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tWe study the average number of delays suffered by pa
k-ets routed using greedy (work 
onserving) s
hedulingpoli
ies. We obtain tight bounds on the worst-
ase av-erage number of delays in a few 
ases as follows. First,we show that the average number of delays is a fun
tionof the number of sour
es of pa
kets, whi
h is interestingin 
ase a node may send many pa
kets. Then, using anew 
on
ept we 
all delay ra
e, we prove a tight boundon the average number of delays in a leveled graph. Fi-nally, using delay ra
es in a more involved way, we provenearly-tight bounds on the average number of delays in di-re
ted a
y
li
 graphs (DAGs). The upper bound for DAGsis expressed in terms of the underlying topology, and as aresult it holds for any a
y
li
 set of routes, even if theyare not shortest paths. The lower bound for DAGs, on theother hand, holds even for shortest paths routes.1 Introdu
tionPa
ket routing s
hemes 
an be generally 
lassi�ed as fol-lows. In one model, motivated by parallel ma
hines, the
hief obje
tive is to minimize the time to route a given setof pa
kets, in the sense of minimizing the arrival time ofthe last pa
ket. Many variants of this model exist: see,e.g., [9, 14℄. Another avenue of resear
h is motivated bypa
ket-swit
hing data networks, where the main goals areto minimize buffer spa
e, maximize throughput, minimizethe number of pa
kets dropped, et
. The former model is
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alled �stati
 routing,� or �one-shot routing,� and the latteris 
alled �dynami
 routing,� or �ongoing routing.� Stan-dard networking texts providemany results for this model:see, e.g., [5, 8℄.In this work we take a third approa
h: our main mo-tivation is to better understand the average-
ase behaviorof a pa
ket from a given set. More spe
i�
ally, we areinterested in the average number of delays a pa
ket suf-fers while being routed to its destination, under very mildassumptions on the way routing is done. The model we
onsider is the following. The system is syn
hronous (i.e.,there is a global notion of �steps�, su
h that in ea
h timestep, a single pa
ket may 
ross ea
h link. At the ingressof ea
h link, there is a buffer, where pa
kets are storeduntil submitted to the link by a link s
heduler. We 
on-sider the broad 
lass of greedy (a.k.a. work 
onserving)link s
heduling poli
ies, i.e., poli
ies that always forwarda pa
ket over a link if its buffer is not empty.Our starting point is the work of Mansour and Patt-Shamir [13℄, where it is proved for the stati
 
ase thatif the paths traversed are shortest paths, then for anys
heduling poli
y, no pa
ket suffers more than k � 1 de-lays, where k is the total number of pa
kets to be routed.Note that k� 1 is the best bound in general: if all k pa
k-ets are simultaneously waiting to the same link, then thelast pa
ket to 
ross the link is delayed k � 1 times. Triv-ially, the k � 1 bound on the maximal number of delaysimplies that the average number of delays is also boundedby k � 1. However, it is not 
lear whether this bound istight: in the simple one-link s
enario mentioned above,the average number of delays is (k � 1)=2.Our Results. Somewhat surprisingly, it turns out that(k � 1)=2 is not the worst-
ase: the average number ofdelays 
an approa
h k�1 arbitrarily 
losely. In this work,our goal is to relate the average number of delays to thetopology of the route set. We present tight bounds in afew 
ases of interest as follows.� First, we show that if we assume only that pa
k-ets traverse shortest paths and that the s
hedule is



