
Buffer Overflows of Merging Streams

Alex Kesselman1, Zvi Lotker2, Yishay Mansour3, and Boaz Patt-Shamir41 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
alx@cs.tau.ac.il2 Dept. of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

zvilo@eng.tau.ac.il3 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
mansour@cs.tau.ac.il4 Cambridge Research Lab, Hewlett-Packard, One Cambridge Center, Cambridge, MA 02142.

On leave from Dept. of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
Boaz.PattShamir@HP.com

Abstract. We consider a network merging streams of packets with different
quality of service (QoS) levels, where packets are transported from input links
to output links via multiple merge stages. Each merge node isequipped with a
finite buffer, and since the bandwidth of a link outgoing froma merge node is in
general smaller than the sum of incoming bandwidths, overflows may occur. QoS
is modeled by assigning a positive value to each packet, and the goal of the sys-
tem is to maximize the total value of packets transmitted on the output links. We
assume that each buffer runs an independent local scheduling policy, and analyze
FIFO policies that must deliver packets in the order they were received. We show
that a simple local on-line algorithm called Greedy does essentially as well as
the combination of locally optimal (off-line) schedules. We introduce a concept
we call theweaknessof a link, defined as the ratio between the longest time a
packet spends in the system before transmitted over the link, and the longest time
a packet spends in that link’s buffer. We prove that for any tree, the competitive
factor of Greedy is at most the maximal link weakness.

1 Introduction

Consider an Internet service provider (ISP), or a corporateintranet, that connects a large
number of users with the Internet backbone using an “uplink.” Within such a system,
consider the traffic oriented towards the uplink, namely thestreams whose start points
are the local users and whose destinations are outside the local domain. Then streams
are merged by a network that consists ofmerge nodes, typically arranged in a tree topol-
ogy whose root is directly connected to the uplink. Without loss of generality, we may
assume that the bandwidth of the link emanating from a merge node is less than the sum
of bandwidths of incoming links (otherwise, we can assume that the incoming links are
connected directly to the next node up). Hence, when all users inject data at maximum
local speed, packets will eventually be discarded. A very effective way to mitigate some
of the losses due to temporary overloads is to equip the mergenodes with buffers, that
can absorb transient bursts by storing incoming packets while the outgoing link is busy.
The merge nodes are controlled by local on-linebuffer management algorithmswhose

job is to decide which packets to forward and which to drop so as to minimize the
damage in case of an overflow.

In this paper we study the performance of various buffer management algorithms
in the context of a system of merging streams, under the assumption that the system is
required to support different quality of service (QoS) levels. The different QoS levels
are modeled by assuming that each packet has a positive value, and that the goal of the
system is to maximize the total value of packets delivered.

Evaluating the performance of the system cannot be done in absolute terms, since
the total value delivered depends on the actual streams thatarrive. Instead, we mea-
sure the competitive ratio of the algorithm [18] by bounding, over all possible input
sequences, the ratio between the value gained by the algorithm in question, and the best
possible value that can be gained by any schedule.
Our model. To allow us to describe our results, let us give here a brief informal
overview of the model (more details are provided in Section 2). Our model is essentially
the model used by Adversarial Queuing Theory [5], with the following important dif-
ferences: packet injection is unrestricted, buffers are finite, and each packet has a value.
More specifically, the system is described by a communication graph, where each linke has a bufferQe in its ingress and a prescribed bandwidthW (e). An execution of the
system proceeds in synchronous steps. In each step, new packets may enter the system,
where each packet has a value (inR+), and a completely specified route. Also in each
step, packets may progress along edges, some packets may be dropped from the sys-
tem, and some packets may be absorbed by their destinations.The basic limitation on
these actions is that for each edgee, at mostW (e) packets may cross it in each step,
and at mostsize(Qe) packets may be retained in the buffer from step to step. The task
of the buffer management algorithm is to decide which packets to forward and which
packets to drop subject to these restrictions. Given a system and an input sequence, the
total value of a schedule for that input is the total value of the packets that reach their
destinations.

