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Abstract

We consider a FIFO buffer with finite storage space. An arbitrary input stream of packets arrives at the buffer, but

the output stream rate is bounded, so overflows may occur. We assume that each packet has value which is either 1 or a,

for some a > 1. The buffer management task is to decide which packets to drop so as to minimize the total value of lost

packets, subject to the buffer space bound, and to the FIFO order of sent packets. We consider push-out buffers, where

the algorithm may eject packets from anywhere in the buffer. The best lower bound on the competitive ratio of on-line

algorithms for buffer management is approximately 1.28. In this paper we present an on-line algorithm whose com-

petitive ratio is approximately 1.30 for the worst case a. The best previous general upper bound was about 1.888.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Buffers can be found in almost all computer

systems: they serve as a basic coupling component

that enables communication without rigid syn-
chronization. Packets enter with one traffic char-

acteristic, and leave with another. The existence

and importance of buffers is more pronounced in

data communication networks, where buffers are

found essentially in each connection point: a

computer�s network adapter (NIC), a switch�s in-

terface (port), etc. In most settings the buffers are

required to adhere to FIFO ordering as part of the
correctness specifications.

In many cases, the traffic into and out of the

buffer obeys certain known restrictions that allow

the designer to choose a buffer that will accom-

modate all possible scenarios (e.g., leaky bucket

constrained traffic [6]). In many other cases, how-

ever, incoming traffic does not have a deterministic

upper bound, or, equivalently, the only upper
bounds known require more resources than avail-

able. In these cases a buffer management policy is

called for to handle overflow events. The simplest
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and most popular approach to overflow manage-

ment is ‘‘tail drop’’: new packets are dropped if

there�s no room in the buffer. If all packets are

equally important, this policy is good enough. The

situation is more interesting when different packets

have different values, as is the case when different
levels of service are to be supported. Let us give two

basic examples for different packet values. First,

there is the obvious scenario where each delivered

packet has a cash value: In the Internet, many

pricing mechanisms have been proposed (see, for

example, [5,8,14] and references therein), and one

of the basic approaches to pricing is a per-packet

fee. In the case of two levels of service, we may
assume that we have two packet prices: a ‘‘regular’’

packet of value 1, and a ‘‘valuable’’ packet of value

a > 1. Another scenario where a two-value model

seems to make sense is in the context of constrained

incoming streams: For example, in ATM some

incoming streams commit to a limiting traffic en-

velope. Packets––called ‘‘cells’’ in this context––

violating the constraint are marked (using the
cell loss priority bit). Since it is preferable to de-

liver even violating packets if possible, we may

assume that a packet complying with its traffic

descriptor has some intrinsic value a > 1, and other

(violating) packets have value 1, where the pa-

rameter a > 1 represents the ‘‘strictness’’ of the

system.

In this paper, we analyze a simple abstraction of
a buffer, that can be roughly described as follows.

We are given a buffer that can hold at most B
packets. In each time step, an arbitrary set

of packets arrives at the buffer, and at most one

packet may leave the buffer. Each packet p has

value vðpÞ 2 Rþ. We concentrate on the special

case where packets may have only two values: 1

and a > 1. The buffer management algorithm de-
cides which packets to drop from the buffer and

which packets to send. At each step, any packet

from among those currently stored in the buffer

and from among the newly arriving packets may

be dropped (this is the push out buffer model).

FIFO order must be maintained over the sent

packets, in the sense that if p arrived before q and

both are sent, then p is sent before q. (Note that
FIFO buffers ensure bounded delivery time for

packets that are not dropped.)

The goal of the algorithm is to maximize the

total value of delivered packets. We use competi-

tive analysis [3,17] to evaluate algorithm perfor-

mance. Specifically, the competitive ratio of an

algorithm alg is an upper bound, over all possible

arrival sequences, on the ratio of the value sent by
an optimal (off-line) algorithm to the value sent by

alg.
Let us summarize briefly some results directly

relevant to our work. First, note that if packet

values are in the range ½1; a�, then any work-con-

serving policy that does not drop packets while

there�e room in the buffer (including the tail-drop

policy) is a-competitive. 1 This is because all these
algorithms send the maximal possible number of

packets. It is straightforward to see that in some

cases, tail-drop actually sends only 1=a value of the

value sent by the optimal algorithm. On the other

hand, it is known that no deterministic on-line

algorithm can have competitive ratio smaller than

1.28 [15,18]. The lower bound is proved using two

packet values. The most natural buffer manage-
ment policy is the greedy policy, that drops the

cheapest packets when an overflow occurs. Man-

sour et al. [15] give a relatively simple proof that

the greedy policy is 4-competitive. Kesselman et al.

[9] give a much more subtle proof that shows that

the competitive ratio of the greedy policy is in fact

2� 2=ðaþ 1Þ, for any packet values in the range

½1; a�. It is also shown in [9] that the ‘‘greedy head-
drop’’ policy (the greedy algorithm which prefers

dropping old packets in case of a tie) is the best

greedy policy. For the model of two possible val-

ues f1; ag, Kesselman and Mansour [10] propose a

more ‘‘proactive’’ algorithm with competitive ratioffiffiffi
a
p

=ð
ffiffiffi
a
p
� 2Þ for a > 4. Combining the results of

the greedy algorithm with the latter, one gets an

algorithm with worst-case competitive ratio about
1.888 for any a in the two-value case.

