
Average-Case Analysis of Greedy Paket ShedulingEXTENDED ABSTRACTZvi Lotker Boaz Patt-Shamirzvilo�eng.tau.a.il boaz�eng.tau.a.ilDept. of Eletrial EngineeringTel-Aviv UniversityTel-Aviv 69978IsraelAbstratWe study the average number of delays suffered by pak-ets routed using greedy (work onserving) shedulingpoliies. We obtain tight bounds on the worst-ase av-erage number of delays in a few ases as follows. First,we show that the average number of delays is a funtionof the number of soures of pakets, whih is interestingin ase a node may send many pakets. Then, using anew onept we all delay rae, we prove a tight boundon the average number of delays in a leveled graph. Fi-nally, using delay raes in a more involved way, we provenearly-tight bounds on the average number of delays in di-reted ayli graphs (DAGs). The upper bound for DAGsis expressed in terms of the underlying topology, and as aresult it holds for any ayli set of routes, even if theyare not shortest paths. The lower bound for DAGs, on theother hand, holds even for shortest paths routes.1 IntrodutionPaket routing shemes an be generally lassi�ed as fol-lows. In one model, motivated by parallel mahines, thehief objetive is to minimize the time to route a given setof pakets, in the sense of minimizing the arrival time ofthe last paket. Many variants of this model exist: see,e.g., [9, 14℄. Another avenue of researh is motivated bypaket-swithing data networks, where the main goals areto minimize buffer spae, maximize throughput, minimizethe number of pakets dropped, et. The former model is
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alled �stati routing,� or �one-shot routing,� and the latteris alled �dynami routing,� or �ongoing routing.� Stan-dard networking texts providemany results for this model:see, e.g., [5, 8℄.In this work we take a third approah: our main mo-tivation is to better understand the average-ase behaviorof a paket from a given set. More spei�ally, we areinterested in the average number of delays a paket suf-fers while being routed to its destination, under very mildassumptions on the way routing is done. The model weonsider is the following. The system is synhronous (i.e.,there is a global notion of �steps�, suh that in eah timestep, a single paket may ross eah link. At the ingressof eah link, there is a buffer, where pakets are storeduntil submitted to the link by a link sheduler. We on-sider the broad lass of greedy (a.k.a. work onserving)link sheduling poliies, i.e., poliies that always forwarda paket over a link if its buffer is not empty.Our starting point is the work of Mansour and Patt-Shamir [13℄, where it is proved for the stati ase thatif the paths traversed are shortest paths, then for anysheduling poliy, no paket suffers more than k � 1 de-lays, where k is the total number of pakets to be routed.Note that k� 1 is the best bound in general: if all k pak-ets are simultaneously waiting to the same link, then thelast paket to ross the link is delayed k � 1 times. Triv-ially, the k � 1 bound on the maximal number of delaysimplies that the average number of delays is also boundedby k � 1. However, it is not lear whether this bound istight: in the simple one-link senario mentioned above,the average number of delays is (k � 1)=2.Our Results. Somewhat surprisingly, it turns out that(k � 1)=2 is not the worst-ase: the average number ofdelays an approah k�1 arbitrarily losely. In this work,our goal is to relate the average number of delays to thetopology of the route set. We present tight bounds in afew ases of interest as follows.� First, we show that if we assume only that pak-ets traverse shortest paths and that the shedule is



greedy, then the average number of delays is k(1 �1=2s)�O(s), where s is the number of soures (i.e.,start nodes of paket routes) in the system.� For the ase where the set of routes indues a leveledgraph, we show that the average number of delays isnever more than (k�1)=2. This bound is tight by theone-link example.� Our most involved result is for the ase where the setof routes indues a direted ayli graph (DAG). Inthis ase we show that even if the routes traversedare not shortest paths, the average number of delaysper paket under any greedy shedule is bounded by(k � 1)=2 + O(1), where the additive onstant de-pends only on the graph topology, regardless of k.This result is partiularly interesting in the dynamimodel, where k may be muh larger than the sizeof the graph. Finally, we provide a lower boundthat demonstrates that the upper bound is essentiallytight, even if the routes are shortest paths.To analyze leveled and ayli graphs, we develop aformal mehanism alled delay rae, whih may be of in-dependent interest in its own right. In a delay rae, eahdelay reates a token whih traverses the network piggy-baked on pakets; to bound the average number of de-lays, we bound the total number of tokens based on their�nal loations.Related Work. The work most losely related to thispaper is by Patt-Shamir and Mansour [13℄ mentionedabove. A fundamental result for one-shot routing wasgiven by Leighton, Maggs and Rao [10, 11℄, where theyshow that the last paket an arrive at its destination inO(d + ) time units, where d is the length of the longestroute, and  is the maximal number of routes that use thesame edge. Greedy shedules were also onsidered forpaket routing with deadlines by Lui and Zaks [12℄, andin the ontext of on-line sheduling by Adler et al. [2, 1℄.From the dynami routing viewpoint, it is worth mention-ing the model of adversarial queuing theory [6℄, where thegoal is to keep the buffer size bounded under high paketarrival rate. Many results were reently obtained for thismodel: see, for example, [4, 3℄. It seems that adversarialqueuing theory is losely related to the average number ofdelays, sine they both ount the number of buffer ou-pany slots. Many average-ase results are known underthe assumption that the behavior of the pakets is gov-erned by a probability distribution, whih is a ompletelydifferent model (see, e.g., [7℄ for a modern treatment).Paper Organization. The remainder of this paper isorganized as follows. In Setion 2 we desribe the model,de�ne basi notation, and give preliminary results. InSetion 3 we onsider shortest-paths greedy shedules in