In this paper, we consider a few special cases of the general model above, justified
by practical engineering considerations. The possible restrictions are on the network
topology, scheduling algorithms, and packet values. The variants are as follows.Tree
topologyassumes that the union of the paths of all packets is a directed tree, where all
paths start from a leaf and end at the root of the tree. Regarding schedules, our results
are for the class ofwork-conservingschedules, i.e., schedules that always forward a
packet when the buffer is non-empty [9].5 We consider the class of FIFO algorithms,
i.e., algorithms that may not send a packet that arrives latebefore a packet that arrives
early. This condition is natural for many network protocols(e.g., TCP).
Our results. We study the effect of different packet values, different buffer sizes and
link bandwidths on the competitiveness of various local algorithms. We study very sim-
ple Greedy algorithm that drops the least valuable packets available when there is an
overflow. We also consider the Locally Optimal schedule, which is the best possible
schedule with respect to a single buffer. Roughly speaking,it turns out that in many

5 Work conserving schedules are sometimes called “greedy” [16, 5]. In line with the networking
community, we use the term “work conserving” here; we reserve the term “greedy” for a
specific algorithm we specify later.

cases, the Greedy algorithm has performance which is asymptotically equivalent to the
performance of a system defined by a composition of locally optimal schedules, and in
some cases, its performance is proportional to the global optimum. More specifically,
we obtain the following results.

First, we present simple scenarios that show that local algorithms cannot be too
good: specifically, even allowing each node to run the locally optimal (offline) schedule
may result in competitive ratio of
(h) on height-h trees with uniform buffer sizes and
uniform link bandwidths. For bounded degree trees of heighth, the competitive factor
drops to
(h= logh), and for trees of heighth andO(h) nodes, the lower bound drops
further to
(ph).

Next, we analyze the Greedy algorithm. By extending the analysis of the single
buffer case, we show that for arbitrary topologies, the maximal ratio between the per-
formance of Greedy and the performance of any work-conserving (off-line) schedule
is O(DR=Bmin), whereD is the length of the longest packet route (measured in time
units),R is the maximal rate in which packets may reach their destinations, andBmin
is the size of the smallest buffer in the system.

We then focus on tree topologies, where we present our most interesting result. We
introduce the concept oflink weakness, defined as follows. For any given linke, define
the delayof e to be the longest time a packet can spend in the buffer ofe (for work-
conserving schedules, it’s exactly the buffer size dividedby the link bandwidth). Define
further theheightof e to be the maximal length of a path from an input leaf to the egress
of e, where the length of a link is its delay. Finally, theweaknessof e, denoted�(e), is
the ratio between its height and its delay (we have that�(e) � 1). Our main result is
that the competitive factor of Greedy is proportional to themaximal link weakness in
the system. Our proof is for the case where each packet has oneof two possible values.
Related work. There is a myriad of research papers about packet drop policies in com-
munication networks—see, e.g., the survey of [13] and references therein. Some of the
drop mechanisms (most notably RED [7]) are designed to signal congestion to the send-
ing end. The approach abstracted in our model is implicit in the recent DiffServ model
[4, 6] and ATM [19].

There has been work on analyzing various aspects of this model using classical
queuing theory, and assuming Poisson arrivals [17]. The Poisson arrival model has been
seriously undermined by recent discoveries regarding the nature of traffic in computer
networks (see, e.g., [14, 20]).

In this work we use competitive analysis, which studies the worst-case performance
guarantees of an on-line algorithm relative to an off-line solution. This approach is
used in Adversarial Queuing Theory [5], where packet injections are restricted, and
the main measure of performance is the size of the buffers required to never drop any
packet. In a recent paper, Aiello et al. [1] propose to study the throughputof a network
with bounded buffers and packet drops. Their model is similar to ours, so let us point
out the differences. The model of [1] assumes uniform buffersizes, link bandwidths,
and packet values, whereas we consider individual sizes, bandwidths and values. As
we show in this paper, these factors have a decisive effect onthe competitiveness of
the system even in very simple cases. Another difference is that [1] compares on-line
algorithms to any off-line schedule, including ones that are not work-conserving. Due

to this approach, the performance guarantees they can proveare rather weak, and thus
they are mainly interested in whether the competitive factor of a scheduling policy is
finite or not. By contrast, we consider work-conserving off-line schedules, which allow
us to derive quantitative results and gain more insights from the practical point of view.