Our results. In this work, we significantly re-

duce the competitive ratio of buffer manage-

ment for the two packet values model. We do it

with a new algorithm, whose competitive ratio is

1 An algorithm is called work-conserving if it always sends a

packet if there�s one available.
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1þ 1=
ffiffiffi
a
p
þOð1=aÞ, and never more than 1.30 for

any a. The algorithm is memoryless, i.e., its action

depends only on the current state of the buffer, and

no additional persistent state is required.

More about related work. Many research papers

deal with packet drop policies in communication
networks––see, for example, the survey of [11] and

references therein. Some drop mechanisms, such as

RED [7], are designed to signal congestion to the

sending end. The approach abstracted in our

model, where packets have values and the goal is

to maximize the total throughput value, is implicit

in DiffServ [2,4] and ATM [19].

There has been work on analyzing various as-
pects of the model using classical queuing theory,

and assuming Poisson arrivals [16]. The Poisson

arrival model has been seriously undermined by

the discovery of the heavy tail nature of data traffic

[12] and the chaotic nature of TCP [20].

Another model studied in [1] assumes that one

cannot discard a packet already in the buffer, and

thus the algorithm may only control admission
into the buffer. Aiello et al. [1] give tight bounds on

the competitive factor of various algorithms for

the two value model. In [15], the question of video

smoothing is studied. Among the results in that

paper, they prove an upper bound of 4 on the

competitive ratio of the greedy algorithm and a

lower bound of 1.25 on the ratio of any on-line

algorithm (the lower bound was later improved to
about 1.28 [13,18]). The work of [10] studies

competitive ratio of the lost value rather than the

throughput value we use here.

Paper organization. The remainder of this paper

is organized as follows. In Section 2 we define the

model and the notation we use. In Section 3 we

specify our on-line algorithm mf and a reference

optimal algorithm. In Section 4 we analyze the
competitive factor of mf. We conclude with a few

comments in Section 5.

2. Model and notation

In this section we formalize the model and the

notation we use. We assume a discrete time model,

i.e., time progresses in steps numbered 1, 2, 3, etc.

(see Fig. 1).

2.1. Arrival sequences

In each time step tP 1, a set AðtÞ of packets

arrive. For a packet p, T ðpÞ ¼ t iff p 2 AðtÞ, i.e.,
T ðpÞ is the time of arrival of p. Each packet

p 2 AðtÞ has a value vðpÞ 2 Rþ. For the most part

of this paper, we assume that vðpÞ 2 f1; ag for

some a > 1. We assume that each packet has a

distinct index iðpÞ 2 N, such that if packet p arrives

before packet q then iðpÞ < iðqÞ. The duration of an

arrival sequence A is the number of steps until no

more packets arrive (we assume that all arrival
sequences A satisfy Að1Þ 6¼ ;, except for the empty

arrival sequence whose duration is 0). The size of

an arrival sequence A, denoted jAj, is the total

number of packets that arrive.

2.2. Buffers

In each time step t, there is a set QðtÞ of packets
referred to as the buffer. jQðtÞj is called the buffer

occupancy at time t. We say that packet p 2 Q is

above packet q 2 Q in the buffer if iðpÞ > iðqÞ; the

below relation is defined analogously. The packet

with the minimal index in Q is said to be at the

bottom of the buffer, or at the head of the queue.

When all packets have value either 1 or a, we use

expðQðtÞÞ ¼def jfp 2 QðtÞ: vðpÞ ¼ agj, i.e., expðQðtÞÞ
denotes the number of expensive packets in QðtÞ.

2.3. Algorithms

The buffer management algorithm decides, in

each step t, which of the packets in Qðt � 1Þ [ AðtÞ
are to be sent out, and which are dropped, so that

jQðtÞj6B for some given parameter B called the

Fig. 1. Schematic representation of the model. The buffer

contains at most B packets.
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buffer size. Formally, the packets sent at time t are

denoted SðtÞ and the packets dropped at time t are

denoted DðtÞ. If p 2 DðtÞ we say that p was dis-

carded at time t. The sequence Sð1Þ; Sð2Þ; . . . is

called a schedule. We sometimes abuse notation

and refer to the sets of packets
S

t AðtÞ,
S

t SðtÞ andS
t DðtÞ by A, S and D, respectively. Note that Q, S,

and D are functions of time, arrival sequence, and

algorithm. Usually the arrival sequence and algo-

rithm are clear by the context, but in other cases we

use superscripts to denote the arrival sequence and

subscripts to denote the algorithm, as in SA
algðtÞ.

If SðtÞ and DðtÞ are functions of Að1Þ; . . . ;AðtÞ
only, then the algorithm is said to be on-line, and
otherwise it is off-line. If SðtÞ and DðtÞ are func-

tions of Qðt � 1Þ [ AðtÞ only, then the algorithm is

said to be memoryless.

The main restrictions we assume are as follows:

• For all t, jSðtÞj6R for some parameter R called

the drain rate. In the remainder of this paper,

we assume for simplicity that R ¼ 1, i.e., at
most one packet can be sent in each step.

• The algorithms are work conserving, i.e., they al-

ways send a packet if there is one available and

if there is available bandwidth. Formally, an al-

gorithm is called work-conserving if for all t,
jSðtÞj ¼ minðR; jQðt � 1Þ [ AðtÞjÞ.

