a
vicinity of . This leads to the following expression for the
mutual information, that we denote by , to stress that
we actually reached a new entity-the mutual information for a
mixture of discrete-continuous random variables,

(15)
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To pull the above general formulation toward our goal we need
two assumptions regarding the calculation of the expectation in
(15):
1) The expected value that is calculated in (15) should be
based on the new model parameters. That is, we force the
conditional densities inside the logarithm term to be subjected
to models parameters such that we now
use .
2) From data perspective, we assume that data of class
is distributed according to its high order model in (1).
Therefore, the integration is done with respect to a weighting
pdf that is set to .
Eventually, a new realization for the MMI criterion between
the discrete variable (representing the classes) and the con-
tinuous random vector that is distributed according to the
high order models , and is modeled by the reduced order
models , is formed by

(16)

and more explicitly is given by

(17)

Finally, if we define

(18)

then, themutual information realization in (16) between the con-
tinuous random vector of ‘data’and the discrete random variable
of ‘classes’, can be presented also in the form

(19)

B. Variational Approximation of MMI

The parametric mutual information, (19), that we wish to
maximize still does not offer a convenient access to the parame-
ters that need to be optimized. To handle this difficulty, we apply
the variational technique (exactly as in [15]) to approximate it
by a closed-form expression. By applying the variational ap-
proximation for and for in (19) (using
(8)) we receive the following variational-MMI (VMMI) objec-
tive function

(20)

Note that the referenced and terms are
now obtained by the corresponding optimal variational param-
eters ((7)): the first set of parameters is defined by

(21)

and the second set of parameters is defined by

(22)

Let us recapitulate what we achieved in this section. As-
suming that the distribution of data is given by the high
order models , but is modeled by the reduced order
models , we showed that the maximization of the mu-
tual information between and the discrete random variable
representing the classes amounts to the maximization of
the parametric realization in (17). Then we showed that the
non closed-form expression (17) can be approximated by the
closed-form VMMI objective function (20). Thus the VMMI
objective paves the way for analytically tractable algorithms
to derive low order models that approximately maximize the
referenced mutual information. Two effective algorithms to
optimize will be presented in the next two sections.

C. Relation to Maximum Correct Association

As mentioned, in [12] we have introduced a discriminative
approach for parametric mixture model reduction, where it was
termed “maximum correct association” (MCA), and further
studied it in [13]. The term correct association stems from a
possible interpretation of the above optimal variational pa-
rameters , as presenting the probability of associating
component of the source model (i.e. ) with component
of the reduced model (i.e. ). Consequently, the probability
for the “correct association” of with class can be given by

. The expectation of the logarithm of
this probability of correct association is given by

(23)
The expression (23) coincides with (20) and it reduces to the
MCA objective function in [12] when all a-priori class proba-
bilities are assumed to be equal by .

D. A Generalized Criterion

Consider next the modification of the MMI criterion (19) into
the form

(24)

Namely, assume that an interpolation parameter is added to
the basic criterion such that coincides with in (19) for

, presenting a “full” MMI criterion, while for
the objective degenerates to the non-discriminative maximum
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likelihood (ML) criterion. Such interpolation, named the -cri-
terion, has been suggested as an improvement to MMI in the
context of speech recognition [19], [20], and was shown in [21]
to be useful in reducing over-fitting effects. Later on, the au-
thors in [22] used a similar interpolation principle to investigate
the convex optimization of an approximated MMI criterion by
using a sufficiently small interpolation coefficient.
It can be readily realized that the variational approximation

of the generalization (24) can be given by the following corre-
sponding modification of (20)

(25)

The objective function enhances with a controllable
tradeoff between the VMMI criterion for and a vari-
ational-ML (VML) for (which can be optimized by
varEM for each class separately). In the remaining of this
paper we consider algorithms for the optimization of the above
objective function (20) and their evaluation in reducing GMMs
for phoneme and language recognition. We shall also examine
the impact of the interpolation parameter on classification
accuracy.