Additional relevant references study the performance guarantees of a single buffer,
where packets have different values. The works of [2, 12] study the case where one
cannot preempt a packet already in the buffer. In [10], an upper bound of2 is proven
for the competitive factor of the greedy algorithm. The two-value single buffer case is
further studied in [11, 15]. Overflows in a shared-memory switch are considered in [8].

A recent result of Azar and Richter [3] analyzes a scenario ofstream merging in
input-queued switches. Briefly, finite buffers are located at input ports; the output port
has no buffer: it selects, at each step, one of the input buffers and transmits the packet
in the head of that buffer. Their main result is a centralizedalgorithm that reduces this
scenario of a single merge to the problem of managing a singlebuffer, while incurring
only a constant blowup in the competitive factor.
Paper organization.Section 2 contains the model description. Lower and upper bounds
for local schedules are considered in Section 3 and Section 4, respectively.

2 Model and Notation

We start with a description of the general model.
The system is defined by a directed graphG = (V;E), where each linke 2 E has

bandwidth(or speed) W (e) 2 N, and abufferQe with storage capacitysize(Qe) 2N [f0g. (The buffer resides at the link’s ingress—see below.)
The input to the system is a sequence ofpacket injections, one for each time step.

A packet injection is a set of packets, where each packetp is characterized by its route,
denotedroute(p), and its value, denoted!(p).6 The first node on the route is called the
packet’ssource, and the last node is called the packet’sdestination. To avoid trivialities,
we assume that each packet route is a simple path that contains at least one link.

Theexecution(or schedule) of the system proceeds in synchronous steps as follows.
The state of the system is defined by the current contents of each link’s bufferQe, and
by each link’stransit contents, denotedtransite for a link e. Initially, all buffers and
transit contents are empty sets. Each step consists of the following substeps.
(1) Packet injection: For each linke, an arbitrary set of new packets whose first link ise is added toQe.
(2) Packet delivery: For all linkse1 = (u; v) ande2 = (v; w), all packets currently

in transite1 whose next route edge ise2 are moved fromtransite1 into Qe2 . All
packets whose destination isv areabsorbed. After this substep,transite = ; for
all e 2 E.

(3) Packet drop: A subset of the packets currently stored inQe is removed fromQe,
for eache 2 E.

(4) Packet send: For each linke, a subset of the packets currently stored inQe is moved
fromQe to transite.

6 There may be many packets with the same route and value, so technically each packet injection
is a multiset; we abuse notation slightly, and always refer to multisets when we say “sets.”

We stress that packet injection rate is unrestricted (as opposed, e.g., to Adversarial
Queuing Theory). Note also that we assume that all link latencies are one unit.

A scheduling algorithmdetermines which packets to drop (Substep 3) and which
packets to send (Substep 4), so as to satisfy the following conditions after each step is
completely done:� For each linke, the number of packets stored inQe is at mostsize(Qe).7� For each linke, the total number of packets stored in the transit contents of e is at

mostW (e).
Given an input sequenceI and an algorithmA for a system, thevalueobtained

