Buffer Overflows of Merging Streams

Alex Kesselmah, Zvi Lotker?, Yishay Mansout, and Boaz Patt-Shamir

1 School of Computer Science, Tel Aviv University, Tel Aviv®@B, Israel.
al x@s.tau.ac.il
2 Dept. of Electrical Engineering, Tel Aviv University, Tevi 69978, Israel.

zvil o@ng.tau. ac.il

% School of Computer Science, Tel Aviv University, Tel AviveEs, Israel.
mansour @s.tau. ac. il

4 Cambridge Research Lab, Hewlett-Packard, One CambridgeeC€ambridge, MA 02142.
On leave from Dept. of Electrical Engineering, Tel Aviv Ueigity, Tel Aviv 69978, Israel.
Boaz. Pat t Sham r @HP. com

Abstract. We consider a network merging streams of packets with differ
quality of service (QoS) levels, where packets are trarisddrom input links
to output links via multiple merge stages. Each merge nodegjispped with a
finite buffer, and since the bandwidth of a link outgoing frarmerge node is in
general smaller than the sum of incoming bandwidths, owesflnay occur. QoS
is modeled by assigning a positive value to each packet,f@nddal of the sys-
tem is to maximize the total value of packets transmittedhenoutput links. We
assume that each buffer runs an independent local schgdghdlity, and analyze
FIFO policies that must deliver packets in the order theyaweceived. We show
that a simple local on-line algorithm called Greedy doe®mtally as well as
the combination of locally optimal (off-line) scheduleseWitroduce a concept
we call theweaknes®f a link, defined as the ratio between the longest time a
packet spends in the system before transmitted over thedintkthe longest time
a packet spends in that link’s buffer. We prove that for aeg tthe competitive
factor of Greedy is at most the maximal link weakness.

1 Introduction

Consider an Internet service provider (ISP), or a corponatanet, that connects a large
number of users with the Internet backbone using an “uglMithin such a system,
consider the traffic oriented towards the uplink, namelydtneams whose start points
are the local users and whose destinations are outsidedakdomain. Then streams
are merged by a network that consistsn#rge nodegdypically arranged in a tree topol-
ogy whose root is directly connected to the uplink. Withasd of generality, we may
assume that the bandwidth of the link emanating from a mesde is less than the sum
of bandwidths of incoming links (otherwise, we can assunagttie incoming links are
connected directly to the next node up). Hence, when alkugsgrct data at maximum
local speed, packets will eventually be discarded. A vefigatiize way to mitigate some
of the losses due to temporary overloads is to equip the nrerdes with buffers, that
can absorb transient bursts by storing incoming packetewe outgoing link is busy.
The merge nodes are controlled by local on-lnéfer management algorithmghose

job is to decide which packets to forward and which to drop sdacaminimize the
damage in case of an overflow.

In this paper we study the performance of various buffer ganeent algorithms
in the context of a system of merging streams, under the gstumthat the system is
required to support different quality of service (QoS) lev& he different QoS levels
are modeled by assuming that each packet has a positive eald¢hat the goal of the
system is to maximize the total value of packets delivered.

Evaluating the performance of the system cannot be donesiolatle terms, since
the total value delivered depends on the actual streamsathaé. Instead, we mea-
sure the competitive ratio of the algorithm [18] by boundioger all possible input
sequences, the ratio between the value gained by the &ligaritquestion, and the best
possible value that can be gained by any schedule.

Our model. To allow us to describe our results, let us give here a brifdrinal
overview of the model (more details are provided in Sectjp®©2ir model is essentially
the model used by Adversarial Queuing Theory [5], with thilofeing important dif-
ferences: packet injection is unrestricted, buffers atitefiand each packet has a value.
More specifically, the system is described by a communinagiraph, where each link
e has a buffe). in its ingress and a prescribed bandwiditi{e). An execution of the
system proceeds in synchronous steps. In each step, neetpatiy enter the system,
where each packet has a valuelfih), and a completely specified route. Also in each
step, packets may progress along edges, some packets maypped from the sys-
tem, and some packets may be absorbed by their destinafibasasic limitation on
these actions is that for each edgeat mostiv (e) packets may cross it in each step,
and at mostize(Q.) packets may be retained in the buffer from step to step. Tle ta
of the buffer management algorithm is to decide which pacteforward and which
packets to drop subject to these restrictions. Given asyatal an input sequence, the
total value of a schedule for that input is the total valuehaf packets that reach their
destinations.