IV. DIRECT OPTIMIZATION OF THE VMMI

There are several gradient-based approaches for maximizing
a non-concave objective function like the VMMI. Best known
are the steepest gradient and the conjugate gradient, and more
optimal in the sense of steepest direction (in the Riemannian pa-
rameter space) is the natural gradient [23]. More advanced tech-
niques also involve calculations or predictions of second order
derivatives. In the reported experiments we have used the Gen-
eralized Probabilistic Descent (GPD) [16] technique, which is
based on the probability descent theorem [24], and since its in-
troduction was reported to perform well in several cases of dis-
criminative training of GMMs from raw data. Its general idea is
as follows. Let denote the gradient vector of the objective
function at iteration . Then, with a properly designed transfor-
mation matrix , the parameters are updated by ,
where is the learning rate parameter and the transformation

is a positive definite matrix that transforms the parameter
space to be updated in the steepest direction.
The GPD is an unconstrained optimization scheme. There-

fore, in order to meet some constraints related to GMMs’ param-
eters certain parameter transformations are used. To ensure that
the weights fulfill the constraints and ,
they are replaced by parameters which maintain

(26)

Similarly, positive definiteness of the covariance matrix, , is
attained by maximizing it via which satisfies

(27)

This way, updates of and define corresponding updates
for and that meet their required constraints. In addition,
we also normalize the means by and use

(28)

This normalization of the means fixes the parameter space cur-
vature such that can now be taken as the identity matrix. In
fact, it can be shown that this normalization is identical to taking
the natural gradient with respect to the means. Carrying out the
differentiation of w.r.t. , , and gives for the trans-
formed weights

(29)
for the means

(30)

and for the transformed covariance matrices,

(31)

The expressions (29)–(31) provide the key ingredients for ap-
plying a gradient-based algorithm to obtain the parameters of
the reduced GMMs that optimize . The optimization of
with this implementation of the GPD algorithm achieved good
results in our experiments.

V. OPTIMIZATION VIA CONCAVE ASSOCIATED FUNCTIONS

The efficiency and robustness of a learning procedure for a
non-convex problem is highly dependent on the characteristics
of the observed random process and on model structure and
complexity. The Extended Baum-Welch (EBW) algorithm
is probably the most widely used training scheme in speech
and language processing for GMMs under the MMI criterion
[25]–[27]. The popularity of EBW comes from its simplicity
in casting the optimization into EM-like iterations, that has
been shown to be robust and efficient for large-scale speech
recognition [21], [27]. Extensions and improvements for EBW
continued to appear over the years, such as I-smoothing [28],
Boosted-MMI (BMMI) [29], and “Generalized-BW” (GBW)
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[30], alongside with studies on how to control the EBW’s
update steps [31], [32].
Recently, the EBW algorithm has been generalized into an

optimization technique called Line Search -functions (LSAF)
[17]. This technique uses only first order derivatives but pro-
vides effective update equations that empirically give good step
size guesses. The LSAF approach consists of two basic parts:
the first involves the selection of some “associated function”,
referred to as “ -function”, that satisfies certain conditions that
simplify the optimization, and the second involves a line search
that forces the objective function to increase (or decrease in
minimization). This section is devoted to outline the derivation
of an LSAF-based optimization algorithm for the generalized
VMMI function (25) (for clarity, some of its derivation details
and proofs are given in the Appendix). The LSAF-based opti-
mization of the VMMI function achieved the best results in our
GMM reduction experiments.

A. Line Search -Functions (LSAF)

Consider a function , differentiable for all
in an open set . Following [17], we call a function

that is differentiable in and in an associated
function, or an -function, for if the following properties
hold:
1) is a concave (or convex) function of for
all ;

2) . Namely, the first partial
derivatives of and are identical for all
.