terms of the number of soures. In Setion 4 we de-sribe the delay rae mehanism. In Setion 5 we onsidergreedy shedules for leveled graphs. In Setion 6 we on-sider greedy shedule for arbitrary DAGs. We list a fewopen problems in Setion 7.2 Model, Notation, and Preliminar-iesWe model the ommuniation network as an unweighteddireted graph G = (V;E), where an edge (u; v) rep-resents a unidiretional link from proessor u to v. Weuse dist(u; v) to denote the distane between two nodes inthe graph, de�ned to be the number of edges in a shortestpath from u to v. In the senarios we onsider, there is aset of k pakets P = fp1; : : : ; pkg, and a shedule, whihmaps pakets and time steps to nodes in the graph. Intu-itively, a shedule desribes the loation of any paket atall time steps during exeution of the paket routing task.In eah time step, a paket may progress over a link, un-der the ondition that at most one paket may use eah linkat eah step (i.e., we onsider a synhronous model withunit-apaity links). The sequene of edges traversed by apaket in a given shedule is referred to as its route. The�rst node of a route is alled the soure node, and the lastnode is alled the destination node.For a given a shedule, we de�ne the following onve-nient notation.� v(p; t): loation of paket p at time t.� Rp(t; t0): route traversed by paket p in the time in-terval [t; t0℄.� Rp(v; v0): route traversed by p from node v to nodev0.� Dp(t; t0): number of delays suffered by p in the timeinterval [t; t0℄, i.e.,Dp(t; t0) = t0 � t� jRp(t0 � t)j.� p(e; t): paket rossing edge e at time [t; t + 1) (un-de�ned if no paket rosses e at that time).� ne(p; t): next edge on the route of paket p at time t(unde�ned if p reahed its destination by time t).A shedule is alled greedy if a paket is never delayedunless another paket is traversing its next edge. Formally,if v(p; t) = v(p; t + 1), then there exists another paketp0 with ne(p; t) = ne(p0; t) and v(p0; t+ 1) 6= v(p0; t). Inthis ase we say that p0 delayed p at time t. A shedule issaid to be shortest-paths shedule if the route traversed byeah paket is a shortest path in the underlying graph (forour purposes, given a shedule, we may assume that thegraph onsists only of edges that were atually traversed).The following result is key to the urrent paper.



Theorem 2.1 ([13℄) The number of delays suffered by anypaket in any shortest-paths greedy shedule is at mostk � 1, where k is the total number of pakets.Theorem 2.1 holds regardless of the initial starting timesof the pakets. Consider strit priority sheduling: un-der this poliy, eah paket is assigned a priority, andthe shedule is suh that a paket never waits for anotherpaket with lower priority. For this greedy poliy, we havethe following simple orollary.Corollary 2.2 The average number of delays in anyshortest-paths strit priority shedule is at most k�12 ,where k is the total number of pakets.Proof: Fix a shedule, and let pi be the i-th highest pri-ority paket. Consider the shedule obtained by remov-ing all pakets of priority lower than pi: there will beno hange at all in the way pakets of priority i andhigher progress, and in addition, this is still a shortest-paths greedy shedule. By Theorem 2.1, pi suffers at mosti�1 delays in the new shedule, and hene i�1 delays inthe original shedule as well. Sine this observation holdsfor any i, we onlude that the average number of delaysin the given shedule is at most1k kXi=1(i� 1) = �k2�k = k � 12 :3 Average Delay and the Number ofSouresIn this setion we relate the average number of delays tothe number of soures (i.e., nodes from whih paketsstart their routes) in the network. It is shown that the fewersoures there are in the network, a better upper bound ex-ists on the maximal average delay. The bound is provenunder the assumption that all pakets start moving at thesame time. We also prove a lower bound, demonstratingthat the upper bound is essentially tight.3.1 An Upper BoundWe prove the following theorem.Theorem 3.1 Suppose that k pakets with shortest-pathroutes start their routes at the same time from s distintnodes. Then the average number of delays suffered by apaket is at most k � k2s � 12 :