In this paper, we consider a few special cases of the gened¢labove, justified
by practical engineering considerations. The possiblgiciens are on the network
topology, scheduling algorithms, and packet values. Thimnts are as followsTree
topologyassumes that the union of the paths of all packets is a diréee, where all
paths start from a leaf and end at the root of the tree. Reuygsdihedules, our results
are for the class ofvork-conservingschedules, i.e., schedules that always forward a
packet when the buffer is non-empty [@We consider the class of FIFO algorithms,
i.e., algorithms that may not send a packet that arriveddetere a packet that arrives
early. This condition is natural for many network protoc@sy., TCP).

Our results. We study the effect of different packet values, differenffdausizes and

link bandwidths on the competitiveness of various locabathms. We study very sim-
ple Greedy algorithm that drops the least valuable packetitadle when there is an
overflow. We also consider the Locally Optimal schedule,ohlis the best possible
schedule with respect to a single buffer. Roughly speakingyns out that in many

® Work conserving schedules are sometimes called “greed/5]L In line with the networking
community, we use the term “work conserving” here; we resahe term “greedy” for a
specific algorithm we specify later.

cases, the Greedy algorithm has performance which is asyicedty equivalent to the
performance of a system defined by a composition of localtintad schedules, and in
some cases, its performance is proportional to the globhom. More specifically,

we obtain the following results.

First, we present simple scenarios that show that localrifgos cannot be too
good: specifically, even allowing each node to run the Igagbtimal (offline) schedule
may result in competitive ratio a2 (k) on heighth trees with uniform buffer sizes and
uniform link bandwidths. For bounded degree trees of heigliie competitive factor
drops tof2(h/ log h), and for trees of height andO(h) nodes, the lower bound drops
further to2(v/h).

Next, we analyze the Greedy algorithm. By extending theyaiglof the single
buffer case, we show that for arbitrary topologies, the maxiratio between the per-
formance of Greedy and the performance of any work-consgrioff-line) schedule
is O(DR/Bmin), WhereD is the length of the longest packet route (measured in time
units), R is the maximal rate in which packets may reach their destingt andBi,in
is the size of the smallest buffer in the system.

We then focus on tree topologies, where we present our meesesting result. We
introduce the concept ¢ihk weaknessdefined as follows. For any given lirk define
thedelayof e to be the longest time a packet can spend in the buffer (&r work-
conserving schedules, it's exactly the buffer size dividgthe link bandwidth). Define
further theheightof e to be the maximal length of a path from an input leaf to the €gre
of e, where the length of a link is its delay. Finally, teaknessf e, denoted\(e), is
the ratio between its height and its delay (we have Maj > 1). Our main result is
that the competitive factor of Greedy is proportional to thaximal link weakness in
the system. Our proof is for the case where each packet hasf twe possible values.
Related work. There is a myriad of research papers about packet drop @sliticom-
munication networks—see, e.g., the survey of [13] and egfegs therein. Some of the
drop mechanisms (most notably RED [7]) are designed to kggmayestion to the send-
ing end. The approach abstracted in our model is implicihenrecent DiffServ model
[4,6] and ATM [19].

There has been work on analyzing various aspects of this Inusiteg classical
queuing theory, and assuming Poisson arrivals [17]. ThesBaiarrival model has been
seriously undermined by recent discoveries regarding #itere of traffic in computer
networks (see, e.g., [14, 20]).