Next, we discuss the line search rule for the maximization of
the objective function (the discussion can be easily inverted to
minimization).When an -function is available for an objective
function , it can assist the iterations for the maximization of
as follows. Let be some point in and be a solution

to the equation . That is,

Then a line search from the current point can be performed
toward , using a parameter by

(32)

In general, an associated guarantees that for some
small enough , we receive (ex-
cept for a situation where the gradients at equal 0), as illus-
trated in part (a) of Fig. 1. If the concave -function fully un-
derestimates the objective function (as illustrated in part (b) of
Fig. 1), the associated function reduces to the commonly called
auxiliary function for , that satisfies the Jensen’s inequality:

. In this case, the
growth property in the objective function holds for all
(including ).

B. -Function for Concave Log-sum Functions

As an auxiliary step toward the optimization of the VMMI ob-
jective function, consider the case of a function that is defined

Fig. 1. LSAF optimization with concave associated functions: (a) LSAF with
a general form of a concave -function. (b) LSAF in the special case where
is an auxiliary function (as in EM).

by a logarithm of the sum of real functions differentiable
for all in an open set ,

(33)

Then, its gradient is given by

(34)

We now show that, if the logarithm of each component is
concave, then the following function is an -function for
in (33):

(35)

First, the concavity condition is satisfied since is a
sum of concave functions, , and therefore it is con-
cave too. Second, the gradient of at equals the
gradient of at :

In this concave log-sum case, the associated function
obeys the Jensen’s inequality:
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In other words, if all in (33) are concave, in
(35) is actually an auxiliary function for .

C. A Concave -Function for Discriminative GMM Reduction

With the above preparations, we proceed to the problem at
hand which is obtaining reduced models for a given set of large
GMMs such that the VMMI criterion is maximized. It is pos-
sible to write the objective function in (25) as follows

(36)

where

(37)

and

(38)

Note that both and include a weighted summation of
log-sum functions in the form considered in Section V-B.
Therefore we can use the property shown there to choose a
suitable associated function for each of them. Let present
the parameter set of the reduced GMM, ,
where is the Gaussian component ,
for all , and . Similarly, let

, where , be the current point
in the parameter space. Hence, according to (35),

(39)
provides an associated function for (37), where

(40)

and

(41)

provides an associated function for (38), where

(42)

Notice that and correspond to the variational pa-
rameters in (37) and (38), respectively, at the fixed point .
Still, the expression is not concave. To

overcome this difficulty, we can add a concave smoothing func-
tion such that its gradient at equals zero. This
way, the local gradient will remain identical to the gradient of
our VMMI function (25) at . This leads to the following
casting of the associated function for the VMMI criterion:

(43)

The smoothing function needs to ensure concavity for the op-
timization, but it should not lose the discrimination quality or
slow down the process too much. We select it as a regularizer
that penalizes new estimates that are distant from the current
parameters. Since the parameters and are sepa-
rable in the term , the smoothing function can
be separated into two independent terms,

(44)

where is selected for the Gaussian components, and is
designed for the mixture weights. For the Gaussian components
we use the following smoothing function,

(45)

where are positive smoothing constants assigned for each
Gaussian component of the reduced model set. Clearly, is
concave, and has a maximum at . For mixture weights
we also use the KL divergence, which yields the following
smoothing function:

(46)

where each term is a positive constant assigned to a subset
of weights that belong to the target GMM . Clearly, this
smoothing function is concave and has a zero gradient at .
The optimization speed depends on the smoothing constants,

where larger values of and cause smaller steps in the
process. Setting different smoothing constant, , per each
Gaussian increases the flexibility to converge to a better dis-
criminative solution.
To derive the solution we first assume sufficiently large s

that force concavity with respect to the weights, and sufficiently
large s that force concavity with respect to the parameters of
the Gaussian components. For convenience, we define for (39)
and (41), the following “occupation” probabilities

(47)

The maximization of the concave associated function
(43), can now be obtained by setting its deriva-

tives to zero, as detailed in the Appendix, part A. As shown
there, in the derivation of the following formula for the update
of the weights, Lagrange multipliers are used to enforce the
constrains . Denote the current parameters
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by . Then, the update formulas for the
weights (see (59) in the Appendix) are obtained by