• We assume that for all t, maxfiðpÞ : p 2 SðtÞg <
minfiðpÞ: p 2 QðtÞg, i.e., a packet cannot re-
main in the buffer after a packet of larger index

was sent. That is the FIFO restriction.

2.4. Total value and competitive ratios

The value of a set of packets S is defined by

vðSÞ ¼def P
p2S vðpÞ. The value of an algorithm alg on

a given arrival sequence A is defined by valgðAÞ ¼
defP

tP 1 vðSA
algðtÞÞ. The competitive ratio of an algo-

rithm alg on an arrival sequence A is defined by

cralgðAÞ¼
def maxfvoffðAÞ :off is an off-line algorithm g

valgðAÞ
:

Note that the competitive ratio is at least 1 for any

algorithm and any arrival sequence. The competi-

tive ratio of an algorithm alg is

cralg ¼def
supfvðAÞalg: A is an arrival sequenceg:

3. Algorithms

In this section we present our reference off-line

algorithm called opt and our proposed on-line al-

gorithm called mf. Before we start, we define the
concept of replaceability which plays a central role

in our analysis.

Informally, a packet p is said to be replaceable

by a packet q if by dropping p and adding q to the

schedule, the buffer size is not changed. Formally,

we have the following definition.

Definition 3.1. Let A; S and D be arrival, send and
drop sequences, respectively. Let p; q 2 A be

packets such that p 2 S and q 2 D. We say that p is

replaceable by q in S if one of the following con-

ditions hold:

1. iðpÞ < iðqÞ, and jQðtÞj > 0 for all time steps

T ðpÞ6 t < T ðqÞ.
2. iðpÞ > iðqÞ, and jQðtÞj < B for all time steps

T ðqÞ6 t < T ðpÞ.

Lemma 3.1. Suppose that for some arrival sequence
A we have that a packet p 2 A is replaceable by a
packet q 2 A in a work-conserving schedule S with
buffer size B. Then the work-conserving schedule S0

resulting from S by discarding p when it arrives and
accepting q has buffer requirement B.

Proof. Suppose first that iðpÞ < iðqÞ. Clearly, buffer

occupancy in S0 is identical to S for all times before

T ðpÞ. In the time interval ½T ðpÞ; T ðqÞ � 1�, buffer

occupancy in S0 is exactly one less than the cor-

responding occupancy in S, since the buffer in S
was never empty in that interval. Also, from time
T ðqÞ onwards, buffer occupancy in both buffers is

the same. The case iðpÞ > iðqÞ is dual, noting that

now we have that buffer occupancy of S0 in the

time interval ½T ðqÞ; T ðpÞ � 1� is one more than the

corresponding occupancy in S. �

3.1. An optimal off-line algorithm: opt

We now spell out a specific off-line algorithm,

called ‘‘opt’’, that will serve us as a reference op-

timal solution. This concretization allows us to
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prove a few properties we use in the analysis of our

on-line algorithm. From now on, whenever we

refer to the optimal schedule, we refer to the un-

ique schedule produced by opt.
The basic idea in opt is that the problem of

overflow management has a matroid structure for
each given arrival sequence (see [9] for details).

This property guarantees that the ‘‘greedy’’ algo-

rithm for matroids finds an optimal solution. Our

reference algorithm, opt, is a just the greedy al-

gorithm with a specific order on packets with equal

values: if two packets have the same value, the

older packet takes precedence. This makes the re-

sulting schedule unique. Pseudo-code for opt is
given in Fig. 2. We remark that the feasibility

testing of line 4 can be done by running the

schedule and finding whether its maximal buffer

size exceeds B (more efficient ways are possible).

The schedule produced by opt has the following

simple properties, which we use extensively.

Lemma 3.2. Fix an arrival sequence A. If p is re-
placeable by q in Sopt and vðpÞ ¼ vðqÞ, then
iðpÞ < iðqÞ.

Proof. Suppose for contradiction that iðqÞ < iðpÞ.
Since p and q have the same value, the optimal

algorithm considers q before p. Let S be the cur-

rent schedule considered by the algorithm when q
is considered. Since p is replaceable by q, we have
that the buffer of S (whose occupancy is never

more than the occupancy in the full schedule) is

never full in ½T ðqÞ; T ðpÞ � 1�, and since p is in-

cluded in the final optimal schedule, it follows that

q could have been entered too, a contradic-

tion. �

Corollary 3.3. An expensive packet p is not ac-
cepted by opt if and only if the buffer of opt is full
with expensive packets at time T ðpÞ.

The following straightforward property is
common to all optimal algorithms.

Observation 1. Let A be an arrival sequence, and

let A0 be an arrival sequence defined by adding one

packet to A. Then voptðA0ÞP voptðAÞ.

3.2. The on-line algorithm: mf

Our on-line algorithm is called mark&flush,

abbreviated mf. Given a non-negative parameter

rP 0, the mfr algorithm is as follows (see pseudo-

code in Fig. 3). For each packet p in its buffer, the

algorithm maintains a label nðpÞ 2 N [ f?g. When

nðpÞ ¼? we say that p is unmarked, and when

nðpÞ ¼ i, then p is said to be marked by packet q,
where iðqÞ ¼ nðpÞ.