The proof of the theorem relies on the bound for the worst-ase (Theorem 2.1), extended by a simple ounting argu-ment. Our �rst step in the proof is to apply a few simpli�-ations. We use the following lemma.Lemma 3.2 Let a shortest-paths greedy shedule S fora graph G be given. Then there exists another shortest-paths greedy shedule S0 for a graphG0 whose total num-ber of delays is at least as in S, suh that for any twopakets p; p0 with the same soure in S, in S0 p; p0 havethe same soure and also share the same last edge on theirroutes.The following lemma is used in the proof of lemma 3.2.Lemma 3.3 Let a shortest-paths greedy shedule S begiven, and suppose that in S the pakets p; p0 have thesame soure node. Then there exists another shortest-paths greedy shedule S0 with the same number of totaldelays suh that in S0, all pakets have the same soureand destination nodes as in S, exept that p and p0 havethe same destination node.Proof: We onstrut the shedule S0 and its underlyinggraph as follows. Let d; d0 be the lengths of the routestraversed by p; p0 in S, respetively.If p and p0 have the same destination in S, then we aredone. Otherwise, suppose �rst that d 6= d0, and assumew.l.o.g. that d > d0. We introdue a direted path of lengthd� d0 outgoing from the old destination of p0, and set thenew destination of p to be the end of that path. Thus, weheneforth assume that d = d0.Finally, we onsider the ase that p; p0 have distint des-tinations, but d = d0. In this ase we introdue a new nodev, and direted edges from the destinations of p; p0 to v. Toomplete the onstrution, we set v to be the destinationsof p; p0. Clearly, in the new shedule the total number ofdelays, all the soures, and all the destinations with thepossible exeptions of the destinations of p; p0 remain un-hanged. It remains to show that the resulting sheduleis a shortest-paths greedy shedule. The greedy nature ofthe shedule is obvious from the fat that all pakets retaintheir old shedule in the old portion of the graph, and pand p0 are not delayed in the new potion of the graph. Forthe shortest-paths property, �rst notie that the new edgeslead only to new nodes, so that no new routes to destina-tions of pakets other than p; p0 are introdued. Finally,note that any path to a new destination an be omposedto a path to the old destination, followed by a path to thenew destination. Sine the new part is unique, and sinethe path taken to the old destination was shortest, the newroute is also shortest.We now prove Lemma 3.2.



Proof of Lemma 3.2: First, note that by indutive ap-pliation of Lemma 3.3, there exists a shedule S00 suhthat for any two pakets with the same soure in S thereis a ommon destination in S00. Seondly, note that anyroute an be extended by a single edge outgoing from itsdestination without dereasing the number of total delaysin the shedule. The resulting shedule is shortest-pathsand greedy for reasoning similar to the one in Lemma 3.3.We also use the following tehnial lemma, whih is avariant of the Cauhy-Shwarz inequality.Lemma 3.4 Let A be any real number, and onsider asequene of positive real numbersX = (x1; : : : ; xn) witha given sum K = Pni=1 xi. Then the sumPni=1 xi(A �xi) is maximized when xi = K=n for all 1 � i � n.To prove Lemma 3.4, we need the following result.Lemma 3.5 Let x; y and A be any real numbers. Theny(A� y) +x(A�x) � (y+ x)(A� y+x2 ), with equalityiff x = y.Proof: The inequalities in the following series are equiv-alent. (x � y)2 � 0y2 + x2 � 2xy�y2 � x2 � �(x+ y)22y(A� y) + x(A� x) � (y + x)�A� y + x2 � ;with equality if and only if x = y.Proof of Lemma 3.4: First, note that sine f(X) def=Pni=1 xi(A�xi) is onave, and hene it obtains a uniquemaximum within any losed domain. Let X0 be the se-quene of n positive numbers with sum K whih maxi-mizes f(X), and suppose, for ontradition, that for twoelements x; y in X0 we have that x 6= y. Consider the se-quene X1 obtained from X0 by replaing x; y with twoinstanes of x+y2 . Then we have by Lemma 3.5 thatf(X1)� f(X0) = (y + x)�A� y + x2 �� (y(A� y) + x(A� x))> 0 ;ontraditing the maximality assumption forX0.We an now prove Theorem 3.1.Proof of Theorem 3.1: We bound the sum of delaysof pakets by summing separately for eah set of pakets