(48)

The updates for the means are (see (62))

(49)

And the updates for the covariances (see (63)) are given by

(50)

D. Choosing the Smoothing Parameters

The setting of the smoothing constants in each iteration
is crucial for the optimization. We demonstrate next that the
smoothing parameters play two roles: i) they ensure the con-
cavity of the objective function, ii) they control the line search.
Consider first the smoothing parameter for the Gaussian

components. It can be separated into , where

is the nominal value that ensures a concave -function,

and controls the line search between the initial value and

the estimation obtained with the smoothing of . The line
search parameter in (32) becomes

(51)

Namely, it can be shown that the update of the means (49) can
be written with the above parameter by

(52)

where is the estimate when the smoothing constant in (49)
is set to . Similarly, the update of the covariance
matrices (50) can be written as the following line search rule

(53)

where is the covariance estimate with the smoothing value
of . The Gaussian-specific constants are set empirically
as follows. They are chosen to be the maximum of i) two

times of the value necessary to ensure positive variances, i.e.,
, and ii) a global constant (in our experiments we used
) multiplied by the “denominator occupancy” (created

by the denominator of the VMMI criterion (20)), which is
. This empirical setting is adopted from

[27] where it was shown to produce efficient training of GMMs
for speech recognition, after we found it to be also effective for
the parametric reduction of GMMs. Hence, the setting for
can be written as

(54)

In part B of the Appendix we prove that the above controlling
scheme satisfies the concavity of (43) with respect to the
Gaussian parameters in the LSAF technique.
A very similar line-search principle is applied for setting the

smoothing parameters to control the weights updates. We
skip the detailed discussion on this issue since it does not bring
additional insight to the problem. In practice, the setting for
is chosen as follows

(55)

where is a globally fixed constant (we used ). In part
B of the Appendix we show that this update rule satisfies the
concavity condition for the associated function (43) with re-
spect to the weights. It should be noted that in our experiments,
the update of mixture weights had relatively little influence on
the performance.
It is important to stress that satisfying the necessary condi-

tions for concavity is not enough to guarantee a robust opti-
mization. For robust convergence, it is also important to stay
away from covariance estimates that approach zero and from
mixture weights that approach a single dominant weight. There-
fore, the smoothing control scheme requires further empirical
adjustment by experiments. In the context of our experiments,
the smoothing rules suggested in (54) and (55) have worked
quite effectively.

VI. EXPERIMENTS

To evaluate the quality of the VMMI objective function and
its optimization by the GPD and the LSAF algorithms, experi-
mental studies were conducted in two speech processing tasks:
phone recognition and language authentication. In order to save
computations, and in accordance with customary practice in
most speech processing applications, models with diagonal co-
variance were used (even though the presented formulation ad-
mits full-covariance matrices). We also used equal probabili-
ties , for all classes . To compare
our discriminative approach with non-discriminative GMM re-
duction methods, we bring as reference the varEM algorithm
in [6] which is a leading method among the recently proposed
non-discriminative reduction methods (although the differences
between the variety of proposed non-discriminative techniques
have not been found to be very significant). The varEM has been
reported and found also in our experiments to attain reduced
models with classification performance close to those of low
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Fig. 2. VMMI iterations of learning 8-order GMMs from original 128-order
GMMs. The higher plot presents the values of (20) as function of the number
of GPD and LSAF iterations. The lower plot presents the corresponding phone
recognition accuracy.

order models trained directly from raw samples using standard
EM. We also used reduced models obtained by the varEM al-
gorithm as the initial parameters for the VMMI maximization
with the GPD and LSAF algorithms.