The action of the algorithm in a step is de-

scribed by two phases. In the first phase, overflows

are resolved using the ‘‘greedy tail-drop’’ rule:

cheap packets are dropped first, and within each

value class, older packets are discarded before

newer packets. Packets dropped in the first phase

are called overflow packets.
In the second phase, the algorithm looks at the

newly admitted expensive packets, from the bot-

tom up. Each packet p marks the r closest cheap

packets below p which are not yet marked:

Marking of a packet q is done by setting

nðqÞ  iðpÞ. (No packet is marked if there is no

cheap unmarked packet below p.) Then the algo-

rithm examines the packet p0 at the head of the

queue. If p0 is unmarked, it is sent, and the algo-
rithm terminates. Otherwise, all packets with

marks smaller or equal to nðp0Þ are discarded, the

first remaining packet is sent, and the algorithm

terminates. Packets discarded in the second phase

of the algorithm are said to be preempted.

The value of r is specified later, as a function of

a. For simplicity of presentation, we assume now

that r is integral; we explain later how to extend
the algorithm to any r 2 R.

We state a few simple properties of the algo-

rithm that will become handy shortly (see Fig. 4).Fig. 2. Pseudo-code for algorithm opt.
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Lemma 3.4. If mf preempts a packet in step t, then
vðSmfðtÞÞ ¼ a.

Proof. Since marking is done top-down, it follows

that if p is marked, then all packets between p and

nðpÞ are marked (by nðpÞ or by packets with

smaller index). Therefore, if a cheap packet is

dropped from the head of the queue, then there

must be an expensive packet that will be sent

out. �

The next lemma follows from a straightforward

induction on time.

Lemma 3.5. If p 2 QmfðtÞ is an expensive packet,
and jfq: nðqÞ ¼ pgj < r, then all cheap packets be-
low p are marked.

The argument below is similar in spirit to [10].

Lemma 3.6. For all t, if expðQmfðtÞÞPB=ðr þ 1Þ,
then vðSmfðtÞÞ ¼ a.

Proof. There are two cases to consider. If each

expensive packet p 2 QmfðtÞ has r packets p0 with

nðp0Þ ¼ p, then by simple algebra we have that all

cheap packets in QmfðtÞ are marked, and hence the

next packet to be transmitted is expensive. Other-

wise, there exists at least one expensive packet p0

such that jfp0: nðp0Þ ¼ pgj < r. In this case, by
Lemma 3.5, all cheap packets in QmfðtÞ that arrived

before p are marked, and therefore the next packet

to be sent is necessarily expensive. �

Fig. 3. Pseudo-code for algorithm mf with parameter r, as run at time t. QðtÞ½k� is the kth packet from the head of the buffer.

Fig. 4. Preemption with r ¼ 1. Cheap packets are square, ex-

pensive packets are oval. An arrow from a cheap packet p to an

expensive packet q means that p is marked by q, i.e., nðpÞ ¼ iðqÞ.
Left: before preemption. Right: after preemption.
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4. Competitive analysis

In this section we prove our main result, namely

that the competitive ratio of mf is about 1.30. Our

strategy in analyzing the competitive ratio of mf is
to use induction on the number of packets in the

arrival sequence. Informally, given an arrival se-

quence, we apply a series of simplifying transfor-

mations while preserving the competitive ratio.

Each transformation strictly decreases the size of

the arrival sequence, allowing us to invoke the

induction hypothesis. Eventually, the arrival se-

quence boils down to one of two possible scenarios
(depending on the value of the first packet sent by

opt), which we analyze directly.

We start with a simple lemma.

Lemma 4.1. For any arrival sequence A there exists
an arrival sequence A0 such that jA0ð1Þj6Bþ 1 and
crðA0ÞP crðAÞ.

Proof. If jAð1Þj6Bþ 1 then A0 ¼ A and we are

done. Otherwise, define A0ð1Þ to be the packets not

dropped by mf at step 1, and A0ðtÞ ¼ AðtÞ for all

t > 1. Clearly, vmfðA0Þ ¼ vmfðAÞ. It remains to show

that voptðA0ÞP voptðAÞ: this follows directly from

the specification of the optimal algorithm, that

clearly accepts all first Bþ 1 expensive packets (if

exist), and a subset of the first cheap packets in the
remaining room. �

By virtue of Lemma 4.1, we may assume with-

out loss of generality that jAð1Þj6Bþ 1, i.e., that

there is no overflow in the first step.

We now define one of the main tools of our

analysis: We show how to split a arrival sequence

at some points into two, such that at least one of
the parts preserves the competitive ratio.

Definition 4.1. Let A be an arrival sequence with

duration te. A time step t is called a splitting point if

t < te and jQmfðtÞj ¼ expðQmfðtÞÞ ¼ expðQoptðtÞÞ ¼
jQoptðtÞj.

In other words, t is a splitting point if it is not
the last step, and at t, the buffers of mf and opt
contain exactly the same number of expensive

packets and no cheap packets.

Lemma 4.2. Let A be an arrival sequence with
splitting point t0. Then there exists an arrival se-
quence A0 such that jA0j < jAj and crðA0ÞP crðAÞ.