In this work we use competitive analysis, which studies tbesivcase performance
guarantees of an on-line algorithm relative to an off-liméuson. This approach is
used in Adversarial Queuing Theory [5], where packet inpexst are restricted, and
the main measure of performance is the size of the buffersnetjto never drop any
packet. In a recent paper, Aiello et al. [1] propose to stinythiroughputof a network
with bounded buffers and packet drops. Their model is sindlaburs, so let us point
out the differences. The model of [1] assumes uniform bugfees, link bandwidths,
and packet values, whereas we consider individual sizegviidths and values. As
we show in this paper, these factors have a decisive effetih@rompetitiveness of
the system even in very simple cases. Another differendeeils[1] compares on-line
algorithms to any off-line schedule, including ones that mot work-conserving. Due

to this approach, the performance guarantees they can prevather weak, and thus
they are mainly interested in whether the competitive faofaa scheduling policy is
finite or not. By contrast, we consider work-conservinglofé schedules, which allow
us to derive quantitative results and gain more insightsifitee practical point of view.
Additional relevant references study the performanceantaes of a single buffer,
where packets have different values. The works of [2, 12]\stihhe case where one
cannot preempt a packet already in the buffer. In [10], areujpound of2 is proven
for the competitive factor of the greedy algorithm. The tvadue single buffer case is
further studied in [11, 15]. Overflows in a shared-memorytslvare considered in [8].
A recent result of Azar and Richter [3] analyzes a scenaristiifam merging in
input-queued switches. Briefly, finite buffers are locateohput ports; the output port
has no buffer: it selects, at each step, one of the input tauffied transmits the packet
in the head of that buffer. Their main result is a centralialgbrithm that reduces this
scenario of a single merge to the problem of managing a simgfer, while incurring
only a constant blowup in the competitive factor.
Paper organization.Section 2 contains the model description. Lower and uppents
for local schedules are considered in Section 3 and Secti@sgectively.

2 Model and Notation

We start with a description of the general model.

The system is defined by a directed gr&ph= (V, E), where each link € E has
bandwidth(or speed W (e) € N, and abuffer). with storage capacityize(Q.) €

N U {0}. (The buffer resides at the link's ingress—see below.)

The input to the system is a sequenceatket injectionsone for each time step.

A packet injection is a set of packets, where each paeisetharacterized by its route,

denotedroute(p), and its value, denoted(p).® The first node on the route is called the

packet’'ssource and the last node is called the packegstination To avoid trivialities,

we assume that each packet route is a simple path that cemtdeast one link.
Theexecutior(or schedul@of the system proceeds in synchronous steps as follows.

The state of the system is defined by the current contentscbflae’s buffer@., and

by each link’stransit contentsdenotediransit. for a link e. Initially, all buffers and

transit contents are empty sets. Each step consists ofltheifog substeps.

(1) Packet injection: For each link an arbitrary set of new packets whose first link is
e is added tay..

(2) Packet delivery: For all links; = (u,v) andes = (v,w), all packets currently
in transite, whose next route edge és are moved fromtransit,, into Q.,. All
packets whose destinationisareabsorbed After this substeptransit. = § for
alle € E.

(3) Packet drop: A subset of the packets currently stored.ins removed fromg).,
for eache € E.

(4) Packet send: For each liaka subset of the packets currently store@inis moved
from Q). to transit,.

% There may be many packets with the same route and value,lstdalty each packet injection
is a multiset; we abuse notation slightly, and always refentiltisets when we say “sets.”

We stress that packet injection rate is unrestricted (assgah e.g., to Adversarial
Queuing Theory). Note also that we assume that all link ztsnare one unit.

A scheduling algorithndetermines which packets to drop (Substep 3) and which
packets to send (Substep 4), so as to satisfy the followingditions after each step is
completely done:

e For each linke, the number of packets stored@h is at mostsize(Q.).”
e For each linke, the total number of packets stored in the transit conteinésoat

mostW (e).

Given an input sequenck and an algorithmd for a system, thevalue obtained
by A for Z, denotedv 4 (Z), is the sum of values of all packets that have reached their
destination.