by A for I, denoted!A(I), is the sum of values of all packets that have reached their
destination.
Tree Topology.A system is said to havetree topologyif the union of all packet routes
used in the system is a tree, where packet sources are leaves and all packets are destined
at the single root. In this case each node except the root has asingle storage buffer
(associated with its unique outgoing edge), sometimes referred to as thenode’s buffer.
It is convenient also to assume in the tree case that the leaves and root are links: this
way, we have streams entering the system and a stream leavingthe system. We say that
a nodev is upstreamfrom u (or, equivalently,u is downstreamfrom v), if there is a
directed path fromv to u.
FIFO Schedules.We consider FIFO schedules, which adhere to the rule that packets
are sent over a link in the same order they enter the buffer at the tail of the link (packets
may be arbitrarily dropped by the algorithm, but the packetsthat do get sent preserve
their relative order). More precisely, for all packetsp; q and every linke: If p is sent one at timet andq is sent one at timet0 > t, thenq did not enterQe beforep.
Work-Conserving Schedules.A given schedule is calledwork conservingif for every
stept and every linke we have that the number of packets sent overe at stept is the
minimum betweenW (e) and the number of packets inQe (at stept just before Substep
4). Intuitively, a work conserving schedule always forwards the maximal number of
packets allowed by the local bandwidth restriction. (Note that packets may be dropped
in a work-conserving schedule even if the buffer is not full.)
Algorithms and Their Evaluation. An algorithm is calledlocal on-line if its action
at timet at nodev depends only on the sequence of packets arriving atv up to timet.
An algorithm is calledlocal off-line if its action at timet at nodev depends only on
the sequence of packets arriving atv, including packets that arrive atv after t. Given
a sequence of packet arrivals and injections at nodev, the local-offline schedule with
the maximum output value ofv for the given sequence is the Local Optimal schedule,
denotedOptLv. When the set of routes is acyclic, we define the scheduleOptL to be the
composition of Local Optimal schedules, constructed by applying OptLv in topological
order. Aglobal off-lineschedule has the whole input (at all nodes, at all times) available
ahead of any decision. We denote byOpt the global off-line work-conserving schedule
with the maximum value.

Given a system and an algorithmA for that system, thecompetitive ratio(or com-
petitive factor) of A is the worst-case ratio, over all input sequences, between the value

7 Note that the restriction applies onlybetweensteps: in our model, after Substeps 1,2 and before
Substeps 3,4, more thansize(Qe) packets may be stored inQe.

h

h

Fig. 1. Topology used in the proof of Theorem 1, with parameterh. Diagonal arrows represent
input links, and the rightmost arrow represents the output link.

of Opt and the value ofA. Formally:
r(A) = sup�!Opt(I)!A(I) : I is an input sequence

� :
Since we deal with a maximization problem this ratio will always be at least1.

3 Lower Bounds for Local Schedules

In this section we consider simple scenarios that establishlower bounds on local algo-
rithms. We show that even if each node runsOptL – a locally optimal schedule (that may
be computed off-line) – the performance cannot be very closeto the globally optimal
schedule.

As we are dealing with lower bounds, we will be interested in very simple settings.
In the scenarios below, all buffers have the same sizeB and all links have bandwidth1.
Furthermore, we use only two packet values: low value of1, and high value of� > 1.
(The bounds of Theorems 2 and 3 are tight for the two-value case; we omit details here.)

As an immediate corollary of Theorem 4, we have that the the lower bound of
Theorem 1 is tight, as argued below.

Theorem 1. The competitive ratio ofOptL for a tree-topology system is
(min(h; �)),
whereh is the depth of the tree.

Proof: Consider a system withh2 + 1 nodes, whereh2 “path nodes” have input links,
and are arranged inh paths of lengthh each, and one “output node” has input from theh last path nodes, and has one output link (see Figure 1). LetB denote the size a buffer.
The input sequence is as follows. The input for all nodes in the beginning of a path isB
packets of value� followed byB packets of value1 (at steps0; : : : ; 2B�1). The input
for thei-th node on each path fori > 1 isB packets of value1 at timeB(i�2)+ i�1.

Consider the schedule ofOptL first. There are no overflows on the buffers of the
path nodes, and hence it is easy to verify by induction that the output from thei-th node
on any path containsB � i packets of value1, followed byB packets of value�. Thus,
the output node getsh packets of value1 in each time stept for t = h; : : : ; h �B, andh
packets of value� in each time stept for t = h �B+1; : : : ; (h+1) �B+1. Clearly, the
value ofOptL in this case consists of(h � 1)B low value packets and2B high value
packets.

h

Fig. 2. A line of depthh. Diagonal arrows represent input links, and the rightmost arrow repre-
sents the output link.