Proof. Let b ¼ expðQmfðt0ÞÞ. By definition,

crðAÞ ¼
Pt0þb

t¼1 vðSoptðtÞÞ þ
P1

t¼t0þbþ1 vðSoptðtÞÞPt0þb
t¼1 vðSmfðtÞÞ þ

P1
t¼t0þbþ1 vðSmfðtÞÞ

:

We define two arrival sequences. A1ðtÞ ¼ AðtÞ for

t ¼ 1; . . . ; t0 and A1ðtÞ ¼ ; for t > t0. A2ð1Þ ¼
Qmfðt0 þ bÞ and A2ðtÞ ¼ Aðt0 þ bþ t � 1Þ for t > 1.
We claim that

vmfðAÞ ¼ vmfðA1Þ þ vmfðA2Þ;
voptðAÞ6 voptðA1Þ þ voptðA2Þ:

ð1Þ

Proving Eq. (1) will complete the proof, since both

A1 and A2 are shorter than A, and at least one of

them has a larger competitive ratio.

To see that Eq. (1) is true, note that in steps

t0 þ 1; . . . ; t0 þ b, both algorithms send only ex-
pensive packets under A and A1, and therefore

their value under A in the first t0 þ b steps match

exactly their values under A1.

Now consider A2. We show that QA
optðt0 þ bÞ �

QA
mfðt0 þ bÞ. This will show that voptðA2Þ is at least

the value of opt on A in steps t0 þ b and onwards.

First we claim that for all t 2 ½t0; t0 þ b� 1�, we

have expðQA
mfðtÞÞ ¼ expðQA

optðtÞÞ: this follows from
the fact that both algorithms start with a buffer

with b expensive packets, send only expensive

packets in these steps, and therefore lose expensive

packets due only to overflow, which are the same.

Moreover, it follows that if p 2 QA
optðt0 þ bÞ is an

expensive packet, then p 2 QA
mfðt0 þ bÞ: this is be-

cause p must have arrived in the time interval

½t0 þ 1; t0 þ b�, and since there is room for it in opt,
there is room for it in mf. To complete the

proof that QA
optðt0 þ bÞ � QA

mfðt0 þ bÞ, we show that

if p 62 QA
mfðt0 þ bÞ is a cheap packet, then p 62

QA
optðt0 þ bÞ. For suppose not: then p 62 QA

mfðt0 þ bÞ
and p 2 QA

optðt0 þ bÞ. At the time that mf discards

p, it resides in the buffer of opt, and hence there is

room in the buffer of mf for a cheap packet. Since

opt prefers cheap packets the way mf does, we get
a contradiction. �
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Lemma 4.3. Let A be an arrival sequence such that
vðSmfð1ÞÞ ¼ vðSoptð1ÞÞ. Then there exists another
input sequence A0 such that jA0j < jAj and
crðA0ÞP crðAÞ.

Proof. We first show that both algorithms send the

exact same packet at the first step, and then define

A0 that does not contain that packet.

We distinguish between two cases. If

vðSmfð1ÞÞ ¼ vðSoptð1ÞÞ ¼ 1, then mf did not discard

any packet by Lemma 3.4. Also, by the specifica-

tion of opt we have that the cheap packet it sends

must be the first packet too. Let this packet be
denoted by p. We define A0ð1Þ ¼ Að2Þ [ Að1Þ n fpg,
and A0ðtÞ ¼ Aðt þ 1Þ for all t > 1. Clearly,

jA0j ¼ jAj � 1, and it is straightforward to verify

that both algorithms send the same packets except

p under A and A0, namely voptðA0Þ ¼ voptðAÞ � 1 and

vmfðA0Þ ¼ vmfðAÞ � 1.

If mf sends an expensive packet p at the first

step, then using the specification of mf and opt,
then both send the same first packet. However, mf
may have discarded some packets ahead of p, but

fortunately, opt dropped the same packets. So we

may define A0ð1Þ ¼ Að2Þ [ Að1Þ n ðfpg [ Dmfð1ÞÞ
and A0ðtÞ ¼ Aðt þ 1Þ. Again, jA0j < jAj and it is

easy to verify that both algorithms send the same

packets except p in A and A0. �

4.1. First case: opt sends an expensive packet at the

first step

We now analyze the case where opt sends an

expensive packet at the first step. We start with the

following lemma.

Lemma 4.4. Suppose that vðSoptð1ÞÞ ¼ a and that
vðSmfð1ÞÞ ¼ 1. Then there exists a time te such that

(1) opt sends only expensive packets in steps
1; . . . ; te,

(2) expðQoptðteÞÞ ¼ B,
(3) expðQmfðteÞÞ ¼ B.

Proof. Since by Lemma 4.3 we know that mf sends
a cheap packet at the first step, we have that the

first packet p0 in the arrival sequence is cheap: this

follows from the fact that mf did not drop any

packet in the first step. Now, if opt admits into the

buffer any cheap packet p before it is full with

expensive packets, then p0 and p are replaceable by

definition, contradiction to Lemma 3.2. This

proves (1) and (2).
We now prove (3). Clearly, for any algorithm

and any time step t, expðQðtÞÞ is the number of

expensive packets that arrive, minus the number of

expensive packets sent or dropped. Now, observe

that opt sends an expensive packet at the maximal

possible speed up to te, and that by Corollary 3.3,

we have that opt does not drop an expensive packet

before time te. Next, let t0 be the first time that mf
drops an expensive packet. Clearly, expðQmfðtÞÞP
expðQoptðtÞÞ for all t6 t0. If t0P te, we are done.