with a ommon soure. Let v be any node, and let P (v) bethe set of pakets that v is their soure node. By Lemma3.2, we an assume w.l.o.g. that all pakets in P (v) gothrough the same last edge. From Theorem 2.1 we havethat any paket, and in partiular the last paket to reahits destination, annot have been delayed more than k� 1time units. Sine all pakets in P (v) start at the sametime, and sine all these paket traverse the same numberof edges (beause their routes are shortest and have thesame soure and destination), it follows that the seond-to-last paket of P (v) to reah its destination was delayedat most k � 2 time units, the one before it at most k � 3time units et. It follows that if T (v) is the total numberof delays suffered by pakets in P (v), thenT (v) � (k � 1) + (k � 2) + � � �+ (k � jP (v)j)= jP (v)j(2k � 1� jP (v)j)2 :Therefore, we have that the total number of delays isXv2V T (v) � Xv2V jP (v)j(2k � 1� jP (v))j2� s � ks (2k � 1� ks )2 by Lemma 3.4= k�k � k2s � 12� :It follows that the average number of delays is at mostk � k2s � 12 , as required.3.2 A Lower BoundWe onlude this setion with a lower bound on the av-erage number of delays whih nearly mathes the upperbound proved in Theorem 3.1.Theorem 3.6 For any s � 2 there are in�nitely manyk � s suh that there exists a shortest-paths greedy shed-ule with s soure nodes and k pakets, and suh that theaverage delay suffered by a paket isk � 3k2s ��(s) :Proof: Consider a direted ring with s nodes, where eahnode is the soure for z � 1 pakets, whose destinationis s � 1 edges away (i.e., if the ring is oriented ounter-lokwise, then the destination of eah paket is one edgeaway from its soure, lokwise). Note that the total num-ber of pakets is k = sz. Consider the greedy shedul-ing poliy �furthest to go,� where pakets have priorityif they are further from their destinations, and ties arebroken arbitrarily. In this ase, in the �rst z steps eah



paket progresses one edge, in the next z time steps eahpaket progresses another edge et. In eah of the steps(s�2)z+1; : : : ; (s�1)z, s pakets arrive at their destina-tion. It follows that the average number of delays sufferedby a paket in the shedule is(z � 1)(s� 2) + z � 12 = k�1� 32s�� s+ 32 :Note that for s = pk, the average number of delaysis more than k(1 � 52s ), very lose to the upper bound ofTheorem 3.1.4 Delay RaesOur main tool in analyzing the number of delays in shed-ules in leveled and ayli graphs is the onept of delayrae. The idea is as follows. Eah time a paket is de-layed, a delay token is reated. Delay tokens are hara-terized by the identity of the paket delayed and the timestep in whih the delay ourred. The paket whose delayreated the token is alled the token generator. Delay to-kens move in the system piggy-baked on pakets, or mayalso not move in some time steps, aording to ertainrules that will be explained shortly. It may be helpful tovisualize pakets as trains, and tokens as passengers thateither progress on a train, or wait for a train in a station.In our proofs, we ount the tokens in the system based ontheir loations; sine eah delay reates a token, bound-ing the number of tokens allows us to bound the total (andhene the average) number of delays in a given shedule.We remark that delay raes resemble the onepts oftime path [13℄, and time sequene [10℄, but there is an im-portant differene: delay raes an be omputed on-line,whih makes them usable in atual protools, while timepaths and time sequenes an be omputed only off-line,and thus they an be useful only for analysis. We do notexplore this diretion further in the urrent paper.The rules guiding delay tokens are as follows.� If a paket p is delayed at time t, then a token Æ =(t; p) is reated. The paket p is alled the generatorof Æ, denoted p(Æ), and the time step t is alled thereation time of Æ, denoted t(Æ).� A token progresses on its next edge (see below) onlywhen a paket is progressing on that edge. If a tokenÆ progresses on edge e at time t, the paket that pro-gresses on e at t is alled the arrier of Æ, denoted(Æ; t).� The next edge to be traversed by a token is the nextedge in the route of its latest arrier. The next edge ofa token Æ at time t is denoted ne(Æ; t). The next edge