A. Acoustic Phone Recognition

Phone recognition tests were performed on the TIMIT corpus
[33] which includes accurate manual phonetic segmentation for
evaluating acoustic modeling performance. The original data
partition was used, 3696 training sentences and 1344 test sen-
tences. As features, we used mel-cepstra (cepstra )
of dimension 38, with mean subtraction, followed by a PCA
transformation. A model-set of 39 mono-phones was used, each
model built of a 3-state HMM. Model size reduction of the
middle-state GMMs was tested (the first and third states of each
phone remained fixed to a 12-component GMM). Recognition
was performed using a bi-gram phonetic language model learnt
from the training set.
First we examined the evolution of the VMMI criterion (the

resulting value of in (20)) and the accuracy of actual phone
recognition along consecutive iterations of the optimization al-
gorithms (briefly denoted by GPD and LSAF). Fig. 2 presents
the results when using interpolation factor (which relates
to full VMMI). Iteration zero presents the performance of the
non-discriminative varEM algorithm (which is identical to run-
ning the LSAF algorithm with together with setting the
smoothing parameters to zero). It will also serve as a baseline.
For the GPD algorithm, it is seen that while the VMMI mea-
sure keeps increasing, the actual recognition performance be-
comes relatively steady after about 12 iterations, experiencing
an over-fitting effect. In comparison, the LSAF algorithm is
seen to converge to a good value of the VMMI function with
fewer iterations while reaching a better steady state in phone
recognition accuracy.
Fig. 3 brings the classification performance of reduced

models of varying orders derived from a fixed 128-order GMM

Fig. 3. Phone recognition accuracy of reduced models of different orders ob-
tained from source GMMs of order 128.

Fig. 4. Dependency of phone recognition accuracy (for reduced GMMs of
order 8) on the interpolation factor used in the generalized VMMI criterion.

set. The upmost horizontal line presents the performance of
128-order GMMs trained by the standard EM algorithm on the
original samples. The figure shows that the accuracy of the
varEM degrades sharply as the order of the reduced models
decreases. The GPD and the LSAF algorithms degrade more
gracefully for reduced orders. It is evident that the proposed
discriminative algorithms exhibit an ability to boost the per-
formance of the reduced models during the inevitable loss
imposed by the size reduction. It also appears that the proposed
LSAF optimization constantly provides better results than the
GPD optimization.
To examine the impact of the interpolation factor , used in
(25) to control the tradeoff between full-VMMI and non-dis-

criminative VML (as presented in Section III-D), we examined
the GPD and the LSAF algorithms in reducing the number of
mixture components from 128 to 8 with variable values. The
results, presented in Fig. 4, show that a slight back-off from the
full VMMI criterion to values of in the range 0.8–0.9, is ben-
eficial.
Even though phone recognition and language recognition are

different tasks, the value of shown above for the first
task, was found to be effective also for the second task. In gen-
eral, a value less than 1 seems to improve performance by re-
laxation of over-fitting effects. However, a fine-tuning of over
the development set for other application may be rewarding.
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B. Language Authentication

Language authentication tests were performed on the 30 sec
segments of the NIST language recognition evaluation (LRE)
2003 [34]. A subset of the CallFriend corpus [35], was used to
train 12 language models, using 12 hours of audio per language
(around 3 million vectors per model). Speech frames were
mapped to a 56-dimensional feature vector composed from
shifted delta cepstra (SDC) 7-1-3-7 coefficients and additional 7
MFCC coefficients (including ), with RASTA filtering (fol-
lowing [36]). Each language was initially modeled by a large
GMM of order 4096 with diagonal covariance matrices, trained
by a conventional EM algorithm on feature vectors pooled
from all recordings of the corresponding language. The original
language models were reduced to target models of order 256.
A verification score was computed using Log-Likelihood Ratio
Test (LLRT), for each test utterance , per language model
, as follows:

(56)