Otherwise, t0 < te. Let t00 be the last time mf
drops an expensive packet before time te. Clearly,

expðQmfðt00ÞÞ ¼ B, and from that time until te, the

number of expensive packets sent by mf is at most

the number of expensive packets sent by opt. It

follows that expðQmfðtÞÞP expðQoptðtÞÞ for all
t006 t6 te, and we are done. �

We now arrive at a key property of the scenario

we consider: the number of expensive packets in

both buffers is always close.

Lemma 4.5. Suppose that vðSoptð1ÞÞ ¼ a and that
vðSmfð1ÞÞ ¼ 1. Then for all time steps t6 te,

expðQoptðtÞÞ6 expðQmfðtÞÞ6 expðQoptðtÞÞ þ
B

r þ 1
:

Proof. By induction on time. The base case t ¼ 0 is

trivial. Suppose that lemma holds for time t, and

consider step t þ 1. The same number of expensive

packets is made available to both algorithms in

Aðt þ 1Þ, and hence the only way for the difference

expðQmfðtÞÞ � expðQoptðtÞÞ to change is if opt sends

or rejects a different number of expensive packets

than the number sent or rejected by mf. By Lemma
4.4, opt does not send a cheap packet. If opt rejects

an expensive packets, then expðQoptðt þ 1ÞÞ ¼ B
and then expðQmfðt þ 1ÞÞ ¼ B by induction. So

suppose that opt sends an expensive packet and

does not lose any expensive packet. If mf sends an

expensive packet too, then the lemma holds by the

induction hypothesis. If mf sends a cheap packet at
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time t þ 1, then by Lemma 3.6 it must be the case

that expðQmfðt þ 1ÞÞ6B=ðr þ 1Þ, and the lemma

follows, since expðQoptðt þ 1ÞÞP 0. �

Using the above results, we can prove another
simplification step.

Lemma 4.6. Let A be an unsplittable arrival se-
quence with vðSoptð1ÞÞ ¼ a and vðSmfð1ÞÞ ¼ 1. Then
if there exist t1 < te such that expðQmfðt1ÞÞ ¼ B and
expðQoptðteÞÞ ¼ B, then there exists another arrival
sequence A0 such that jA0j < jAj and crðA0ÞP crðAÞ.

Proof. By Lemma 4.4 and the definition of split-

ting points, the arrival sequence ends when opt is

full with expensive packets for the first time. Call

this time te. Suppose now that mf is full with ex-

pensive packets at some time t1 < te. We define an

arrival sequence A0 as follows. A0ðtÞ ¼ AðtÞ for all

t 6¼ t1, and Aðt1Þ is AðtÞ plus ðB� expðQA
optðt1ÞÞÞ

new expensive packets (with index higher than all
other packets arriving at time t1). In other words,

A0 is defined by adding to A as many expensive

packets as opt can accommodate at time t1. We

first note that mf sends the same packets on A and

A0: this follows from the assumption that mf is full

with expensive packets at time t1, and will not

admit the additional packets by its ‘‘tail-drop’’

preference. Next, we observe that opt will accept
all the new packets by its preference to expensive

packets. It follows that t1 is a splitting point for A0.
Finally, we note that while vmfðA0Þ ¼ vmfðAÞ (be-

cause mf sends exactly the same packets in A and

A0), we also have that voptðA0ÞP voptðAÞ: this fol-

lows from Observation 1. Since t1 is a splitting

point we can use Lemma 4.2 and get that there

exists an arrival sequence A00 such that jA00j < jA0j
and crðA00ÞP crðA0Þ. In fact, looking closely at the

proof of Lemma 4.2, it can be seen that jA00j < jAj;
we omit the details here. �

We now arrive at a case where we can directly

compute the competitive ratio.

Lemma 4.7. Let A be an unsplittable arrival se-
quence for which vðSoptð1ÞÞ ¼ a and vðSmfð1ÞÞ ¼ 1,
and such that expðQmfðtÞÞ ¼ B if and only if
expðQoptðtÞÞ ¼ B. Then

crðAÞ ¼ ð2þ rÞa
1þ að1þ rÞ :

Proof. By Lemma 4.4 and the definition of
splitting points, we have opt sends only expen-

sive packets, and since mf is work-conserving,

mf sends a packet in each step 1; . . . ; te. By

Lemma 4.4, we get that both mf and opt send

the same number of packets under A. Let n1 and

na be the number of cheap packets and expen-

sive packets, respectively, sent by mf under A.

We have that

crðAÞ6 aðn1 þ naÞ
n1 þ ana

: ð2Þ

By Lemma 4.4, we have that na PB. We now ar-

gue that n1 6B=ðr þ 1Þ. To see that, note that for

all t < te, we have that expðQmfðtÞÞ � expðQoptðtÞÞ is
exactly the number of cheap packets sent by mf up

to time t: the same number of packets arrive at

both queues, and no expensive packets are dis-

carded by the condition that expðQmfðt0ÞÞ < B for

all t0 < te. Since expðQmfðtÞÞ � expðQoptðtÞÞ6
B=ðr þ 1Þ by Lemma 4.5, we have that

n1 6B=ðr þ 1Þ. By Eq. (2), the bound on crðAÞ is

maximized when n1 is maximized. Thus we get

crðAÞ6
a B

rþ1
þ Bþ 1

� �
B

rþ1
þ aðBþ 1Þ <

a B
rþ1
þ B

� �
B

rþ1
þ aB

¼ ð2þ rÞa
1þ að1þ rÞ : �

Note that the ratio in Lemma 4.7 is tight only for

B!1.

