Average-Case Analysis of Greedy Packet Scheduling
EXTENDED ABSTRACT

Zvi Lotker

zvilo@eng.tau.ac.il

Boaz Patt-Shamir

boaz@eng.tau.ac.il

Dept. of Electrical Engineering
Tel-Aviv University
Tel-Aviv 69978

Israel

Abstract

We study the average number of delays suffered by pack-
ets routed using greedy (work conserving) scheduling
policies. We obtain tight bounds on the worst-case av-
erage number of delays in a few cases as follows. First,
we show that the average number of delays is a function
of the number of sources of packets, which is interesting
in case a node may send many packets. Then, using a
new concept we call delay race, we prove a tight bound
on the average number of delays in a leveled graph. Fi-
nally, using delay races in a more involved way, we prove
nearly-tight bounds on the average number of delays in di-
rected acyclic graphs (DAGs). The upper bound for DAGs
is expressed in terms of the underlying topology, and as a
result it holds for any acyclic set of routes, even if they
are not shortest paths. The lower bound for DAGs, on the
other hand, holds even for shortest paths routes.

1 Introduction

Packet routing schemes can be generally classified as fol-
lows. In one model, motivated by parallel machines, the
chief objective is to minimize the time to route a given set
of packets, in the sense of minimizing the arrival time of
the last packet. Many variants of this model exist: see,
e.g., [9, 14]. Another avenue of research is motivated by
packet-switching data networks, where the main goals are
to minimize buffer space, maximize throughput, minimize
the number of packets dropped, etc. The former model is

called “static routing,” or “one-shot routing,” and the latter
is called “dynamic routing,” or “ongoing routing.” Stan-
dard networking texts provide many results for this model:
see, e.g., [5, 8].

In this work we take a third approach: our main mo-
tivation is to better understand the average-case behavior
of a packet from a given set. More specifically, we are
interested in the average number of delays a packet suf-
fers while being routed to its destination, under very mild
assumptions on the way routing is done. The model we
consider is the following. The system is synchronous (i.e.,
there is a global notion of “steps”, such that in each time
step, a single packet may cross each link. At the ingress
of each link, there is a buffer, where packets are stored
until submitted to the link by a link scheduler. We con-
sider the broad class of greedy (a.k.a. work conserving)
link scheduling policies, i.e., policies that always forward
a packet over a link if its buffer is not empty.

Our starting point is the work of Mansour and Patt-
Shamir [13], where it is proved for the static case that
if the paths traversed are shortest paths, then for any
scheduling policy, no packet suffers more than & — 1 de-
lays, where k is the total number of packets to be routed.
Note that k£ — 1 is the best bound in general: if all k& pack-
ets are simultaneously waiting to the same link, then the
last packet to cross the link is delayed & — 1 times. Triv-
ially, the £ — 1 bound on the maximal number of delays
implies that the average number of delays is also bounded
by k — 1. However, it is not clear whether this bound is
tight: in the simple one-link scenario mentioned above,
the average number of delays is (k — 1)/2.

Our Results. Somewhat surprisingly, it turns out that
(k — 1)/2 is not the worst-case: the average number of
delays can approach k — 1 arbitrarily closely. In this work,
our goal is to relate the average number of delays to the
topology of the route set. We present tight bounds in a
few cases of interest as follows.

e First, we show that if we assume only that pack-

ets traverse shortest paths and that the schedule is

greedy, then the average number of delays is k(1 —
1/2s) — O(s), where s is the number of sources (i.e.,
start nodes of packet routes) in the system.

o For the case where the set of routes induces a leveled
graph, we show that the average number of delays is
never more than (k — 1) /2. This bound is tight by the
one-link example.

e Our most involved result is for the case where the set
of routes induces a directed acyclic graph (DAG). In
this case we show that even if the routes traversed
are not shortest paths, the average number of delays
per packet under any greedy schedule is bounded by
(k —1)/2 + O(1), where the additive constant de-
pends only on the graph topology, regardless of k.
This result is particularly interesting in the dynamic
model, where k£ may be much larger than the size
of the graph. Finally, we provide a lower bound
that demonstrates that the upper bound is essentially
tight, even if the routes are shortest paths.

To analyze leveled and acyclic graphs, we develop a
formal mechanism called delay race, which may be of in-
dependent interest in its own right. In a delay race, each
delay creates a token which traverses the network piggy-
backed on packets; to bound the average number of de-
lays, we bound the total number of tokens based on their
final locations.