of a newly generated token is the next edge of itsgenerator paket, i.e., ne(Æ; t(Æ)) = ne(p(Æ); t(Æ)).If the last arrier of Æ has reahed its destination attime t, then ne(Æ; t0) is unde�ned for all t0 � t, and Ædoes not progress after t.� At eah time step, a paket may be the arrier ofat most one delay token for eah generator, i.e., if(Æ; t) = (Æ0; t) then p(Æ) 6= p(Æ0).� At eah time step, among the (possibly empty) set oftokens with the same generator and next edge (andhene the same loation), only the token with thesmallest reation time progresses.It is onvenient to generalize to delay tokens some of thenotation originally introdued for pakets.� v(Æ; t) is the loation of a delay token Æ at time t.� The route traversed by Æ between a and b is denotedRÆ(a; b), where a and b are either both time points orboth nodes.We de�ne the following onepts.De�nition 4.1 Let Æ be a delay token in a given shed-ule.� The rank of Æ isrank(Æ) def= j fÆ0 j p(Æ0) = p(Æ) and t(Æ0) � t(Æ)g j :� The number of delays suffered by Æ by time t isDÆ(t) def= t� t(Æ)� jRÆ([t(Æ); t℄)j :Note that the paths traversed by delay tokens are notneessarily shortest paths. The following de�nition quan-ti�es by how muh does a token path deviate from theshortest path.De�nition 4.2 The length of the bypass done by a delaytoken Æ by time t isBÆ(t) def= jRÆ([t0; t℄)j � dist(v0; v) ;where t0 = t(Æ) is the reation time of Æ, v0 = v(Æ; t0)is the loation of the reation of Æ, and v = v(Æ; t) is theloation of Æ at time t.We now state a few simple properties we use later. Thefollowing lemma relates the number of delays and the by-pass length of a delay token.Lemma 4.1 Let Æ be a delay token with reation time t0.ThenBÆ(t) = t�t(Æ)�DÆ(t0; t)�dist(v(Æ; t0); v(Æ; t)) :Proof: Follows from the fat that jRÆ(t0; t)j = t� t(Æ)�DÆ(t0; t).The lemma below says that the bypass length is a mono-tonially inreasing funtion of time.



Lemma 4.2 For all delay tokens Æ and all times t; t0, wehave that if t � t0 then BÆ(t) � BÆ(t0).Proof: Let t0 = t(Æ), and denote v0 = v(Æ; t0); v =v(Æ; t) and v0 = v(Æ; t0). Let R = RÆ(t0; t) and R0 =RÆ(t; t0). Then we haveBÆ(t0) = jRÆ(t0; t0)j � dist(v0; v0)� jRj+ jR0j � (dist(v0; v) + dist(v; v0))= BÆ(t) + (jR0j � dist(v; v0))� BÆ(t) :The following lemma expresses intermediate route lengthsin terms of distanes and bypass lengths.Lemma 4.3 Let Æ be a any delay token, and denotet(Æ) = t0 and v(Æ; t0) = v0. For any times t � t0 � t0with v(Æ; t) = v and v(Æ; t0) = v0, we have jRÆ(t0; t)j =dist(v0; v) +BÆ(t)� dist(v0; v0)�BÆ(t0) :Proof: Follows from the fat that jRÆ(t0; t)j =jRÆ(t0; t)j � jRÆ(t0; t0)j, and Def. 4.2.5 Leveled GraphsIn this setion we onsider the ase where the set of routesindues a leveled graph, i.e., the nodes an be partitionedinto sets alled levels, and numbered 0; 1; 2; : : : suh thata paket always progresses from a node in level i to a nodein level i + 1 for some i. We prove that in this ase, theaverage number of delays is at most k�12 , just like the sim-plest ase, where the routes of all pakets is the same sin-gle edge.The main idea in the proof in this setion is that in a de-lay rae on a leveled graph, tokens are never delayed. Tofailitate the proof, we �rst make the following simpli�a-tion: we assume that all pakets arrive at their respetivedestinations at the same time t�. This assumption is justi-�ed by the following transformation: when a paket p ar-rives at its destination node v and there is another paketin the shedule not yet in its destination, we add a newnode u with an edge (v; u), and make u the new destina-tion of p. We apply this transformation indutively, result-ing in a larger graph, but preserving the leveled nature ofthe graph, the greedy nature of the shedule, and the totalnumber of delays.We start with the following lemma for greedy shedulesover leveled graphs. Let `x(t) be the level number of x attime t, where x is either a paket or a delay token.Lemma 5.1 At any time t � t�, for any paket p, thereis at most one delay token generated by p at eah levelgreater than `p(t). Moreover, eah token has a arrier.