greedy, then the average number of delays is k(1 �1=2s)�O(s), where s is the number of sour
es (i.e.,start nodes of pa
ket routes) in the system.� For the 
ase where the set of routes indu
es a leveledgraph, we show that the average number of delays isnever more than (k�1)=2. This bound is tight by theone-link example.� Our most involved result is for the 
ase where the setof routes indu
es a dire
ted a
y
li
 graph (DAG). Inthis 
ase we show that even if the routes traversedare not shortest paths, the average number of delaysper pa
ket under any greedy s
hedule is bounded by(k � 1)=2 + O(1), where the additive 
onstant de-pends only on the graph topology, regardless of k.This result is parti
ularly interesting in the dynami
model, where k may be mu
h larger than the sizeof the graph. Finally, we provide a lower boundthat demonstrates that the upper bound is essentiallytight, even if the routes are shortest paths.To analyze leveled and a
y
li
 graphs, we develop aformal me
hanism 
alled delay ra
e, whi
h may be of in-dependent interest in its own right. In a delay ra
e, ea
hdelay 
reates a token whi
h traverses the network piggy-ba
ked on pa
kets; to bound the average number of de-lays, we bound the total number of tokens based on their�nal lo
ations.Related Work. The work most 
losely related to thispaper is by Patt-Shamir and Mansour [13℄ mentionedabove. A fundamental result for one-shot routing wasgiven by Leighton, Maggs and Rao [10, 11℄, where theyshow that the last pa
ket 
an arrive at its destination inO(d + 
) time units, where d is the length of the longestroute, and 
 is the maximal number of routes that use thesame edge. Greedy s
hedules were also 
onsidered forpa
ket routing with deadlines by Lui and Zaks [12℄, andin the 
ontext of on-line s
heduling by Adler et al. [2, 1℄.From the dynami
 routing viewpoint, it is worth mention-ing the model of adversarial queuing theory [6℄, where thegoal is to keep the buffer size bounded under high pa
ketarrival rate. Many results were re
ently obtained for thismodel: see, for example, [4, 3℄. It seems that adversarialqueuing theory is 
losely related to the average number ofdelays, sin
e they both 
ount the number of buffer o

u-pan
y slots. Many average-
ase results are known underthe assumption that the behavior of the pa
kets is gov-erned by a probability distribution, whi
h is a 
ompletelydifferent model (see, e.g., [7℄ for a modern treatment).Paper Organization. The remainder of this paper isorganized as follows. In Se
tion 2 we des
ribe the model,de�ne basi
 notation, and give preliminary results. InSe
tion 3 we 
onsider shortest-paths greedy s
hedules in

terms of the number of sour
es. In Se
tion 4 we de-s
ribe the delay ra
e me
hanism. In Se
tion 5 we 
onsidergreedy s
hedules for leveled graphs. In Se
tion 6 we 
on-sider greedy s
hedule for arbitrary DAGs. We list a fewopen problems in Se
tion 7.2 Model, Notation, and Preliminar-iesWe model the 
ommuni
ation network as an unweighteddire
ted graph G = (V;E), where an edge (u; v) rep-resents a unidire
tional link from pro
essor u to v. Weuse dist(u; v) to denote the distan
e between two nodes inthe graph, de�ned to be the number of edges in a shortestpath from u to v. In the s
enarios we 
onsider, there is aset of k pa
kets P = fp1; : : : ; pkg, and a s
hedule, whi
hmaps pa
kets and time steps to nodes in the graph. Intu-itively, a s
hedule des
ribes the lo
ation of any pa
ket atall time steps during exe
ution of the pa
ket routing task.In ea
h time step, a pa
ket may progress over a link, un-der the 
ondition that at most one pa
ket may use ea
h linkat ea
h step (i.e., we 
onsider a syn
hronous model withunit-
apa
ity links). The sequen
e of edges traversed by apa
ket in a given s
hedule is referred to as its route. The�rst node of a route is 
alled the sour
e node, and the lastnode is 
alled the destination node.For a given a s
hedule, we de�ne the following 
onve-nient notation.� v(p; t): lo
ation of pa
ket p at time t.� Rp(t; t0): route traversed by pa
ket p in the time in-terval [t; t0℄.� Rp(v; v0): route traversed by p from node v to nodev0.� Dp(t; t0): number of delays suffered by p in the timeinterval [t; t0℄, i.e.,Dp(t; t0) = t0 � t� jRp(t0 � t)j.� p(e; t): pa
ket 
rossing edge e at time [t; t + 1) (un-de�ned if no pa
ket 
rosses e at that time).� ne(p; t): next edge on the route of pa
ket p at time t(unde�ned if p rea
hed its destination by time t).A s
hedule is 
alled greedy if a pa
ket is never delayedunless another pa
ket is traversing its next edge. Formally,if v(p; t) = v(p; t + 1), then there exists another pa
ketp0 with ne(p; t) = ne(p0; t) and v(p0; t+ 1) 6= v(p0; t). Inthis 
ase we say that p0 delayed p at time t. A s
hedule issaid to be shortest-paths s
hedule if the route traversed byea
h pa
ket is a shortest path in the underlying graph (forour purposes, given a s
hedule, we may assume that thegraph 
onsists only of edges that were a
tually traversed).The following result is key to the 
urrent paper.