Performance was evaluated by the standard Detection Error
Trade-off (DET) curve. For comparison, benchmark reduced
model sets were generated in two ways. One by ML training
of 256-component models directly from the original feature
vectors using EM, and a second set by reducing the original
4096-component GMMs to 256-component models using
varEM. The latter models also served as the initial parameter
set for both GPD and LSAF algorithms. We present results
using the criterion with the setting (based on the
improvement observed for this value of the interpolation factor
compared to full VMMI). In all our experiments, the LSAF
algorithm typically required between 5 to 7 iterations while for
GPD we used 30 to 50 iterations.
Fig. 5 brings the results of language authentication tests with

reduced order models of 256 Gaussian components. As seen,
the performance of models trained by varEM is similar to the
performance of models trained directly from the data. Both dis-
criminative VMMI algorithms achieved a significant improve-
ment over the non-discriminative ML procedures (both tradi-
tional EM and parametric varEM), with an advantage to the
LSAF algorithm over the GPD algorithm.
The effect of using source models of different orders was also

examined. Fig. 6 brings the results for reduced models of order
256 obtained by the LSAF algorithm (optimizing VMMI with

) from several higher order source model sets (that are
well trained by conventional EM directly from the raw data).
The results demonstrate that the performance of the reduced set
improves as the order of the source model set, from which it
is learned, increases. Clearly, the performance of lower order
models can be greatly improved by learning it from a higher
order source that provides a more accurate representation of the
data. A less expected result is noticed when the LSAF process
introduces a slight improvement even when it is applied without
the intention of order reduction (i.e. the case of deriving target
models of order 256 from source models of order 256).

VII. CONCLUDING REMARKS

We have introduced a new approach for the reduction of a set
of high order Gaussian mixture models (GMMs) by a system

Fig. 5. Language authentication performance of GMMs of order 256 (trained
from data versus reduced from order 4096 GMMs).

Fig. 6. Language authentication performance GMMs of order 256 optimized
by VMMI ( , using LSAF) from different higher order source models
(and directly by EM from raw data).

of GMMs with a lower number of components, based on opti-
mizing a new criterion that characterizes the classification ca-
pacity of the reduced models. The proposed method involves
a parametric realization of the maximum mutual information
(MMI) criterion and its variational approximation by a closed-
form objective function called variational-MMI (VMMI). As a
result, the maximization of the VMMI objective function can be
carried out by analytically tractable algorithms that require only
the parameters of the high order models.
Experiments, held with two different speech classification

tasks (phoneme classification and language authentication),
showed that reduced models obtained by the optimization of
the VMMI criterion, significantly outperform previous methods
that optimize a non-discriminative criterion as well as a system
that derives the lower sized models directly from the original
samples by ML training. The discrimination ability of the
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reduced system depends on the availability of well trained high
order models. This was demonstrated in our experiments by
showing that the classification accuracy of a reduced system of
a certain order increases with the order of the source system
from which it was deduced. We have also proposed a general-
ized VMMI criterion, one that uses an interpolation parameter
to control a tradeoff between full VMMI ( ) and

non-discriminative variational-ML , and showed that
it can enhance the performance when used with a value slightly
below full VMMI.
Still, the VMMI objective function poses a non-concavemax-

imization problem, and its optimization involves the challenge
of avoiding poor local maxima traps. Two optimization algo-
rithms were studied, the gradient-based GPD algorithm, and the
LSAF algorithm that uses a concave associated function. Our
results demonstrate that the VMMI optimization, carried out by
the LSAF algorithm, converges after a few cycles of iterations
and yields better results than the GPD algorithm. The more effi-
cient LSAF algorithm is also more attractive in offering a simple
EM-like optimization procedure.
Additional research may focus on finding improved tech-

niques to optimize the VMMI criterion. Within gradient
algorithms, it would be interesting to examine a natural gra-
dient scheme, which performs the parameter updates in an
optimal direction that depends on the nature of the manifold
[23]. It is noted that the update of the mixture’s means in the
GPD scheme (28) acts already as natural gradient, however it
could be interesting to have it compared with a full gradient
scheme that updates all the parameters along their natural
gradients (subjected to appropriate constraints on the weights
and on the covariance matrices). The better performing LSAF
algorithm uses concave associated function, but since it is not
a true auxiliary function it still requires a smart line search
guess. While, it is not expected that a highly complex objective
function like VMMI could be treated by true convex auxiliary
functions, future research may investigate other ways to relax
the VMMI criterion in order to admit the use of true auxiliary
functions in a convex optimization structure.
Although the VMMI criterion was evaluated in two speech