On the other hand, the globally optimal scheduleOpt is as follows. On thej-th path,
the firstB(j�1) low value packets are dropped. Thus, the stream outcoming from thej-
th path consists ofB(h�(j�1)) low value packets followed byB high value packets, so
that in each time stept = h; : : : ; hB exactly one high value packet andh� 1 low value
packets enter the output node, andOpt obtains the total value ofhB�+B. It follows that

the competitive ratio ofOptL in this case is h�+1(h�1)+2� =
 � h�h+�� =
(min(h; �)).
If we insist on bounded-degree trees, the above lower bound changes slightly, as

stated below. The proof is omitted from this extended abstract.

Theorem 2. The competitive ratio ofOptL for a binary tree with depthh is�(min(�; hlog h)).
Further restricting attention to a line topology (see Figure 2), the lower bound for�� h
decreases more significantly, as the following result shows. Proof is omitted.

Theorem 3. The competitive ratio ofOptL for a line of lengthh is�(min(�;ph)).
4 Upper Bounds for Local Schedules

In this section we study the competitive factor of local schedules. We first prove a
simple upper bound for arbitrary topology, and then give ourmain result which is an
upper bound for the tree topology.

4.1 An Upper Bound on Greedy Schedules for General Topology

We now turn to positive results, namely upper bounds on the competitive ratio of a
natural on-line local algorithm [10].

Algorithm 1 Greedy: Never discard packets if there is free storage space. When an
overflow occurs, drop the packets of the least value.

We now prove an upper bound on the competitiveness ofGreedy in general topologies.
We remark that all lower bounds proved in Section 3 forOptL hold also forGreedy as
well (details omitted).

We start with the following basic definition.

Definition 1. For a given linke in a given system, we define thedelayof e, denotedd(e), to be the ratiodsize(Qe)=W (e)e. The delay of a given path is the sum of the edge
delays on that path. Themaximal delayin a system, denotedD , is the maximal delay
over all simple paths in the systems.

Note that the delay of a buffer is the maximal number of time units a packet can be
stored in it under any work-conserving schedule.

We also use the concept of drain rate, which is the maximal possible rate of packet
absorption. Formally, it is defined as follows.

Definition 2. LetZ be the set of all links leading to an output node in a given system.
Thedrain rateof the system, denoteR, is the sum

Pe2Z W (e).
With these notions, we can now state and prove the following general result. Note that
the result is independent of node degrees.

Theorem 4. For any system with maximal delay at mostD , drain rate at mostR, and
buffers with size at leastBmin, the competitive ratio ofGreedy isO(DR=Bmin).
We remark that the proof given below holds also forOptL.
Proof: Fix an input sequenceI. Divide the schedule into time intervalsIj = [jD ; (j +1)D � 1℄ D time steps each. Consider a time intervalIj . DefineSj to be the set of2DR most valuable packets that are injected into the system during Ij . Observe that
in a work conserving schedule, any packet is either absorbedor dropped inD time
units. It follows that among all packets that arrive inIj , at most2DR will be eventually
absorbed by their destinations:DR may be absorbed duringIj , andDR during the next
interval ofD time units (i.e.Ij+1). Since this property holds for any work-conserving
algorithm, summing over all intervals we obtain that for thegiven input sequence!Opt(I) �Xj !(Sj) : (1)

Consider now the schedule ofGreedy. Let S0j denote the set ofBmin most valuable
packets absorbed duringIj , letS00j denote theBmin most valuable packets stored in one
of the buffers in the system when the next intervalIj+1 starts, and letS�j denote theBmin most valuable packets fromS0j [S00j . Note thatS�j is exactly the set ofBmin most
valuable packets that were in the system duringIj and were not dropped. We claim that!(S�j) � Bmin2DR !(Sj) : (2)