Related Work. The work most closely related to this
paper is by Patt-Shamir and Mansour [13] mentioned
above. A fundamental result for one-shot routing was
given by Leighton, Maggs and Rao [10, 11], where they
show that the last packet can arrive at its destination in
O(d + c) time units, where d is the length of the longest
route, and c is the maximal number of routes that use the
same edge. Greedy schedules were also considered for
packet routing with deadlines by Lui and Zaks [12], and
in the context of on-line scheduling by Adler et al. [2, 1].
From the dynamic routing viewpoint, it is worth mention-
ing the model of adversarial queuing theory [6], where the
goal is to keep the buffer size bounded under high packet
arrival rate. Many results were recently obtained for this
model: see, for example, [4, 3]. It seems that adversarial
queuing theory is closely related to the average number of
delays, since they both count the number of buffer occu-
pancy slots. Many average-case results are known under
the assumption that the behavior of the packets is gov-
erned by a probability distribution, which is a completely
different model (see, e.g., [7] for a modern treatment).

Paper Organization. The remainder of this paper is
organized as follows. In Section 2 we describe the model,
define basic notation, and give preliminary results. In
Section 3 we consider shortest-paths greedy schedules in

terms of the number of sources. In Section 4 we de-
scribe the delay race mechanism. In Section 5 we consider
greedy schedules for leveled graphs. In Section 6 we con-
sider greedy schedule for arbitrary DAGs. We list a few
open problems in Section 7.

2 Model, Notation, and Preliminar-
ies

We model the communication network as an unweighted
directed graph G = (V, E), where an edge (u,v) rep-
resents a unidirectional link from processor u to v. We
use dist(u, v) to denote the distance between two nodes in
the graph, defined to be the number of edges in a shortest
path from u to v. In the scenarios we consider, there is a
set of k packets P = {p1,...,px}, and a schedule, which
maps packets and time steps to nodes in the graph. Intu-
itively, a schedule describes the location of any packet at
all time steps during execution of the packet routing task.
In each time step, a packet may progress over a link, un-
der the condition that at most one packet may use each link
at each step (i.e., we consider a synchronous model with
unit-capacity links). The sequence of edges traversed by a
packet in a given schedule is referred to as its route. The
first node of a route is called the source node, and the last
node is called the destination node.

For a given a schedule, we define the following conve-
nient notation.

e v(p,t): location of packet p at time ¢.

e R,(t,t"): route traversed by packet p in the time in-
terval [t, ¢'].

e R,(v,v'): route traversed by p from node v to node

v'.

e D,(t,t'): number of delays suffered by p in the time
interval [¢,¢'], 1.e., Dp(¢,t') = ¢ —t — |Rp(t' — t)|.

e p(e,t): packet crossing edge e at time [¢t, ¢ + 1) (un-
defined if no packet crosses e at that time).

e ne(p,t): next edge on the route of packet p at time ¢
(undefined if p reached its destination by time ¢).

A schedule is called greedy if a packet is never delayed
unless another packet is traversing its next edge. Formally,
if v(p,t) = v(p,t + 1), then there exists another packet
p' with ne(p,t) = ne(p’,t) and v(p',t + 1) # v(p',t). In
this case we say that p’ delayed p at time . A schedule is
said to be shortest-paths schedule if the route traversed by
each packet is a shortest path in the underlying graph (for
our purposes, given a schedule, we may assume that the
graph consists only of edges that were actually traversed).

The following result is key to the current paper.

Theorem 2.1 ([13]) The number of delays suffered by any
packet in any shortest-paths greedy schedule is at most
k — 1, where k is the total number of packets.

Theorem 2.1 holds regardless of the initial starting times
of the packets. Consider strict priority scheduling: un-
der this policy, each packet is assigned a priority, and
the schedule is such that a packet never waits for another
packet with lower priority. For this greedy policy, we have
the following simple corollary.

Corollary 2.2 The average number of delays in any
shortest-paths strict priority schedule is at most =1,

2
where k is the total number of packets.

Proof: Fix a schedule, and let p; be the i-th highest pri-
ority packet. Consider the schedule obtained by remov-
ing all packets of priority lower than p;: there will be
no change at all in the way packets of priority ¢ and
higher progress, and in addition, this is still a shortest-
paths greedy schedule. By Theorem 2.1, p; suffers at most
i — 1 delays in the new schedule, and hence i — 1 delays in
the original schedule as well. Since this observation holds
for any ¢, we conclude that the average number of delays
in the given schedule is at most

k k
Z. (5 k-1

El

3 Average Delay and the Number of
Sources

In this section we relate the average number of delays to
the number of sources (i.e., nodes from which packets
start their routes) in the network. It is shown that the fewer
sources there are in the network, a better upper bound ex-
ists on the maximal average delay. The bound is proven
under the assumption that all packets start moving at the
same time. We also prove a lower bound, demonstrating
that the upper bound is essentially tight.

3.1 An Upper Bound

We prove the following theorem.

