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ABSTRACT

The paper considers text independent speaker identification over
the telephone using short training and testing data. Gaussian
Mixture Modeling (GMM) is used in the testing phase, but the
parameters of the model are taken from clusters obtained for the
training data by an adequate choice of feature vectors and a
distance measure without optimization in the maximum
likelihood (ML) sense. This distance-based GMM (DB-GMM)
approach was evaluated by experiments in speaker identification
from short telephone-speech data for a few feature vectors and
distance measures. The selected feature vectors were Line
Spectra Pairs (LSP) and Mel Frequency Cepstra (MFC). The
selected distance measures were weighted Euclidean distance
with IHM and BPL, respectively. DB-GMM showed consistently
better performance than GMM trained by the expectation-
maximization (EM) algorithm. Another notable observation is
that a full covariance GMM (that is more comfortably trained by
DB-GMM) always achieved significantly better performance
than diagonal covariance GMM.

1. INTRODUCTION

Gaussian Mixture Modeling (GMM) provides a good approach
to text-independent speaker recognition [1]. The testing phase is
done by Maximum-Likelihood (ML) classification; therefore
the trained parameters should be optimized in the ML sense. To
meet this requirement, the Expectation-Maximization (EM)
algorithm [2] was proposed to estimate the parameters of the
Gaussian mixture probability density function in the training
process [3]. However, in many practical situations too little
available data causes the EM iterations to become ill
conditioned or over fitted to the trained data. The problem is
partly alleviated by limiting the model to diagonal covariance
matrices rather than full covariance matrices.

The approach that we call Distance-Based GMM proposes to
obtain parameters for the GMM model without optimization in
the ML sense. Instead, the relative population, centers and
spread of clusters of (“well chosen”) feature vectors obtained
from the training data by a (“well chosen”) distance measure are
used as the weights, average, and covariance (respectively) of
the GMM. A VQ trained GMM was applied before to speaker
verification from clean speech in [4] and shown to achieve
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almost the same speaker verification as a GMM trained by the
EM algorithm. The somewhat heuristic separation of the
principle of optimality used at the training and the testing
processes may be justified in cases when it is not necessarily
clear that the EM algorithm converges to the GMM that provide
the best speaker recognition performance. For instance, when
recognition is requested from a short duration of training data,
the EM iterations may become ill conditioned and not converge
to a numerically robust (especially a full covariance) GMM.
Also, in a realistic application, when the speaker’s voice is
available via a communication channel, the training by EM
iterations may reduce recognition rate by over-fitting the GMM
to the specifics of the channel. Therefore, a DB-GMM not only
guarantees a simpler training than the EM algorithm but it may
also provide competing performance to EM-GMM for
recognition of speakers over the telephone (and other
communication channels) using short training data.

The paper reports some experiments in closed set speaker
recognition task that used short duration training and testing of
telephone speech in order to explore the performance of
distance-based GMM (DB-GMM) with a few selected distance
measures and feature vectors. The selected vectors were Mel
Frequency Cepstra (MFC), the most commonly used feature
vector for this model, and Line Spectra Pairs (LSP) that showed
good performance in simple speaker identification schemes in
[5]. The selected distance measures were the Euclidean and
weighted-Euclidean with inverse harmonic measure (IHM) (for
LSP) and Band Passed Liftering weighting (for MFC). The
experiments revealed encouraging results in which DB-GMM
consistently performed equally well or better than EM-GMM in
comparable model architectures. Also, the full covariance
GMM (that is more easily trained by the distance based
approach) always outperformed diagonal GMM in fair
comparisons that take into account the number of parameters
that participate in a model.

2. DISTANCE BASED GAUSSIAN
MIXTURE MODEL (DB-GMM)

A Gaussian mixture speaker model consists of a weighted sum of
M Gaussian probability density functions, and is given by [1]:
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where x is a n -dimensional feature vector, w; are the mixture

3. EXPERIMENTS AND EVALUATION

3.1. Experiment Settings

e database was extracted from the . The
includes speakers from 8 different American dialects, male and

M
weights Zwm =1, and p, (x), m=1,..,M , are the (Gaussian)
m=1
probability density functions. Each branch density is a Gaussian
function of the form
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where y,, is the mean vector of length n and X, is the

n X n covariance matrix.

The GMM is represented by the set of parameters A that
includes the means vectors, covariance matrices and mixture
weights:

ﬂ’:{wm’ﬂmvzm 3 mzl,...,M}

During recognition, a sequence of N feature vectors
X =x; xy,..., Xy that were extracted from speech frames are
presented to the GMM classifier, and the likelihood for each

speaker is calculated using an assumption of statistical
independence between frames as follows:

LX 12)=1og p(X 1 )=} log p(x; 1 2)

At training the chosen distance measure is used to obtain from

the feature vectors T ={v{ ,vy,...,v,()} extracted from the

speaker’s speech M clusters T, = {v{" ,v§™,...v™ } with
n(Ty)

centers c¢,,, m=1,.,M . Then, the GMM parameters are

determined from the clusters as follows
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where n(T) denotes the number of elements in the set 7 .

female. For each speaker, there are 10 sentences, as follows:

. 2 “sa” sentences which include identical text for all
of the speakers.