4.2. Second case: opt sends a cheap packet at the

first step

We now consider arrival sequences in which opt
sends a cheap packet in the first step. Let tz denote

the first time the buffer of opt is empty.

Lemma 4.8. If vðSoptð1ÞÞ ¼ 1, then in all time steps
1; . . . ; tz, opt accepts all expensive packets.

Proof. Clearly opt sends the first packet p1 in the
arrival sequence. By definition, p1 is replaceable by
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any packet that arrives in the time interval ½1; tz�.
Since p1 2 Sopt, we have from Lemma 3.1 that opt
did not discard any expensive packet. �

The following is the key lemma for this case.

Lemma 4.9. Let A be an arrival sequence such that
vðSoptð1ÞÞ ¼ 1, vðSmfð1ÞÞ ¼ a and opt does not ac-
cept some packet that arrives in the time interval
½1; tz�. Then there exists an arrival sequence A0 such
that jA0j < jAj and crðA0ÞP crðAÞ.

Proof. Let p1, p2 be the first cheap packet in Að1Þ,
and the last cheap packet in DA

mfð1Þ respectively.

By definition of p2, after the arrival of p2 an ex-

pensive packet arrives. This expensive packet is the

first in a succession of expensive packets. Denote

the last expensive packet in this succession by p3.

Note that if iAðp2Þ < iAðpÞ < iAðp3Þ then vðpÞ ¼ a.

Let p4 be the first cheap packet opt drops in the

time interval ½1; tz�. By the assumption of the
lemma, the packets p1, p2, p3, p4 are well defined.

Next we define a new arrival sequence

A0ð1Þ ¼ Að1Þ n fp2g, and A0ðtÞ ¼ AðtÞ for all t > 1.

Clearly jA0j < jAj. We will show that vðSA0
optÞ ¼

vðSA
optÞ and vðSA0

mfÞ ¼ vðSA
mfÞ.

We start with opt. If p2 is dropped by opt in A,

our claim is trivial. Assume p2 is sent by opt. In

this case we get that p2 is replaceable by p4 since
the buffer of opt is not empty until time tz and since

opt prefers old packets.

It remains to prove that total value of the

packets sent by mf is equal on both arrival se-

quences A, A0. It suffices to prove that on both

arrival sequences, mf sends the same packet in the

first time step and on both cases the buffer is equal

at the end of the first time step. Since mf does not
drop an expensive packet at the first time we get

that it is enough to prove that both buffers have

the same cheap packet with the same mark.

Let n1 be the number of cheap packets that

arrive before packet p2 and are marked by expen-

sive packets that arrive after packet p2 i.e.

n1 ¼ jfp 2 A: vðpÞ ¼ 1; iAðpÞ < iAðp2Þ6 nAðpÞgj. We

denote by na the number of expensive packets that
arrive after p2. Note that na ¼ p3 � p2.

Now let us look at the arrival sequence A0. In

order to finish the proof we analyze three cases.

First assume that p 2 DA
mfð1Þ \ A0ð1Þ and

nAðpÞ < iAðp2Þ. In this case p is marked by the same

expensive packet i.e., nA
0 ðpÞ ¼ nAðpÞ, since p2 ar-

rives after the time p is marked and therefore the

packet p2 has no influence on the mark of p.
We turn to the second case, assume that

p 2 DA
mfð1Þ \ A0ð1Þ and iAðp2Þ6 nAðpÞ. Clearly

nAðpÞ6 nAðp1Þ. Using the fact that p2 is the last

cheap packet dropped at the first step, we get that

the number of expensive packets that arrived be-

fore p3 is enough to reject n1 þ 1 cheap packets i.e.,

narP n1 þ 1. Since the number of cheap packets

that were not marked by expensive packets arriv-

ing before p2 in A0 is n1, we get that all cheap
packets that arrive before p2 in A0 are marked by

expensive packets arriving before p3. From the fact

that the packet nAðp1Þ > iAðp2Þ we get that p1 is the

last cheap packet that is marked by an expensive

packet arriving before p3.

From these two cases we get that DA
mfð1Þ ¼

DA0
mfð1Þ [ fp2g.
Finally, we have to prove that every cheap

packet p with iAðp3Þ6 iAðpÞ has the same mark in

both arrival sequences A;A0. This follows from the

fact that all cheap packets that arrive before p3 are

marked by expensive packets that arrive before p3.

Therefore, expensive packets that arrive after p3

can only mark cheap packets that arrive after p3 in

both arrival sequences. Since we did not change

the packets that arrive after p2 we get that
nA
0 ðpÞ ¼ nAðpÞ and this completes the proof. �

Lemma 4.10. Let A be an arrival sequence with no
splitting points such that vðSoptð1ÞÞ ¼ 1, vðSmfð1ÞÞ ¼
a, and opt does not drop any packet during steps
1; . . . ; tz. Then crðAÞ6 ðr þ aÞ=a.