Theorem 3.1 Suppose that k packets with shortest-path
routes start their routes at the same time from s distinct
nodes. Then the average number of delays suffered by a
packet is at most

k —

&)=
DN | =

The proof of the theorem relies on the bound for the worst-
case (Theorem 2.1), extended by a simple counting argu-
ment. Our first step in the proof is to apply a few simplifi-
cations. We use the following lemma.

Lemma 3.2 Let a shortest-paths greedy schedule S for
a graph G be given. Then there exists another shortest-
paths greedy schedule S' for a graph G' whose total num-
ber of delays is at least as in S, such that for any two
packets p,p' with the same source in S, in S' p,p’ have
the same source and also share the same last edge on their
routes.

The following lemma is used in the proof of lemma 3.2.

Lemma 3.3 Let a shortest-paths greedy schedule S be
given, and suppose that in S the packets p,p' have the
same source node. Then there exists another shortest-
paths greedy schedule S' with the same number of total
delays such that in S', all packets have the same source
and destination nodes as in S, except that p and p' have
the same destination node.

Proof: We construct the schedule S’ and its underlying
graph as follows. Let d,d’ be the lengths of the routes
traversed by p, p’ in S, respectively.

If p and p' have the same destination in S, then we are
done. Otherwise, suppose first that d # d’, and assume
w.Lo.g. thatd > d’. We introduce a directed path of length
d — d' outgoing from the old destination of p’, and set the
new destination of p to be the end of that path. Thus, we
henceforth assume thatd = d'.

Finally, we consider the case that p, p’ have distinct des-
tinations, but d = d'. In this case we introduce a new node
v, and directed edges from the destinations of p, p’ to v. To
complete the construction, we set v to be the destinations
of p,p'. Clearly, in the new schedule the total number of
delays, all the sources, and all the destinations with the
possible exceptions of the destinations of p, p' remain un-
changed. It remains to show that the resulting schedule
is a shortest-paths greedy schedule. The greedy nature of
the schedule is obvious from the fact that all packets retain
their old schedule in the old portion of the graph, and p
and p' are not delayed in the new potion of the graph. For
the shortest-paths property, first notice that the new edges
lead only to new nodes, so that no new routes to destina-
tions of packets other than p, p' are introduced. Finally,
note that any path to a new destination can be composed
to a path to the old destination, followed by a path to the
new destination. Since the new part is unique, and since
the path taken to the old destination was shortest, the new
route is also shortest. ||

We now prove Lemma 3.2.

Proof of Lemma 3.2: First, note that by inductive ap-
plication of Lemma 3.3, there exists a schedule S such
that for any two packets with the same source in S there
is a common destination in S”. Secondly, note that any
route can be extended by a single edge outgoing from its
destination without decreasing the number of total delays
in the schedule. The resulting schedule is shortest-paths
and greedy for reasoning similar to the one in Lemma 3.3.

We also use the following technical lemma, which is a
variant of the Cauchy-Schwarz inequality.

Lemma 3.4 Let A be any real number, and consider a
sequence of positive real numbers X = (z1,...,zy) with
a given sum K = Y x;. Then the sum ;. x;(A —
x;) is maximized when x; = K/n forall1 < i < n.

To prove Lemma 3.4, we need the following result.

Lemma 3.5 Let x,y and A be any real numbers. Then
y(A—y)+z(A—2) < (y+z)(A— L), with equality
iffz=y.

Proof: The inequalities in the following series are equiv-
alent.

(z—y)?® > 0
v +2? > 2ay
_ 2
2o < (z+y)
2
V=D +ala-a) < o) (4-250)

with equality if and only if 2 = 3. |

Proof of Lemma 3.4: First, note that since f(X) def
i, x;(A—uz;) is concave, and hence it obtains a unique
maximum within any closed domain. Let X, be the se-
quence of n positive numbers with sum K which maxi-
mizes f(X), and suppose, for contradiction, that for two
elements z,y in Xy we have that z # y. Consider the se-
quence X; obtained from X by replacing x,y with two
instances of % Then we have by Lemma 3.5 that

f(X1)—f(Xo) = (y+=) <A_y-;-a:>

- (WA —-y) +a(d-1)
> 0,

contradicting the maximality assumption for Xo. [

We can now prove Theorem 3.1.
Proof of Theorem 3.1: We bound the sum of delays
of packets by summing separately for each set of packets

with a common source. Let v be any node, and let P(v) be
the set of packets that v is their source node. By Lemma
3.2, we can assume w.l.o.g. that all packets in P(v) go
through the same last edge. From Theorem 2.1 we have
that any packet, and in particular the last packet to reach
its destination, cannot have been delayed more than k — 1
time units. Since all packets in P(v) start at the same
time, and since all these packet traverse the same number
of edges (because their routes are shortest and have the
same source and destination), it follows that the second-
to-last packet of P(v) to reach its destination was delayed
at most k — 2 time units, the one before it at most k — 3
time units etc. It follows that if T'(v) is the total number
of delays suffered by packets in P(v), then

T(v)

IN

k-1D+kEk=2)+ -+ (k—|P(v))
[P(v)|(2k — 1 —|P(v)])
5)

Therefore, we have that the total number of delays is

P()|(2k — 1 - |P())]
T(v) <

Bk —1- &)
< s % by Lemma 3.4

ko1
= k(k—%—§>.