Tree Topology.A system is said to havieee topologyif the union of all packet routes
used in the system is a tree, where packet sources are lealal packets are destined
at the single root. In this case each node except the root kaybke storage buffer
(associated with its unique outgoing edge), sometimesrexféo as thenodes buffer.

It is convenient also to assume in the tree case that thedemne root are links: this
way, we have streams entering the system and a stream laheisgstem. We say that
a nodev is upstreamfrom u (or, equivalentlyu is downstreanfrom v), if there is a
directed path from to w.

FIFO Schedules.We consider FIFO schedules, which adhere to the rule thatepsc
are sent over a link in the same order they enter the bufféxeatil of the link (packets
may be arbitrarily dropped by the algorithm, but the packiets do get sent preserve
their relative order). More precisely, for all packetg and every linke: If p is sent on

e attimet andgq is sent ore at timet’ > ¢, thenq did not enterQ . beforep.
Work-Conserving SchedulesA given schedule is calledork conservingf for every
stept and every linke we have that the number of packets sent avat stept is the
minimum betweeV (¢) and the number of packets @ (at stept just before Substep
4). Intuitively, a work conserving schedule always forwaitle maximal number of
packets allowed by the local bandwidth restriction. (Nbi&t packets may be dropped
in a work-conserving schedule even if the buffer is not full.

Algorithms and Their Evaluation. An algorithm is calledocal on-lineif its action
at timet at nodev depends only on the sequence of packets arrivingug to timet.
An algorithm is calledocal off-lineif its action at timet at nodev depends only on
the sequence of packets arrivingeatincluding packets that arrive ataftert. Given

a sequence of packet arrivals and injections at ngdbe local-offline schedule with
the maximum output value af for the given sequence is the Local Optimal schedule,
denotedptL,,. When the set of routes is acyclic, we define the schedpté to be the
composition of Local Optimal schedules, constructed byyapg OptL, in topological
order. Aglobal off-lineschedule has the whole input (at all nodes, at all times)ablai
ahead of any decision. We denote®yt the global off-line work-conserving schedule
with the maximum value.

Given a system and an algorithmfor that system, theompetitive ratiolor com-
petitive factoy of A is the worst-case ratio, over all input sequences, betweendiue

" Note that the restriction applies orthgtweersteps: in our model, after Substeps 1,2 and before
Substeps 3,4, more thaixe(Q.) packets may be stored ..

D
T T
| T
R

Fig. 1. Topology used in the proof of Theorem 1, with paraméteDiagonal arrows represent
input links, and the rightmost arrow represents the outmk.|

of Opt and the value ofA. Formally:

cr(A) = sup {?jt(%) . T is aninput sequen(}e.

Since we deal with a maximization problem this ratio will alyg be at least.

3 Lower Bounds for Local Schedules

In this section we consider simple scenarios that estalaligar bounds on local algo-
rithms. We show that even if each node rdnsL — a locally optimal schedule (that may
be computed off-line) — the performance cannot be very dodke globally optimal
schedule.

As we are dealing with lower bounds, we will be interestedénnsimple settings.
In the scenarios below, all buffers have the same Bizand all links have bandwidth
Furthermore, we use only two packet values: low valug,and high value ofx > 1.
(The bounds of Theorems 2 and 3 are tight for the two-value; ees omit details here.)

As an immediate corollary of Theorem 4, we have that the theetdoound of
Theorem 1 is tight, as argued below.

Theorem 1. The competitive ratio dptL for a tree-topology system {3(min (4,),
whereh is the depth of the tree.

Proof: Consider a system with? + 1 nodes, wheré? “path nodes” have input links,
and are arranged il paths of lengtth each, and one “output node” has input from the
h last path nodes, and has one output link (see Figure 1)Bldsnote the size a buffer.
The input sequence is as follows. The input for all nodesérbbginning of a path i8
packets of valuer followed by B packets of valué (at step9), ...,2B —1). The input
for thei-th node on each path for> 1 is B packets of valué attimeB(i —2) +i — 1.