Proof. Let na and n1 be the number of expensive
and cheap packets in A, respectively, and let n01 be

the number of cheap packets mf sends. First, note

that the duration of A is tz: since opt accepts all

packets, jQoptðtÞjP jQmfðtÞj for all 16 t6 tz. This

means, in particular, that QmfðtzÞ ¼ ;, and hence tz
is a splitting point unless it is the last step of A.

Next, we argue that mf does not discard any ex-

pensive packet in steps 1; . . . ; tz: since opt does not
drop any packet, expðQmfðtÞÞ6 expðQoptðtÞÞ for all

16 t6 tz, and hence, mf does not have any over-
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flow and therefore mf never discards an expen-

sive packet. It follows that crðAÞ ¼ ðn1 þ naaÞ=
ðn01 þ naaÞ. In addition, note that from the defini-

tion of mf it follows that n1 6 n01 þ rna. Hence we

get that crðAÞ6 ðn01 þ rna þ naaÞ=ðn01 þ naaÞ. This
last expression is maximized when n01 ¼ 0, and thus

we conclude

crðAÞ6 ðr þ aÞna

naa
6

r þ a
a

: �

4.3. Putting the pieces together

We now arrive at the main result of this paper:

the competitive ratio of algorithm mf. We state the

bound with a and r as parameters.

Lemma 4.11. For all arrival sequences A,

voptðAÞ
vmfrðAÞ

6 max
ð2þ rÞa

1þ að1þ rÞ ;
r þ a

a

� �
:

Proof. The proof is by induction on jAj. The base
case is the empty sequence A0, for which we define

crðA0Þ ¼ 1. For the induction step, assume that the

theorem holds for all arrival sequences with less

than jAj packets. We proceed by case analysis.

If A is splittable, then by Lemma 4.2 there

exists an arrival sequence A0 such that jA0j < jAj
and crðA0ÞP crðAÞ, and we are done by induc-

tion. If vðSA
mfð1ÞÞ ¼ vðSA

optð1ÞÞ, then by Lemma 4.3
there exists an arrival sequence A0 such that

jA0j < jAj and crðA0ÞP crðAÞ, and we are done by

induction.

It remains to deal with the case that A is un-

splittable and vðSA
mfð1ÞÞ 6¼ vðSA

optð1ÞÞ. We distin-

guish between two cases here. If vðSoptð1ÞÞ ¼ a and

vðSmfð1ÞÞ ¼ 1, we have two sub-cases:

• If expðQmfðtÞÞ ¼ B only when expðQoptðtÞÞ ¼ B,

then by Lemma 4.7 we have that crðAÞ6
ð2þ rÞa=ð1þ að1þ rÞÞ and we are done.

• Otherwise, by Lemma 4.6, there exists an arrival

sequence A0 such that jA0j < jAj and

crðA0ÞP crðAÞ, and we are done by induction.

If vðSoptð1ÞÞ ¼ 1 and vðSmfð1ÞÞ ¼ a, we again
have two sub-cases to consider.

• If opt does not drop any packet in A, we have

that crðAÞ6 ðr þ aÞ=a by Lemma 4.10 and we

are done.

• Otherwise, by Lemma 4.9, there exists an arrival

sequence A0 such that jA0j < jAj and crðA0ÞP
crðAÞ, and we are done by induction. �

4.3.1. Tuning the parameters

To get the optimal algorithm, we write

aðr þ 2Þ
aðr þ 1Þ þ 1

¼ aþ r
a

: ð3Þ

To solve Eq. (3), we first find what is the best r for
a given a, and then find the worst-case a. It turns

out that the optimal r for a given value of a is

rðaÞ ¼
�1� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ða� 1Þa2 þ ð1þ aÞ2

q
2a

¼
ffiffiffi
a
p
þ 1

2
þO

1ffiffiffi
a
p

� �
:

For this choice of r, we get that the competitive

ratio is

crmfr ¼
�1� aþ 2a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a� 3a2 þ 4a3
p

2a2

¼ 1þ 1ffiffiffi
a
p þO

1

a

� �
:

Solving numerically (see Fig. 5), we find that the

worst case occurs when a � 3:751, and then the

competitive ratio is approximately 1.304.

4.3.2. Dealing with non-integral r
If r is non-integral, the algorithm is modified as

follows. Each packet may have a ‘‘fractional

mark’’, so that each expensive packet fills the

marks going top-down. Only a packet that is fully

marked is preempted. The nðpÞ is the index of the

Fig. 5. Behavior of the competitive ratio ofmf as a function of a.
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packet that completed the fractional mark of p to

1. If the packet at the bottom of the buffer is not

fully marked, then no preemption occurs. The

analysis of the algorithm carries over unchanged,

except for some minor adjustments.

5. Conclusions

We have presented a buffer management algo-

rithm for the DiffServ model, where only two

packet values are possible. The obvious open

question is whether the upper bound can be im-

proved to meet the lower bound (we believe that
the lower bound is the best possible).

Another important open problem is finding an

algorithm for the general model, where packet

values may be any number in ½1; a�. In fact, it is not

clear even how to generalize our algorithm to more

than two values.

Lastly, we remark that from the implementa-

tion point of view, head-drop and tail-drop are
extremely more efficient than push-out queues. We

believe that our algorithm can be extended to the

head-drop model.
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