It follows that the average number of delays is at most

k— % — %, as required. I

3.2 A Lower Bound

We conclude this section with a lower bound on the av-
erage number of delays which nearly matches the upper
bound proved in Theorem 3.1.

Theorem 3.6 For any s > 2 there are infinitely many
k > s such that there exists a shortest-paths greedy sched-
ule with s source nodes and k packets, and such that the
average delay suffered by a packet is
3k

k- 5 O(s) .
Proof: Consider a directed ring with s nodes, where each
node is the source for z > 1 packets, whose destination
is s — 1 edges away (i.e., if the ring is oriented counter-
clockwise, then the destination of each packet is one edge
away from its source, clockwise). Note that the total num-
ber of packets is k¥ = sz. Consider the greedy schedul-
ing policy “furthest to go,” where packets have priority
if they are further from their destinations, and ties are
broken arbitrarily. In this case, in the first z steps each

packet progresses one edge, in the next z time steps each
packet progresses another edge etc. In each of the steps
(s—2)z+1,...,(s—1)z, s packets arrive at their destina-
tion. It follows that the average number of delays suffered
by a packet in the schedule is

(2—1)(5_2)+Z§1:k(1—%>—s+; i

Note that for s = vk, the average number of delays
is more than k(1 —), very close to the upper bound of

2s
Theorem 3.1.

4 Delay Races

Our main tool in analyzing the number of delays in sched-
ules in leveled and acyclic graphs is the concept of delay
race. The idea is as follows. Each time a packet is de-
layed, a delay token is created. Delay tokens are charac-
terized by the identity of the packet delayed and the time
step in which the delay occurred. The packet whose delay
created the token is called the foken generator. Delay to-
kens move in the system piggy-backed on packets, or may
also not move in some time steps, according to certain
rules that will be explained shortly. It may be helpful to
visualize packets as trains, and tokens as passengers that
either progress on a train, or wait for a train in a station.
In our proofs, we count the tokens in the system based on
their locations; since each delay creates a token, bound-
ing the number of tokens allows us to bound the total (and
hence the average) number of delays in a given schedule.

We remark that delay races resemble the concepts of

time path [13], and time sequence [10], but there is an im-
portant difference: delay races can be computed on-line,
which makes them usable in actual protocols, while time
paths and time sequences can be computed only off-line,
and thus they can be useful only for analysis. We do not
explore this direction further in the current paper.

The rules guiding delay tokens are as follows.

e If a packet p is delayed at time ¢, then a token § =
(t,p) is created. The packet p is called the generator
of §, denoted p(4), and the time step ¢ is called the
creation time of 8, denoted ¢(9).

e A token progresses on its next edge (see below) only
when a packet is progressing on that edge. If a token
0 progresses on edge e at time ¢, the packet that pro-
gresses on e at ¢ is called the carrier of 8, denoted
c(d,1).

e The next edge to be traversed by a token is the next
edge in the route of its latest carrier. The next edge of
a token ¢ at time ¢ is denoted ne(d, t). The next edge

of a newly generated token is the next edge of its
generator packet, i.e., ne(d,t(8)) = ne(p(d),t(d)).
If the last carrier of § has reached its destination at
time ¢, then ne(d,t') is undefined for all ¢ > ¢, and §
does not progress after ¢.

e At each time step, a packet may be the carrier of
at most one delay token for each generator, i.e., if
e(8,) = o(d",) then p(3) # p(8").

e At each time step, among the (possibly empty) set of
tokens with the same generator and next edge (and
hence the same location), only the token with the
smallest creation time progresses.

It is convenient to generalize to delay tokens some of the
notation originally introduced for packets.

e v(d,t) is the location of a delay token § at time ¢.

e The route traversed by d between a and b is denoted
Rs(a,b), where a and b are either both time points or
both nodes.

We define the following concepts.

Definition 4.1 Letr § be a delay token in a given sched-
ule.
e The rank of § is

rank(6) | {8" | p(0") = p(6) and 1(8") < t(6)}] .

e The number of delays suffered by & by time t is

def
Ds(t) = t —(0) — |Rs([t(8),1])] -

Note that the paths traversed by delay tokens are not
necessarily shortest paths. The following definition quan-
tifies by how much does a token path deviate from the
shortest path.