To see that, note that a packetp 2 Sj is dropped from a bufferQe only if Qe contains
at leastsize(Qe) � Bmin packets with value greater than!(p). To complete the proof
of the theorem, observe that for allj we have that!(S0j) � !(S00j�1), i.e., the value
absorbed in an interval is at least the total value of theBmin most valuable packets
stored when the interval starts. Hence, using Eqs. (1,2), and sinceS�j � S0j [S00j , we
get !Opt(I) �Xj !(Sj) � 2DRBmin Xj !(S�j)� 2DRBmin 0�Xj !(S0j) +Xj !(S00j)1A� 4 DRBminXj !(S0j) = 4DRBmin � !Greedy(I) :

One immediate corollary of Theorem 4 is that the lower bound of Theorem 1 is tight,
as implied by the result below.

Corollary 1. In a tree-topology system where all nodes have identical buffer size and
all links have the same bandwidth, the competitive factor ofGreedy is O(min(h; �)),
whereh is the depth of the tree and� is the ratio between the most and the least valuable
packets in the input.

Proof: For the given system, we have thatD = hBmin=R since all buffers have sizeBmin and all links have bandwidthR. Therefore, by Theorem 4, the competitive factor
is at mostO(h). To see that the competitive factor is at mostO(�), observe thatGreedy
outputs the maximal possible number of packets.

4.2 An Upper Bound for Greedy Schedules on Trees

We now prove our main result, which is an upper bound on the competitive ratio of
Greedy for tree topologies with arbitrary buffer sizes and link bandwidths. The result
holds under the assumption that all packet values are either1 or� > 1.

We introduce the following key concept. Recall that the delay of a link e, denotedd(e), is the size of its buffer divided by its bandwidth, and the delay of a path is the sum
of its links’ delays.

Definition 3. Let e = (v; u) be any link in a given tree topology, and suppose thatv
has childrenv1; : : : ; vk. Theheightof e, denotedh(e), is the maximum path delay, over
all paths starting at a leaf and ending atu. Theweaknessof e, denoted�(e), is defined
to be�(e) = h(e)d(e) .
Intuitively, h(e) is just an upper bound on the number of time units that a packetcan
spend in the system before being sent overe. The significance of the notion of weakness
of a link is made explicit in the following theorem.

Theorem 5. The competitive ratio ofGreedy for any given tree topologyG = (V;E)
and two packet values isO(max f�(e) : e 2 Eg).
Proof: Fix the input sequence. Consider the schedule produced byGreedy. We construct
a set of time intervals calledoverload intervals, where each interval is associated with
a link. The construction proceeds from the root link inductively as follows. Consider
a link e, and suppose that all overload intervals were already defined for all links e0
downstream frome. The set of overload intervals ate is defined as follows. For each
time pointt� in which a high-value packet is dropped fromQe, we define an overload
intervalI = [ts; tf ℄ such that
(1) t� 2 I .
(2) In each time stept 2 I , W (e) high value packets are sent overe.
(3) For any overload intervalI 0 = [t0s; t0f ℄ of a downstream linke0, we have that eitherts > t0f or tf < t0s � d(e; e0), whered(e; e0) is the sum of link delays on the path

that starts at the endpoint ofe and ends at the endpoint ofe0.
(4) I is maximal.

Note that if a high value packet is dropped from a bufferQe by Greedy at timet, thenQe is full of high value packets at timet, and henceW (e) high value packets will
be sent overe in each time stept; t + 1; : : : ; t + d(e). However, the overload interval
containingt may be shorter (possibly empty), due to condition (3).

We now define a couple of notions regarding overload intervals. Thedominance
relation between overload intervals is defined as follows. If for an overload intervalI = [ts; tf ℄ that occurs at linke there exists an overload intervalI 0 = [t0s; t0f ℄ that occurs
at a downstream linke0 such thatt0s = tf + d(e; e0) + 1, we say thatI is dominatedbyI 0. We also define the notion offull intervals: an overload intervalI that occurs at linke
is said to befull if jI j � d(e). Note that some non-full intervals may be not dominated.