Consider the schedule @fptL first. There are no overflows on the buffers of the
path nodes, and hence it is easy to verify by induction trebtitput from the-th node
on any path containB - i packets of valué, followed by B packets of value.. Thus,
the output node gets packets of valué in each time stepfort = h,...,h- B, andh
packets of valuer in each time stepfort = h-B+1,...,(h+1)- B+ 1. Clearly, the
value ofOptL in this case consists ¢h — 1) B low value packets an2B high value
packets.

DG

P =

AT

Fig. 2. A line of depthh. Diagonal arrows represent input links, and the rightmosbw repre-
sents the output link.

On the other hand, the globally optimal schedbig is as follows. On thg-th path,
the firstB(j —1) low value packets are dropped. Thus, the stream outconongtfie;-
th path consists aB(h—(j—1)) low value packets followed b# high value packets, so
that in each time step= h, ..., hB exactly one high value packet ahd- 1 low value
packets enter the output node, @nst obtains the total value é¢fBa+ B. It follows that

the competitive ratio 0OptL in this case is(h’};ﬁ =N (%) = (min(h, a)).
|

If we insist on bounded-degree trees, the above lower bobadges slightly, as
stated below. The proof is omitted from this extended abstra

Theorem 2. The competitive ratio dptL for a binary tree with depth is @ (min(a, %)).

Further restricting attention to a line topology (see Fegiy, the lower bound fax > h
decreases more significantly, as the following result sh&rsof is omitted.

Theorem 3. The competitive ratio optL for a line of lengthh is @ (min(a, V/h)).

4 Upper Bounds for Local Schedules

In this section we study the competitive factor of local shifles. We first prove a
simple upper bound for arbitrary topology, and then give main result which is an
upper bound for the tree topology.

4.1 An Upper Bound on Greedy Schedules for General Topology

We now turn to positive results, namely upper bounds on thepetitive ratio of a
natural on-line local algorithm [10].

Algorithm 1 Greedy: Never discard packets if there is free storage space. Wimen a
overflow occurs, drop the packets of the least value.

We now prove an upper bound on the competitivene€gefdy in general topologies.
We remark that all lower bounds proved in Section 3@etL hold also forGreedy as
well (details omitted).

We start with the following basic definition.

Definition 1. For a given linke in a given system, we define ttielay of e, denoted
d(e), to be the ratio size(Q.)/W (e)]. The delay of a given path is the sum of the edge
delays on that path. The@aximal delayin a system, denotefl, is the maximal delay
over all simple paths in the systems.

Note that the delay of a buffer is the maximal number of timé&sua packet can be
stored in it under any work-conserving schedule.

We also use the concept of drain rate, which is the maximaiplesrate of packet
absorption. Formally, it is defined as follows.

Definition 2. Let Z be the set of all links leading to an output node in a givenesyst
Thedrain rateof the system, denofe, is the sumd_ ., W (e).

With these notions, we can now state and prove the followamegal result. Note that
the result is independent of node degrees.

Theorem 4. For any system with maximal delay at méstdrain rate at mostz, and
buffers with size at leadB,,;,, the competitive ratio d&reedy is O(DR/Byin)-

We remark that the proof given below holds also @gtL.

Proof: Fix an input sequencg. Divide the schedule into time intervals = [j D, (j +
1)D — 1] D time steps each. Consider a time interyal Define S; to be the set of
2DR most valuable packets that are injected into the systenmgdsi Observe that
in a work conserving schedule, any packet is either absoobetfopped inD time
units. It follows that among all packets that arrivelijn at mos DR will be eventually
absorbed by their destination8Rk may be absorbed during, andDR during the next
interval of D time units (i.e./;41). Since this property holds for any work-conserving
algorithm, summing over all intervals we obtain that for gfien input sequence

wopt(T) < Z w(S;) . 1)