Definition 4.2 The length of the bypass done by a delay
token § by time t is

Bs(t) < |Rs([to. 1])| — dist(vo, v) ,

where to = t(d) is the creation time of §, vg = v(d, o)
is the location of the creation of 6, and v = v(4,t) is the
location of § at time t.

We now state a few simple properties we use later. The
following lemma relates the number of delays and the by-
pass length of a delay token.

Lemma 4.1 Let 6 be a delay token with creation time tg.
Then Bs(t) = t—t(6) — Ds(to, t) — dist(v(d, to),v(d, 1)) .
Proof: Follows from the fact that | Rs(to,t)| = ¢t — () —
Ds(to,t). 1

The lemma below says that the bypass length is a mono-
tonically increasing function of time.

Lemma 4.2 For all delay tokens § and all times t,t', we
have that if t < t' then Bs(t) < Bs(t').

Proof: Let ¢y = ¢(4), and denote vg = v(d,tp),v =
v(d,t) and v' = v(4,t'). Let R = Rs(to,t) and R’ =
Rs(t,t'). Then we have

Bs(t') = |Rs(to,t")| — dist(vg,v")
|R| + |R'| — (dist(vo,v) + dist(v,v"))
Bs(t) + (IR'| = dist(v, v"))
B(;(t) . I

v

Y%

The following lemma expresses intermediate route lengths
in terms of distances and bypass lengths.

Lemma 4.3 Let 6 be a any delay token, and denote
t(6) = to and v(d,tg) = vo. For any timest > t' > tg
with v(0,t) = v and v(4,t") = o', we have |Rs(t',t)| =
dist(vg,v) + Bs(t) — dist(vg,v') — Bs(t') .

Proof: Follows from the fact that |Rs(¢',t)] =
|Rs(to,t)| — |Rs(to,t")|, and Def. 4.2. |

5 Leveled Graphs

In this section we consider the case where the set of routes
induces a leveled graph, i.e., the nodes can be partitioned
into sets called levels, and numbered 0, 1,2, ... such that
a packet always progresses from a node in level i to a node
in level ¢ + 1 for some 7. We prove that in this case, the
average number of delays is at most % , just like the sim-
plest case, where the routes of all packets is the same sin-
gle edge.

The main idea in the proof in this section is that in a de-
lay race on a leveled graph, tokens are never delayed. To
facilitate the proof, we first make the following simplifica-
tion: we assume that all packets arrive at their respective
destinations at the same time ¢*. This assumption is justi-
fied by the following transformation: when a packet p ar-
rives at its destination node v and there is another packet
in the schedule not yet in its destination, we add a new
node u with an edge (v, u), and make u the new destina-
tion of p. We apply this transformation inductively, result-
ing in a larger graph, but preserving the leveled nature of
the graph, the greedy nature of the schedule, and the total
number of delays.

We start with the following lemma for greedy schedules
over leveled graphs. Let £, (t) be the level number of x at
time ¢, where z is either a packet or a delay token.

Lemma 5.1 At any time t < t*, for any packet p, there
is at most one delay token generated by p at each level
greater than {,(t). Moreover, each token has a carrier.

We can now prove the main theorem of this section.

Theorem 5.2 The average number of delays suffered by
a packet in a leveled graph is at most ’“2;1

Proof: To prove the result, consider the system at time ¢*.
Denote

N(p) def [{l > £,(t")) | I = £,(t*) for some packet g} | .

In words, N (p) is the number of “populated” levels ahead
of p at time ¢*. By Lemma 5.1 we have that the total
number of delay tokens, and hence the total number of
delays suffered by a packet p is at most N (p), since each
token must have a carrier, and there can be at most one
token in each level. It follows that the total number of
delays over all packets is at most

S NP <O0+142--+k-1= (k> |

2
peEP

6 Directed Acyclic Graphs

In this section we consider the case where the routes tra-
versed by the packets induce a directed acyclic graph
(DAG) on the network. We first prove, using the de-
lay race methodology, that the number of delays suffered
by an average packet when traversing a DAG, under any
greedy schedule, is never more than £ + O(1). The ad-
ditive term depends only on the topology of the routes,
and not on the number of packets using them. As a con-
sequence, the result does not depend on the paths being
shortest: acyclcity suffices. This result is particularly
interesting in the context of dynamic routing problems,
where packets are continuously generated and delivered,
but the graph remains fixed. We then prove a lower bound
on the average delay in a DAG, which nearly matches the
upper bound; the lower bound applies even for shortest-
paths routes.

6.1 An Upper Bound

We prove the following theorem.

Theorem 6.1 For any greedy schedule for k packets
whose route set is acyclic (but not necessarily shortest
paths), the average number of delays per packet is at most
E+|\VI(|IL|+1)+ |E|, where L is the length of the longest
path in the network.