We now proceed with the proof. For the sake of simplicity, we do not attempt to get
the tightest possible constant factors. We partition the set of overload intervals so that in
each part there is exactly one full interval, by mapping eachoverload intervalI to a full
interval denotedP (I). Given an overload intervalI , the mapping is done inductively, by
constructing a sequenceI0; : : : ; I` of overload intervals such thatI = I0, P (I) = I`,
and only intervalI` is full. Let I be any overload interval, and suppose it occurs at
link e. We setI0 = I , and lete0 = e. Suppose that we have definedIj already. IfIj is
full, the sequence is complete. Otherwise, by definition of overload intervals, there must
exist another intervalIj+1 at a linkej+1 downstream fromej that dominatesIj . If there
is more than one interval dominatingIj , let Ij+1 be the one that occurs at the lowest
level. Note that the sequence must terminate since for allj, ej+1 is strictly downstream
from ej .

Let F denote the set of all full intervals. LetI be a full interval that occurs at linke. Define the setP(I) = fI 0 : P (I 0) = Ig. This set consists of overload intervals that
occur at links in the subtree rooted bye. Define thecoverageof I , denotedC(I), to be
the following time window:C(I) = �min�t : t 2 I 0 for I 0 2 P(I)	� h(e) ; max�t : t 2 I 0 for I 0 2 P(I)	+ h(e)�
In words,C(I) startsh(e) time units before the first interval starts inP(I), and endsh(e) time units after the last interval ends inP(I). The key arguments of the proof are

stated in the following lemmas.

Lemma 1. For any full intervalI that occurs at any linke, jC(I)j < jI j+ 4h(e).
Proof: Let I0 be the interval that starts first inP(I), and letI1; : : : ; I` be the sequence
of intervals inP(I) such thatIj+1 dominatesIj for all 0 � j < `, and such thatI` = I .
For eachj, let Ij = [tj ; t0j ℄, and suppose thatIj occurs atej . Note thatI` is also the
interval that ends last inP(I). Since for allj < ` we have thatIj is not full, and using
the definition of the dominance relation, we have thatjC(I)j � 2h(e) = t0̀ � t0 = X̀j=0(t0j � tj) + X̀j=1(tj � t0j�1)< jI j+ `�1Xj=0 d(ej) + X̀j=1 d(ej�1; ej) � jI j+ 2h(e) :

Lemma 2. For each full intervalI that occurs at a linke, the total number of high
value packets that are ever sent byOpt from e and were dropped byGreedy duringC(I) is at mostW (e) � (jI j+ 6h(e)).
Proof: As mentioned above, a packet that is dropped from any buffer upstream frome
at timet can never be sent by any schedule outside the time window[t�h(e); t+h(e)℄.
The result therefore follows from Lemma 1.

Lemma 3. For each high-value packetp dropped byGreedy from a link e0 at timet,
there exists a full overload intervalI that occurs in a link downstream frome0 (possiblye0 itself) such thatt 2 C(I).
Proof: We proceed by the case analysis.

If t 2 I 0 for some full overload intervalI 0 of e0, we are done sincet 2 C(I 0).
If t 2 I 0 for some non-full overload interval ofe0 dominated by another overload

intervalI , we have thatt 2 C(P (I)).
If t 2 I 0 for some non-full overload intervalI 0 = [t0s; t0f ℄ of e0 that is not dominated

by any other overload interval then there exists an overloadintervalI 00 that occurs
in a link e00 downstream frome0 such thatt0s = t00f + 1 and hencet 2 C(P (I 00))
becauset00f + d(e0) � t0f .

If t is not in any overload interval ofe0 then by the construction for an overload intervalI 00 that occurs in a linke00 downstream frome0 we have thatt00s�d(e0; e00) � t � t00f ,
which implies thatt 2 C(P (I 00)).