Consider now the schedule Gieedy. Let S; denote the set oB,,;, most valuable
packets absorbed duridg, let S;’ denote th&3,,;, most valuable packets stored in one
of the buffers in the system when the next interfal, starts, and le5; denote the
Bmin most valuable packets frost U S Note thatS; is exactly the set 0B, most
valuable packets that were in the system durdingnd were not dropped. We claim that

W(S]) > Tan(s;) @

To see that, note that a paclet S; is dropped from a buffef). only if (). contains
at leastsize(Q.) > Bmin packets with value greater tharfp). To complete the proof
of the theorem, observe that for gliwe have thatv(S}) > w(S7_,), i.e., the value
absorbed in an interval is at least the total value of Bhg,, most valuable packets
stored when the interval starts. Hence, using Egs. (1,2)sarteS; C S; U S}/, we
get

wop(T) < Z < 2P 5 s

mm -
J

Z)+ 2 s)

DR

mm

I A

* WGreedy (I) . I

One immediate corollary of Theorem 4 is that the lower bouh@ireeorem 1 is tight,
as implied by the result below.

Corollary 1. In a tree-topology system where all nodes have identicdebsfze and

all links have the same bandwidth, the competitive factdtreédy is O(min(h,),
whereh is the depth of the tree andis the ratio between the most and the least valuable
packets in the input.

Proof: For the given system, we have that= hBni,/R since all buffers have size
Bnin and all links have bandwidtR. Therefore, by Theorem 4, the competitive factor
is at mostO(h). To see that the competitive factor is at mOgty), observe thaGreedy
outputs the maximal possible number of packetd

4.2 An Upper Bound for Greedy Schedules on Trees

We now prove our main result, which is an upper bound on thepatitive ratio of
Greedy for tree topologies with arbitrary buffer sizes an#é bandwidths. The result
holds under the assumption that all packet values are ditbes. > 1.

We introduce the following key concept. Recall that the gelha link e, denoted
d(e), is the size of its buffer divided by its bandwidth, and thiagi®f a path is the sum
of its links’ delays.

Definition 3. Lete = (v, u) be any link in a given tree topology, and suppose that
has childrervy, ..., vi. Theheightofe, denotedi(e), is the maximum path delay, over
all paths starting at a leaf and ending at Theweaknes®f e, denoted\(e), is defined

to beA(e) = ZEZ;

Intuitively, h(e) is just an upper bound on the number of time units that a paet
spend in the system before being sent evathe significance of the notion of weakness
of a link is made explicit in the following theorem.

Theorem 5. The competitive ratio o&reedy for any given tree topologe = (V, E)
and two packet values @(max {A(e) : e € E}).

Proof: Fix the input sequence. Consider the schedule produc&edagdy. We construct

a set of time intervals calledverload intervalswhere each interval is associated with

a link. The construction proceeds from the root link induely as follows. Consider

a link e, and suppose that all overload intervals were already défimeall links ¢’

downstream frone. The set of overload intervals atis defined as follows. For each

time pointt* in which a high-value packet is dropped fragm, we define an overload

intervall = [ts,ts] such that

1) t* e 1.

(2) In eachtime stepe I, W(e) high value packets are sent over

(3) For any overload intervdl' = [t;,] of a downstream link’, we have that either
ts >t orty <t —d(e e'), whered(e, e') is the sum of link delays on the path
that starts at the endpoint efand ends at the endpoint &f

(4) Iis maximal.

Note that if a high value packet is dropped from a buferby Greedy at timet, then
Q. is full of high value packets at timg and hencéV (e) high value packets will
be sent ovee in each time step,t + 1,...,¢ + d(e). However, the overload interval
containingt may be shorter (possibly empty), due to condition (3).

We now define a couple of notions regarding overload intervBlhedominance
relation between overload intervals is defined as follow$ol an overload interval
I = [ts, ty] thatoccurs at link there exists an overload intendl= [t;, t';] that occurs
at a downstream link’ such that!, =t; + d(e, ') + 1, we say thaf is dominatedcoy
I'. We also define the notion &illl intervals an overload interval that occurs at link
is said to bdull if |I| > d(e). Note that some non-full intervals may be not dominated.