To prove the theorem we use a delay race, and split
the delay tokens generated by each packet into two sets.
One set of tokens will be counted similarly to the case
of leveled graphs (Theorem 5.2), and the remainder will

be charged against elements of the graph topology. The
second part is essential because unlike the simple case of
leveled graphs, in general DAGs it is possible for a delay
token to be delayed.

[]
<
<
o

p) - 8, S 3,

Vo Vi 143

Figure 1: Scenario considered in the proof of Theorem
6.1. All progress is from left to right.

We first relate delayed delay tokens to the graph topol-
ogy. Our main focus for this case is the following scenario
(see Figure 1). A packet p, originating from node vg, suf-
fers is rq-st delay at time ¢; in node vy, creating a delay
token d;. It then suffers its ro-nd delay at time ¢t > #; in
node v, creating a delay token d5. The delay tokens later
meet at time ¢3 in node v3.

We use the following additional notation.

Notation 6.1

As, (61, t3) S rank(8s) — rank(8y) + Bs, (t3) + Ds, (£3) -

Intuitively, As, (91, t3) measures “wasted steps:” first,
of p between vy and v, (since by definition, the difference
of the ranks is exactly the number delays in the interval);
and then, of §5 between vy and v3.

We first prove the following lemma.

Lemma 6.2 Let 61,2 be with the same generator p and
creation times t; < to respectively. Suppose that §, and
0o meet at time t3 at node v3. Then

|R51 (tl,t3)| > A52 (51,t3) +diSl(1}1,1}3) — D51 (tg) .

Proof:
|Rs, (t1,t3)] = t3 —t1 — Ds,(t3)
= |Rp(t17t2)‘ +ro—ry+ |R52 (tz,t3)|
+ D52 (t3) - D51 (t3)
= 12 =11+ Bs,(t3) + Ds, (t3) — Ds, (t3)
+ ‘Rp(tl,tg)‘ + diSt(U2,1}3)
> Ay, (01,t3) — Dg, (t3) + dist(vy,v3) .
|

Another property we prove is the following.

Lemma 6.3 Let §;, 0> be with the same generator p and
creation times t; < to respectively. Suppose that §; and
0o meet at time t3 at node vs. Then Bs, (t3) + Ds, (t3) >
As, (61, 13).

Proof: By Lemma 4.1, we have that
t3 — 1 :Bgl(tg) +D51(t3) +diSf(U1,U3) . (1)

On the other hand, consider the path induced by the route
of p from time ¢; to time ¢, followed by the route of &y
from time ¢, to time t3. For this path, we have that

ts =t = 1y —r1 + Bs,(t3) + Ds,(t3) 2
+ |Rp(v1, v2)| + dist(va, v3) .
Equating the r.h.s. of Eq. (1) and the r.h.s. of Eq. (2), we
get
B51 (t3) + D51 (t3)
= 12 =11+ By, (t3) + Dy, (t3) +

|Rp(v1,v2)| + dist(ve, v3) — dist(vy, v3)
ry — 71 + Bs, (t3) + Ds, (t3)
As,(61,t3)

v

where the last inequality follows from the fact that
|Rp(’l}1,’l}2)‘ + diSt(’Ug,’Ug,) > diSl(’l}l,’Ug). I

The following lemma provides the key argument in the
proof of Theorem 6.1.

Lemma 6.4 Let 61,92 be with the same generator p and
creation times t; < to respectively. Suppose that §; and
0o meet at time t3 at node vs as in Figure 1. Then there
exists a path of length at least rank(d2) — rank(d1).

Proof: We prove the lemma by proving the following
stronger claim: There exists a path from v to v3 of length
length at least Ag, (01, t3) + dist(vg, v3).

This claim is proved by induction on the rank of §;.
Assume first that rank(d;) = 1. In this case J; is never
delayed in the time interval [¢1, ¢3], and the claim follows
from Lemma 6.2.

For the inductive step, assume that the claim holds for
ry = I; we prove the claim for ry = | + 1. If Dy, (t3) =
0, then we are done by Lemma 6.2. Otherwise, §; was
delayed in the time interval [¢1,%3]. Let §' be the delay
token which is the last to delay §; before ¢3. Let us denote
by ¢’ the time in which ¢; is delayed by ¢’, and let v' =
v(d1,t") = v(d',¢'). With this notation, we have that by
the choice of ¢,

Ds, (') = Ds, (t3) — 1. (3
Also, since &' delays d;, we have that

rank(8') <7 —1. 4)

Combining Eq. (3) and Eq. (4), we get
rank(81) — rank(8') + Ds, (t') > Ds, (t3) . (5)

We use this fact later.