processing classification tasks, it is expected to be effective also
for deriving reduced Gaussian mixture models in a wider range
of pattern classification tasks. More generally, the idea of dis-
criminative model reduction for classification purposes, that un-
derlies the VMMI criterion (and the MCA criterion in [12],
[13]), is not restricted to models with Gaussian components. It
may also be adapted to other distributions (e.g. to other expo-
nential family distributions). In principle, any mixture of prob-
ability distributions for which the KL divergence between pairs
of mixture components is available in closed-form and is twice-
differentiable can lead to analytically tractable VMMI optimiza-
tion algorithms to produce reduced mixture models with en-
hanced classification accuracy.

APPENDIX

This Appendix brings some derivation details and proofs for
VMMI optimization by the LSAF algorithm in Section V.

A. Derivation of the Update Equations (48)–(50)

For the following proofs we shall need in the partial deriva-
tives of (4) with respect to the parameters of .
They are given by

(57)

and

(58)
The maximization of the concave associated function

(43) with respect to the optimized parameters
is achieved in principle by setting its corresponding derivatives
to zero. Specifically, we derive the update formula for the
weights (48), by first adding a set of Lagrange multipliers to
enforce the constraints . Thus, we differentiate

, with respect to and solve
the equation

(59)

to obtain

(60)

Summing over all and using the constraint
gives

(61)

Using and inserting (61) into (60) verifies the
update formula (48). Next, differentiating with respect to

and using (57) gives

(62)
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The update formula for the means (49) follows from equating
the above expression to zero. Finally, setting to zero the deriva-
tive of with respect to the covariance matrices and using
(58)

(63)

gives, after a little manipulation, the expression (50).

B. Concavity Conditions of the Associated Function

We show that the controls posed on the smoothing parameters
of the LSAF algorithm in (54) and (55) are sufficient to ensure
the concavity of the associated function with respect
to each of the estimated parameters, the weights, means, and co-
variances. Concavity with respect to each set of parameters pro-
vides only necessary conditions for a common maximum. For
strict concavity one needs in addition the negativity of the Hes-
sian matrix whose entries are all second order partial derivatives
of the function. However, using the indicated conditions seem
to provide (according to our experiments with the LSAF algo-
rithm) a common concavity condition in practice.
Claim 1: For chosen as in (55), the value of in (48)

(that solves ) is a maximum of with
respect to .

Proof: Obtain the second derivative of with re-
spect to by differentiating again (59)

The term in the brackets is positive if

Hence, the second derivative is negative for (55) with .

Taking into consideration that is strictly separable
in expands the implication of claim 1 to obtaining a concave
curvature of with respect to the weights independently of
the other parameters.
Claim 2: For chosen as in (54), the value of (49)

(that solves ) is a maximum of with
respect to .

Proof: Differentiating again (62) with respect to gives

Since the covariance inverse is positive-definite, the ex-
pression is negative definite if the term in the brackets is posi-
tive, i.e.

(64)

Hence, the condition (54) satisfies the negativity of the second
derivative if .
Claim 3: For chosen as in (54), the value in (50)(that

solves ) is a maximum of with re-
spect to .

Proof: The second derivative of with respect to
the covariance matrix, , is obtained by differentiating again
(63),

(65)

Let us write the above equation as follows

where

(66)

and , , and are positive definite matrices given by

If the condition in (64) is satisfied, we get according to (66),
. Recalling that the inverse of a positive definite matrix

remains positive definite we get , and now we only
require

(67)

Since is positive definite, we can choose a sufficiently large
to guarantee (67). Let be the minimal value of
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that ensures a positive definiteness in (67), then the condition
(posed in (54)) suffices.
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