We now proceed with the proof. For the sake of simplicity, weendt attempt to get
the tightest possible constant factors. We patrtition thefsaverload intervals so that in
each part there is exactly one full interval, by mapping eaarload interval to a full
interval denoted’(I). Given an overload intervdl the mapping is done inductively, by
constructing a sequendg, . . ., I, of overload intervals such thdt= I,, P(I) = I,
and only intervall, is full. Let I be any overload interval, and suppose it occurs at
link e. We setly = I, and lete; = e. Suppose that we have defingdalready. If]; is
full, the sequence is complete. Otherwise, by definitionvefrtmad intervals, there must
exist another interval;; atalinke;,,; downstream frone; that dominateg;. If there
is more than one interval dominatidg, let I;; be the one that occurs at the lowest
level. Note that the sequence must terminate since fgr all,; is strictly downstream
frome;.

Le{}' denote the set of all full intervals. Létbe a full interval that occurs at link
e. Define the seP(I) = {I' : P(I') = I}. This set consists of overload intervals that
occur at links in the subtree rooted byDefine thecoverageof I, denoted’(7), to be
the following time window:

C(I)= |min{t: teI'forI' e P(I)} —h(e) , max{t : te I forI' € P(I)} + h(e)

In words,C (1) startsh(e) time units before the first interval starts (1), and ends
h(e) time units after the last interval ends®(I). The key arguments of the proof are
stated in the following lemmas.

Lemma 1. For any full intervall that occurs at any link, |C(I)| < |I| + 4h(e).

Proof: Let I, be the interval that starts first i8(I), and letly, . .., I, be the sequence
of intervals inP(I) such thatl; ;1 dominated; forall 0 < j < ¢, and such thaf; = I.
For eachy, let I; = [t;,t}], and suppose thd} occurs ak;. Note that/, is also the
interval that ends last i (I). Since for allj < ¢ we have thaf; is not full, and using
the definition of the dominance relation, we have that

l l

C(D)| = 2h(e) =ty —to =D (¢ —t;) + > _(t; —t)_y)

=0 j=1

Jj=1

-1 l
<+ dle) +) dlej_1.e;) < 1| +2h(e) . 1
7j=0

Lemma 2. For each full intervall that occurs at a linke, the total number of high
value packets that are ever sent Oyt from e and were dropped b%reedy during
C(I)is at mostiV (e) - (|I| + 6h(e)).

Proof: As mentioned above, a packet that is dropped from any buffstream frome
at timet can never be sent by any schedule outside the time wiride(e), t + h(e)].
The result therefore follows from Lemma 1.1

Lemma 3. For each high-value packet dropped byGreedy from a linke' at timet,
there exists a full overload intervdlthat occurs in a link downstream froeh (possibly
e’ itself) such that € C(I).

Proof: We proceed by the case analysis.

If t € I' for some full overload interval’ of e/, we are done sincec C(I').

If t € I' for some non-full overload interval af dominated by another overload
interval I, we have that € C(P(I)).

If t € I' for some non-full overload intervdl = [t;,] of e’ that is not dominated
by any other overload interval then there exists an overiloaval I’ that occurs
in a link e" downstream from' such that, =t} + 1 and hence € C(P(I"))
because’ + d(e') > ;.

If ¢is notin any overload interval ef then by the construction for an overload interval
I'" thatoccursin alink’ downstream frona’ we have that! —d(e’,e") <t < t’Ji,
which implies that € C(P(I")).

Lemma 4. For each overload interval, Greedy sends at leasi/| - W (e) high value
packets frong, and these packets are never dropped.