. 3 “si” sentences which include a different textual
context for all of the speakers (the “phonetically
diverse” sentences).

. 5 “sx” sentences which are different for some of
the speakers.

We selected a subset of the NTIMIT database, that includes 32
male speakers, 4 from each dialect. This selection was intended
to span the various American dialects, while restricting speaker
diversity (all males, 4 speakers per dialect). The 2 “sa” sentences,
3 “si” and 2 of the “sx” sentences were used for training. This
results in a training session with a length of approximately 12 to
20 seconds, depending upon the speaker’s typical rate of speech.
The remaining 3 “sx” sentences were used for testing, resulting
in 96 test utterances (3 for each speaker), each of them
approximately 1 to 3 seconds long.

The same preprocessing procedure was used for training and for
testing. The speech samples were downsampled to 8KHz
sampling rate, and segmented into 25ms frames with 50%
overlap. A Hamming window then multiplies the speech samples
of each frame, and only voiced frames are selected for further
use.

3.2. Distance Measures and Features

We selected for our examination two feature vectors: Mel
Frequency Cepstra (MFC), and Line Spectra Pairs (LSP). For
LSP we used 10" order LPC analysis. The resulting LPC filter
was then subject to a 15Hz bandwidth expansion and the LSP
frequencies [7] were derived. 18" order Mel Cepstra Coefficients
(MFC) were derived using the triangle filter-banks suggested by
[8]. MFC was chosen because it is the most commonly used
feature for speaker recognition today. LSP is the most widely
used feature in speech coding. It was selected because we found
it recently to be useful also for speaker recognition [5]. We used
it with an Inverse Harmonic Measure (IHM) weighting that was
proposed to improve low bit rate coding with LSP in [9]. For a
n dimensional LSP vector, (x;,x, ,..., x,) » the IHM weights

1 1
w, = + ., k=1,..,n
Xk ™ Xk—1 X+l T Xk

where xy =0 and x| = figupiing /2 Were used in a weighted

Euclidean distance. The IHM distance measure was shown to be
a first order approximation of the log-spectral distortion [10]. For
the MFC features of dimension 77, we used weighted Euclidean
distance with Band-Pass Liftering (BPL) weights

wk=1+§sin(k7”) , k=1,..n



The identification experiments were performed modeling the
speakers by (plain) VQ, by DB-GMM and by EM-GMM. Both
full covariance and diagonal covariance models were considered.

3.3. Identification Performance

The identification rates that were obtained are presented in
Tables 1 and 2 for LSP and MFC respectively. The results are
also illustrated in Figures 1 and 2. Note that the tables are
indexed by the order of the models that were used (number of
codebook vectors for VQ and number of Gaussians for GMM),
while in the figures the performance is displayed with respect to
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the number of parameters that constitute a speaker model. (For
example, an LSP based diagonal 4™ order GMM, the models
consist of 4 means and 4 variances for each of the 10 LSP
parameters plus 4 weights resulting in a total of 84 parameters.)
This display reveals more directly how different architectures
exploit the parameter budget.

The results indicate that for a given parameter budget, for both
LSP and MFC, the best performance is achieved when full
covariance GMM models are used. Also it is seen that DB-
GMM consistently outperforms the EM-GMM when identical
GMM architecture and features are compared. This observation
is significant because distance based training of GMM is always
simpler than its training by EM. The training of full covariance
GMM by EM algorithm is more problematic than the diagonal
model. By contrast, the training of DB-GMM is equally simple
for full and diagonal covariances. We also draw attention to that
for LSP, all VQ models outperform all diagonal GMM’s,
suggesting that the off-diagonals of the speakers’ covariance
matrices contribute significantly to speaker discrimination while
the contribution of LSP variances seems to be negligible. No
similarly unambiguous conclusions can be drawn in comparing
VQ models and diagonal GMM models when they use MFC as
feature vector. Also it is seen that the IHM and BPL weighted
distance measure based GMM perform better for most orders
than same models with plain Euclidean distance based GMM.
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Table 1. Identification Rates, LSP. (Identification percents are
in bold figures at the upper part of each block; the participating
number of parameters and number of Gaussians/codebook size in
the lower part of each block.)

Table 2. Identification Rates, MFC. Same format as in Table 1.
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Figure 2. Identification Rates, MFC

Considering the fact that DB-GMM, that is not optimized at
training in the ML sense, is used by the classifier at the testing
phase, it is expected that DB-GMM would trade some decrease
in performance for simpler training by comparison with EM-
GMM. In this view, the observation from our experiments - that
DB-GMM outperforms the EM-GMM - is surprising. Some
degradation in performance for DB-GMM compared to EM-
GMM has been observed in complementary experiments with
clean speech (with TIMIT replacing the NTIMIT) not included in
this report. It was also observed in the experiments with clean



speech in [4]. Thus, the better performance of DB-GMM with
telephone speech may be attributed to that the EM iterations,
more than a DB training, causes the GMM to model not just the
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