We an now prove the main theorem of this setion.Theorem 5.2 The average number of delays suffered bya paket in a leveled graph is at most k�12 .Proof: To prove the result, onsider the system at time t�.DenoteN(p) def= j fl > `p(t�)) j l = `q(t�) for some paket qg j :In words,N(p) is the number of �populated� levels aheadof p at time t�. By Lemma 5.1 we have that the totalnumber of delay tokens, and hene the total number ofdelays suffered by a paket p is at most N(p), sine eahtoken must have a arrier, and there an be at most onetoken in eah level. It follows that the total number ofdelays over all pakets is at mostXp2P N(p) � 0 + 1 + 2 � � �+ k � 1 = �k2� :6 Direted Ayli GraphsIn this setion we onsider the ase where the routes tra-versed by the pakets indue a direted ayli graph(DAG) on the network. We �rst prove, using the de-lay rae methodology, that the number of delays sufferedby an average paket when traversing a DAG, under anygreedy shedule, is never more than k2 + O(1). The ad-ditive term depends only on the topology of the routes,and not on the number of pakets using them. As a on-sequene, the result does not depend on the paths beingshortest: aylity suf�es. This result is partiularlyinteresting in the ontext of dynami routing problems,where pakets are ontinuously generated and delivered,but the graph remains �xed. We then prove a lower boundon the average delay in a DAG, whih nearly mathes theupper bound; the lower bound applies even for shortest-paths routes.6.1 An Upper BoundWe prove the following theorem.Theorem 6.1 For any greedy shedule for k paketswhose route set is ayli (but not neessarily shortestpaths), the average number of delays per paket is at mostk2+ jV j(jLj+1)+ jEj, where L is the length of the longestpath in the network.To prove the theorem we use a delay rae, and splitthe delay tokens generated by eah paket into two sets.One set of tokens will be ounted similarly to the aseof leveled graphs (Theorem 5.2), and the remainder will



be harged against elements of the graph topology. Theseond part is essential beause unlike the simple ase ofleveled graphs, in general DAGs it is possible for a delaytoken to be delayed.
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G� G�GCSFigure 1: Senario onsidered in the proof of Theorem6.1. All progress is from left to right.We �rst relate delayed delay tokens to the graph topol-ogy. Our main fous for this ase is the following senario(see Figure 1). A paket p, originating from node v0, suf-fers is r1-st delay at time t1 in node v1, reating a delaytoken Æ1. It then suffers its r2-nd delay at time t2 > t1 innode v2, reating a delay token Æ2. The delay tokens latermeet at time t3 in node v3.We use the following additional notation.Notation 6.1�Æ2(Æ1; t3) def= rank(Æ2)�rank(Æ1)+BÆ2(t3)+DÆ2(t3) :Intuitively, �Æ2(Æ1; t3) measures �wasted steps:� �rst,of p between v1 and v2 (sine by de�nition, the differeneof the ranks is exatly the number delays in the interval);and then, of Æ2 between v2 and v3.We �rst prove the following lemma.Lemma 6.2 Let Æ1; Æ2 be with the same generator p andreation times t1 < t2 respetively. Suppose that Æ1 andÆ2 meet at time t3 at node v3. ThenjRÆ1(t1; t3)j � �Æ2(Æ1; t3) + dist(v1; v3)�DÆ1(t3) :Proof:jRÆ1(t1; t3)j = t3 � t1 �DÆ1(t3)= jRp(t1; t2)j+ r2 � r1 + jRÆ2(t2; t3)j+DÆ2(t3)�DÆ1(t3)= r2 � r1 +BÆ2(t3) +DÆ2(t3)�DÆ1(t3)+ jRp(t1; t2)j+ dist(v2; v3)� �Æ2(Æ1; t3)�DÆ1(t3) + dist(v1; v3) :Another property we prove is the following.