Proof: The number of packets sent follows from the fact that whemgh-alue packet
is dropped byGreedy from ()., the buffer is full of high value packets. The definition of
overload intervals ensures that no high value packet danngverload interval is ever
dropped, since if a packet that is sent oweat timet is dropped from a downstream
buffere’ attimet’, thent’ <t + d(e,e’). |

We now conclude the proof of Theorem 5. Consider the set qiadkets sent by
Opt. Since the total number of packets sentGrgedy in a tree topology is maximal,
it is sufficient to consider only the high-value packets. Bynima 3, it is sufficient to
consider only the time interval (I) : I € F} since outside these intervalgeedy
does as well a®pt. For eachl € F that occurs at a link, we have by Lemma 4 that
Greedy sends at leasf| - W (e) high value packets, whereas by Lemm@ sends at
mostW (e) - (|I| + 6h(e)) high value packets. The theorem follows

References

1. W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. iaynic routing on networks with
fixed-size buffers. IfProc. of the 14th ann. ACM-SIAM Symposium on Discrete Algms
pages 771-780, Jan. 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Cditipe queue policies for
diffrentiated services. IRroc. IEEE INFOCOM2000.

. Y. Azar and Y. Richter. Management of multi-queue switcheQoS networks. IfProc.

33rd ACM STOCJune 2003. To appear.

. D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and Wis#/e An architecture for

differentiated services. Internet RFC 2475, December 1998

. A.Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D.ifanson. Adversarial queuing

theory. J. ACM 48(1):13-38, 2001.

. D. Clark and J. Wroclawski. An approach to service alliocain the Internet. Internet draft,

1997. Available frondi f f serv. |l cs. m t. edu.

. S. Floyd and V. Jacobson. Random early detection gatefamysongestion avoidance.

IEEE/ACM Trans. on Networkindg (4):397—413, 1993.

. E. H. Hahne, A. Kesselman, and Y. Mansour. Competitivéebuhanagement for shared-

memory switches. IProc. of the 2001 ACM Symposium on Parallel Algorithms archAr
tecture pages 53-58, 2001.

. S. Keshav.An engineering approach to computer networking: ATM nekspthe Internet,

and the telephone networlddison-Wesley Longman Publishing Co., Inc., 1997.

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, Bhi8ber, and M. Sviridenko.
Buffer overflow management in QoS switches.Proc. 33rd ACM STO(Cpages 520-529,
July 2001.

A. Kesselman and Y. Mansour. Loss-bounded analysisifierehtiated servicesJournal
of Algorithms Vol. 46, Issue 1, pages 79-95, January 2003.

A. Kesselman and Y. Mansour. Harmonic buffer managerpelity for shared memory
switches. InProc. IEEE INFOCOM2002.

M. A. Labrador and S. Banerjee. Packet dropping polite&TM and IP networks.|EEE
Communications Survey3(3), 1999.

W. E. Leland, M. S. Tagqu, W. Willinger, and D. V. Wilson. n@he self-similar nature
of ethernet traffic (extended versionfEEE/ACM Transactions on Networking(1):1-15,
1994.

Z. Lotker and B. Patt-Shamir. Nearly optimal FIFO buffieanagement for DiffServ. In
Proc. 21st Ann. ACM Symp. on Principles of Distributed Cotimgypages 134-143, 2002.
Y. Mansour and B. Patt-Shamir. Greedy packet schedainghortest paths.J. of Al-
gorithms 14:449-465, 1993. A preliminary version appears inRiec. of 10th Annual
Symp. on Principles of Distributed Computing, 1991

M. May, J.-C. Bolot, A. Jean-Marie, and C. Diot. Simplefpemance models of differenti-
ated services for the Internet. Rroc. IEEE INFOCOM 1998.

D. D. Sleator and R. E. Tarjan. Amortized efficiency df lipdate and paging rule€omm.
ACM, 28(2):202—-208, 1985.

The ATM Forum Technical Committee. Traffic managemestgjzation version 4.0, Apr.
1996. Available frommw. at nf or um com

A. Veres and M. Boda. The chaotic nature of TCP congestamirol. InProc. IEEE
INFOCOM, pages 1715-1723, 2000.