Lemma 4. For each overload intervalI , Greedy sends at leastjI j �W (e) high value
packets frome, and these packets are never dropped.

Proof: The number of packets sent follows from the fact that when a high-value packet
is dropped byGreedy fromQe, the buffer is full of high value packets. The definition of
overload intervals ensures that no high value packet duringan overload interval is ever
dropped, since if a packet that is sent overe at timet is dropped from a downstream
buffere0 at timet0, thent0 � t+ d(e; e0).

We now conclude the proof of Theorem 5. Consider the set of allpackets sent byOpt. Since the total number of packets sent byGreedy in a tree topology is maximal,
it is sufficient to consider only the high-value packets. By Lemma 3, it is sufficient to
consider only the time intervalsfC(I) : I 2 Fg since outside these intervalsGreedy
does as well asOpt. For eachI 2 F that occurs at a linke, we have by Lemma 4 thatGreedy sends at leastjI j �W (e) high value packets, whereas by Lemma 2Opt sends at
mostW (e) � (jI j+ 6h(e)) high value packets. The theorem follows.

References

1. W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. Dynamic routing on networks with
fixed-size buffers. InProc. of the 14th ann. ACM-SIAM Symposium on Discrete Algorithms,
pages 771–780, Jan. 2003.

2. W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue policies for
diffrentiated services. InProc. IEEE INFOCOM, 2000.

3. Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. InProc.
33rd ACM STOC, June 2003. To appear.

4. D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for
differentiated services. Internet RFC 2475, December 1998.

5. A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial queuing
theory.J. ACM, 48(1):13–38, 2001.

6. D. Clark and J. Wroclawski. An approach to service allocation in the Internet. Internet draft,
1997. Available fromdiffserv.lcs.mit.edu.

7. S. Floyd and V. Jacobson. Random early detection gatewaysfor congestion avoidance.
IEEE/ACM Trans. on Networking, 1(4):397–413, 1993.

8. E. H. Hahne, A. Kesselman, and Y. Mansour. Competitive buffer management for shared-
memory switches. InProc. of the 2001 ACM Symposium on Parallel Algorithms and Archi-
tecture, pages 53–58, 2001.

9. S. Keshav.An engineering approach to computer networking: ATM networks, the Internet,
and the telephone network. Addison-Wesley Longman Publishing Co., Inc., 1997.

10. A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko.
Buffer overflow management in QoS switches. InProc. 33rd ACM STOC, pages 520–529,
July 2001.

11. A. Kesselman and Y. Mansour. Loss-bounded analysis for differentiated services.Journal
of Algorithms, Vol. 46, Issue 1, pages 79–95, January 2003.

12. A. Kesselman and Y. Mansour. Harmonic buffer managementpolicy for shared memory
switches. InProc. IEEE INFOCOM, 2002.

13. M. A. Labrador and S. Banerjee. Packet dropping policiesfor ATM and IP networks.IEEE
Communications Surveys, 2(3), 1999.

14. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature
of ethernet traffic (extended version).IEEE/ACM Transactions on Networking, 2(1):1–15,
1994.

15. Z. Lotker and B. Patt-Shamir. Nearly optimal FIFO buffermanagement for DiffServ. In
Proc. 21st Ann. ACM Symp. on Principles of Distributed Computing, pages 134–143, 2002.

16. Y. Mansour and B. Patt-Shamir. Greedy packet schedulingon shortest paths.J. of Al-
gorithms, 14:449–465, 1993. A preliminary version appears in theProc. of 10th Annual
Symp. on Principles of Distributed Computing, 1991.

17. M. May, J.-C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of differenti-
ated services for the Internet. InProc. IEEE INFOCOM, 1998.

18. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.Comm.
ACM, 28(2):202–208, 1985.

19. The ATM Forum Technical Committee. Traffic management specification version 4.0, Apr.
1996. Available fromwww.atmforum.com.

20. A. Veres and M. Boda. The chaotic nature of TCP congestioncontrol. In Proc. IEEE
INFOCOM, pages 1715–1723, 2000.