Now, the induction hypothesis, applied to ¢’ and ¢y, im-
plies that there exists a path R from vy to v’ of length
at least Ay, (8',t") + dist(vg,v'). Consider now the path
R - Ry, (v',v3) obtained from concatenating R to the path
traversed by ¢; from v’ to v3. By Lemma 4.3, we have
that |Rs, (v, v3)| = dist(vg, v3) —dist(vo,v") + Bs, (t3) —
B, (t'). Hence we get

R Rs, (V' v3)] > A, (8',1") + dist(vg,v")
+ dist(vg, v3) — dist(vg, v')
+ B, (t3) — By, (')
rank(8y) — rank(8') + Dy, (t')
+ dist(vo, v3) + Bs, (t3)
By, (t3) + Ds, (t3) + dist(vg, v3)
As, (01, t3) + dist(vg,v3) .

>
>

The second to last inequality follows from Eq. (5), and the
last inequality follows from Lemma 6.3. [I

We can now prove the upper bound for DAGs.

Proof of Theorem 6.1: We bound the total number of
delay tokens in the schedule by bounding the total number
of delay tokens generated by each packet. Let p be any
packet, and suppose that it reached its destination at time
t. Clearly, no more tokens will be generated by p after
time ¢t. We partition the tokens generated by p into two
sets. Tokens of the first kind are the tokens generated by
p that stopped progressing by time ¢, i.e., their last carrier
has reached its own destination by that time. Tokens of
the second kind are all the rest, i.e., tokens which haven’t
reached the destination of their last carrier. We denote by
F(p) the set of tokens of the first kind generated by p.
By the definition of delay race, when a packet reaches its
destination, it may be the carrier of at most one token for
each possible generator. Hence, if packet p is the i-th to
reach its destination, then |F(p)| < i — 1 4 |E|, since at
time ¢ at most | E'| packets can reach their destinations. It
follows that

> 170 < (5) + el ©

peP

and hence the contribution of tokens of the first kind to the
average delay is £ + |E|.

To deal with tokens of the second kind, we use Lemma
6.4 as follows. We count the number of tokens in each
node separately. Consider any node v. Let the set of
tokens generated by p stored at v at time ¢ be denoted

by Gp(v). We show that |G,(v)] < L + 1, where L is
the length of the longest path in the DAG induced by the
route set. If |G,(v)| < 2, we are done. Otherwise, let
01, 02 be the tokens with the smallest and largest rank in
Gp(v), respectively. By the definition of rank, it follows
that |G,(v)| < rank(d2) — rank(d;) + 1. On the other
hand, by Lemma 6.4, we have that there exists a path in
the graph of length at least rank(d2) — rank(d,). Since
any path in the graph has length at most L, it follows that
|Gp(v)] < L+ 1. To conclude the proof, note that the total
number of delays contributed by tokens of the second kind
for each packet is therefore at most |V |(L +1). |

6.2 A Lower bound

We now prove that the average number of delays in a DAG
is quite close to the upper bound proved in Theorem 6.1,
even if the paths traversed are shortest.

Theorem 6.5 There exists shortest-paths greedy sched-
ules for k packets with acyclic route set such that the av-
erage number of delays per packet is at % + Q(|E)).

k k+1 k+N-1
A

Figure 2: DAGs used in the proof of Theorem 6.5. Top:
basic graph. Bottom: cascaded graph. Packet 1 goes over
the dotted arrows, packet 2,...,k — 1 go over the bold-
faced arrows, and packet k,...,k + N — 1 go over the
double arrows (see text for details).

Proof: We construct a graph consisting of many copies of
a small graph. Consider first the graph depicted in on the
left side of Figure 2.

e Packets 2, ...,k — 1 share the same horizontal route:
V1,1 —> V12 =~ V1,3 = U1,4 — U5 — V16 — V1,7

e Packet 1 uses a partly “parallel” route:
V1,1 —> V1,2 —> V2,3 —> U4 —> V25 = V1,6 — V1,7

o Packet k uses a “cross” route:

V4,3 —> V3,3 —> V2,3 —> V2,4 —> V1,4 —> V1,5 — V0,5

Clearly, all routes are shortest paths.

Next, we define the schedule. All packets start together.
Packets cross the edge (vy,1,v;,2), ordered by their num-
ber (contributing (kgl) total delays). Packet k delays
packet 1 on the edge (v 3,v2,4), and is then delayed by
each packet of 2,...,k — 1 on the edge (v 4, v1,5) (thus
packet k is involved in k£ — 1 additional delays). Finally,
on the edge (v1,6, v1,7), packet 1 delays packet 2, packet
2 then delays packet 3 etc. (adding & — 2 delays). It fol-
lows that the total number of delays in this schedule is
("3') +2k - 3.