Lemma 6.3 Let Æ1; Æ2 be with the same generator p andreation times t1 < t2 respetively. Suppose that Æ1 andÆ2 meet at time t3 at node v3. Then BÆ1(t3) +DÆ1(t3) ��Æ2(Æ1; t3):Proof: By Lemma 4.1, we have thatt3 � t1 = BÆ1(t3) +DÆ1(t3) + dist(v1; v3) : (1)On the other hand, onsider the path indued by the routeof p from time t1 to time t2, followed by the route of Æ2from time t2 to time t3. For this path, we have thatt3 � t1 = r2 � r1 +BÆ2(t3) +DÆ2(t3) (2)+ jRp(v1; v2)j+ dist(v2; v3) :Equating the r.h.s. of Eq. (1) and the r.h.s. of Eq. (2), wegetBÆ1(t3) + DÆ1(t3)= r2 � r1 +BÆ2(t3) +DÆ2(t3) +jRp(v1; v2)j+ dist(v2; v3)� dist(v1; v3)� r2 � r1 +BÆ2(t3) +DÆ2(t3)= �Æ2(Æ1; t3) ;where the last inequality follows from the fat thatjRp(v1; v2)j+ dist(v2; v3) � dist(v1; v3).The following lemma provides the key argument in theproof of Theorem 6.1.Lemma 6.4 Let Æ1; Æ2 be with the same generator p andreation times t1 < t2 respetively. Suppose that Æ1 andÆ2 meet at time t3 at node v3 as in Figure 1. Then thereexists a path of length at least rank(Æ2)� rank(Æ1).Proof: We prove the lemma by proving the followingstronger laim: There exists a path from v0 to v3 of lengthlength at least �Æ2(Æ1; t3) + dist(v0; v3).This laim is proved by indution on the rank of Æ1:Assume �rst that rank(Æ1) = 1. In this ase Æ1 is neverdelayed in the time interval [t1; t3℄, and the laim followsfrom Lemma 6.2.For the indutive step, assume that the laim holds forr1 = l; we prove the laim for r1 = l + 1. If DÆ1(t3) =0, then we are done by Lemma 6.2. Otherwise, Æ1 wasdelayed in the time interval [t1; t3℄. Let Æ0 be the delaytoken whih is the last to delay Æ1 before t3. Let us denoteby t0 the time in whih Æ1 is delayed by Æ0, and let v0 =v(Æ1; t0) = v(Æ0; t0). With this notation, we have that bythe hoie of Æ0,DÆ1(t0) = DÆ1(t3)� 1 : (3)Also, sine Æ0 delays Æ1, we have thatrank(Æ0) � r1 � 1 : (4)



Combining Eq. (3) and Eq. (4), we getrank(Æ1)� rank(Æ0) +DÆ1(t0) � DÆ1(t3) : (5)We use this fat later.Now, the indution hypothesis, applied to Æ0 and Æ1, im-plies that there exists a path R from v0 to v0 of lengthat least �Æ1(Æ0; t0) + dist(v0; v0). Consider now the pathR �RÆ1(v0; v3) obtained from onatenatingR to the pathtraversed by Æ1 from v0 to v3. By Lemma 4.3, we havethat jRÆ1(v0; v3)j = dist(v0; v3)�dist(v0; v0)+BÆ1 (t3)�BÆ1(t0). Hene we getjR �RÆ1(v0; v3)j � �Æ1(Æ0; t0) + dist(v0; v0)+ dist(v0; v3)� dist(v0; v0)+BÆ1(t3)�BÆ1(t0)= rank(Æ1)� rank(Æ0) +DÆ1(t0)+ dist(v0; v3) +BÆ1(t3)� BÆ1(t3) +DÆ1(t3) + dist(v0; v3)� �Æ2(Æ1; t3) + dist(v0; v3) :The seond to last inequality follows from Eq. (5), and thelast inequality follows from Lemma 6.3.We an now prove the upper bound for DAGs.Proof of Theorem 6.1: We bound the total number ofdelay tokens in the shedule by bounding the total numberof delay tokens generated by eah paket. Let p be anypaket, and suppose that it reahed its destination at timet. Clearly, no more tokens will be generated by p aftertime t. We partition the tokens generated by p into twosets. Tokens of the �rst kind are the tokens generated byp that stopped progressing by time t, i.e., their last arrierhas reahed its own destination by that time. Tokens ofthe seond kind are all the rest, i.e., tokens whih haven'treahed the destination of their last arrier. We denote byF(p) the set of tokens of the �rst kind generated by p.By the de�nition of delay rae, when a paket reahes itsdestination, it may be the arrier of at most one token foreah possible generator. Hene, if paket p is the i-th toreah its destination, then jF(p)j � i � 1 + jEj, sine attime t at most jEj pakets an reah their destinations. Itfollows that Xp2P jF(p)j � �k2�+ kjEj ; (6)and hene the ontribution of tokens of the �rst kind to theaverage delay is k2 + jEj.To deal with tokens of the seond kind, we use Lemma6.4 as follows. We ount the number of tokens in eahnode separately. Consider any node v. Let the set oftokens generated by p stored at v at time t be denoted