Next, based on the basic graph (depicted on the left of
Figure 2) and the schedule described above, we define an-
other graph and schedule (see Figure 2 right). The new
graph is obtained by cascading a series of N copies of
the original graph, where we identify node v; 7 in copy j
with node vy ; iscopy j +1,forj =1,...,N — 1. We
now define the packets in the new graph and the schedule.
Packets 1, ...,k — 1 are as before: when they reach node
v1,1 in any copy, their original route is replicated in this
copy. To keep the schedule the same, we add a new “ver-
tical” packet for each copy, i.e., a packet which traverses
the same route in the local copy as packet k traverses in the
original copy; we fix the start times of the vertical packets
so that they will delay packet 1 on their copy of the edge
(v2,3,v2,4). This will guarantee that all delays of the first
copy, except for the delays on edge (v 1, vy ,2), are repli-
cated on all copies. It is straightforward to see that in the
new schedule,

o the size of the new graph is |V| + |E| = O(N),

e the total number of packets in this setting is K =
k+ N —1,and

o the total number of delays is (*7') + N(2k — 3).
Therefore, choosing N = k/2 (and hence the number of
packets is K = 3k/2), we get that the average number of
delays for a packet is

() bk (AR -)

k
%_1 3k

9
_ ke 2
HEY
9K
s B,
3

Since K = ©(N), we have that the average number of
delaysis £ + Q(|E|). |1

There is a gap between the upper bound of Theorem 6.1
and the lower bound of Theorem 6.5. We conjecture that
the upper bound can be improved.

7 Conclusion

In this work we have showed that the average number of
delay can get arbitrarily close to k¥ — 1. On the positive
side, we show that very simple means suffice to keep the
average number of delays much lower, e.g., strict-priority
scheduling, or acyclic routes. Shortest paths do not ensure
low average delay, however. It seems interesting to cap-
ture the relation between average number of delays and
size of the queues. It may also be interesting to investi-
gate ways to exploit delay tokens by routing protocols.

References

(1]

(8]

[9]

[10]

(11]

Micah Adler, Sanjeev Khanna, Rajmohan Rajara-
man, and Adi Rosén. Time-constrained scheduling
of weighted packets on trees and meshes. In Proc.
of the 1999 ACM Symposium on Parallel Algorithms
and Architecture, pages 1-12, 1999.

Micah Adler, Ramesh K. Sitaraman, Arnold L.
Rosenberg, and Walter Unger. Scheduling time-
constrained communication in linear networks. In
Proc. of the 1998 ACM Symposium on Parallel Al-
gorithms and Architecture, pages 269-278, 1998.

William Aiello, Eyal Kushilevitz, Rafail Ostrovsky,
and Adi Rosen. Adaptive packet routing for bursty
adversarial traffic. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, pages
359-368, 1998.

Matthew Andrews, Baruch Awerbuch, Antonio
Ferndndez, Jon Kleinberg, Tom Leighton, and Zhiy-
ong Liu. Universal stability results for greedy
contention-resolution protocols. In 37th Annual

Symposium on Foundations of Computer Science,
pages 380-389, 1996.

Dimitri Bertsekas and Robert Gallager. Data Net-
works. Prentice Hall, Englewood Cliffs, New Jersey,
second edition, 1992,

Allan Borodin, Jon Kleinberg, Prabhakar Raghavan,
Madhu Sudan, and David P. Williamson. Adver-
sarial queueing theory. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing,
pages 376-385, 1996.

Frank P. Kelly. Reversibility and Stochastic Net-
works. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, Chichester, 1979.

S. Keshav. An Engineering Approach to Computer
Networking. Addison-Wesley Publishing Co., 1997.

Tom Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays - Trees - Hypercubes.
Morgan-Kaufman, 1991.

Tom Leighton, Bruce Maggs, and Satish Rao. Uni-
versal packet routing algorithms. In 29th Annual

Symposium on Foundations of Computer Science,
pages 256-269, White Plains, NY, October 1988.

Tom Leighton, Bruce Maggs, and Satish Rao.
Fast algorithms for finding O(congestion+dilation)

[12]

[13]

[14]

packet routing schedules. In Proc. 28th Hawaii In-
ternational Conference on System Sciences, Januray
1995.

K. S. Lui and S. Zaks. Scheduling in synchronous
networks and the greedy algorithm. In Proceedings
of the 11th International Workshop on Distributed
Algorithms (WDAG 97), September 1997.

Yishay Mansour and Boaz Patt-Shamir. Greedy
packet scheduling on shortest paths. J. of Algo-
rithms, 14:449-465, 1993. A preliminary version
appears in the Proc. of 10th Annual Symp. on Prin-
ciples of Distributed Computing, 1991.

L. G. Valiant. Handbook of Theoretical Computer
Science, pages 943-971. Elsevier/MIT Press, 1990.
Chapter 18: General Purpose Parallel Architecures.