by Gp(v). We show that jGp(v)j � L + 1, where L isthe length of the longest path in the DAG indued by theroute set. If jGp(v)j < 2, we are done. Otherwise, letÆ1; Æ2 be the tokens with the smallest and largest rank inGp(v), respetively. By the de�nition of rank, it followsthat jGp(v)j � rank(Æ2) � rank(Æ1) + 1. On the otherhand, by Lemma 6.4, we have that there exists a path inthe graph of length at least rank(Æ2) � rank(Æ1). Sineany path in the graph has length at most L, it follows thatjGp(v)j � L+1. To onlude the proof, note that the totalnumber of delays ontributed by tokens of the seond kindfor eah paket is therefore at most jV j(L+ 1).6.2 A Lower boundWe now prove that the average number of delays in a DAGis quite lose to the upper bound proved in Theorem 6.1,even if the paths traversed are shortest.Theorem 6.5 There exists shortest-paths greedy shed-ules for k pakets with ayli route set suh that the av-erage number of delays per paket is at k2 +
(jEj).
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Figure 2: DAGs used in the proof of Theorem 6.5. Top:basi graph. Bottom: asaded graph. Paket 1 goes overthe dotted arrows, paket 2; : : : ; k � 1 go over the bold-faed arrows, and paket k; : : : ; k + N � 1 go over thedouble arrows (see text for details).Proof:We onstrut a graph onsisting of many opies ofa small graph. Consider �rst the graph depited in on theleft side of Figure 2.� Pakets 2; : : : ; k� 1 share the same horizontal route:v1;1 ! v1;2 ! v1;3 ! v1;4 ! v1;5 ! v1;6 ! v1;7.



� Paket 1 uses a partly �parallel� route:v1;1 ! v1;2 ! v2;3 ! v2;4 ! v2;5 ! v1;6 ! v1;7.� Paket k uses a �ross� route:v4;3 ! v3;3 ! v2;3 ! v2;4 ! v1;4 ! v1;5 ! v0;5.Clearly, all routes are shortest paths.Next, we de�ne the shedule. All pakets start together.Pakets ross the edge (v1;1; v1;2), ordered by their num-ber (ontributing �k�12 � total delays). Paket k delayspaket 1 on the edge (v2;3; v2;4), and is then delayed byeah paket of 2; : : : ; k � 1 on the edge (v1;4; v1;5) (thuspaket k is involved in k � 1 additional delays). Finally,on the edge (v1;6; v1;7), paket 1 delays paket 2, paket2 then delays paket 3 et. (adding k � 2 delays). It fol-lows that the total number of delays in this shedule is�k�12 �+ 2k � 3.Next, based on the basi graph (depited on the left ofFigure 2) and the shedule desribed above, we de�ne an-other graph and shedule (see Figure 2 right). The newgraph is obtained by asading a series of N opies ofthe original graph, where we identify node v1;7 in opy jwith node v1;1 is opy j + 1, for j = 1; : : : ; N � 1. Wenow de�ne the pakets in the new graph and the shedule.Pakets 1; : : : ; k � 1 are as before: when they reah nodev1;1 in any opy, their original route is repliated in thisopy. To keep the shedule the same, we add a new �ver-tial� paket for eah opy, i.e., a paket whih traversesthe same route in the loal opy as paket k traverses in theoriginal opy; we �x the start times of the vertial paketsso that they will delay paket 1 on their opy of the edge(v2;3; v2;4). This will guarantee that all delays of the �rstopy, exept for the delays on edge (v1;1; v1;2), are repli-ated on all opies. It is straightforward to see that in thenew shedule,� the size of the new graph is jV j+ jEj = �(N),� the total number of pakets in this setting is K =k +N � 1, and� the total number of delays is �k�12 �+N(2k � 3).Therefore, hoosing N = k=2 (and hene the number ofpakets is K = 3k=2), we get that the average number ofdelays for a paket is�k�12 �+ k2 (2k � 3)3k2 � 1 > 2� (k�1)(k�2)2 + k2 � 3k2 �3k= k + 23k � 2> 2K3 � 2 :Sine K = �(N), we have that the average number ofdelays is K2 +
(jEj).

There is a gap between the upper bound of Theorem 6.1and the lower bound of Theorem 6.5. We onjeture thatthe upper bound an be improved.7 ConlusionIn this work we have showed that the average number ofdelay an get arbitrarily lose to k � 1. On the positiveside, we show that very simple means suf�e to keep theaverage number of delays muh lower, e.g., strit-prioritysheduling, or ayli routes. Shortest paths do not ensurelow average delay, however. It seems interesting to ap-ture the relation between average number of delays andsize of the queues. It may also be interesting to investi-gate ways to exploit delay tokens by routing protools.
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