Theorem 2.1 ([13℄) The number of delays suffered by anypa
ket in any shortest-paths greedy s
hedule is at mostk � 1, where k is the total number of pa
kets.Theorem 2.1 holds regardless of the initial starting timesof the pa
kets. Consider stri
t priority s
heduling: un-der this poli
y, ea
h pa
ket is assigned a priority, andthe s
hedule is su
h that a pa
ket never waits for anotherpa
ket with lower priority. For this greedy poli
y, we havethe following simple 
orollary.Corollary 2.2 The average number of delays in anyshortest-paths stri
t priority s
hedule is at most k�12 ,where k is the total number of pa
kets.Proof: Fix a s
hedule, and let pi be the i-th highest pri-ority pa
ket. Consider the s
hedule obtained by remov-ing all pa
kets of priority lower than pi: there will beno 
hange at all in the way pa
kets of priority i andhigher progress, and in addition, this is still a shortest-paths greedy s
hedule. By Theorem 2.1, pi suffers at mosti�1 delays in the new s
hedule, and hen
e i�1 delays inthe original s
hedule as well. Sin
e this observation holdsfor any i, we 
on
lude that the average number of delaysin the given s
hedule is at most1k kXi=1(i� 1) = �k2�k = k � 12 :3 Average Delay and the Number ofSour
esIn this se
tion we relate the average number of delays tothe number of sour
es (i.e., nodes from whi
h pa
ketsstart their routes) in the network. It is shown that the fewersour
es there are in the network, a better upper bound ex-ists on the maximal average delay. The bound is provenunder the assumption that all pa
kets start moving at thesame time. We also prove a lower bound, demonstratingthat the upper bound is essentially tight.3.1 An Upper BoundWe prove the following theorem.Theorem 3.1 Suppose that k pa
kets with shortest-pathroutes start their routes at the same time from s distin
tnodes. Then the average number of delays suffered by apa
ket is at most k � k2s � 12 :

The proof of the theorem relies on the bound for the worst-
ase (Theorem 2.1), extended by a simple 
ounting argu-ment. Our �rst step in the proof is to apply a few simpli�-
ations. We use the following lemma.Lemma 3.2 Let a shortest-paths greedy s
hedule S fora graph G be given. Then there exists another shortest-paths greedy s
hedule S0 for a graphG0 whose total num-ber of delays is at least as in S, su
h that for any twopa
kets p; p0 with the same sour
e in S, in S0 p; p0 havethe same sour
e and also share the same last edge on theirroutes.The following lemma is used in the proof of lemma 3.2.Lemma 3.3 Let a shortest-paths greedy s
hedule S begiven, and suppose that in S the pa
kets p; p0 have thesame sour
e node. Then there exists another shortest-paths greedy s
hedule S0 with the same number of totaldelays su
h that in S0, all pa
kets have the same sour
eand destination nodes as in S, ex
ept that p and p0 havethe same destination node.Proof: We 
onstru
t the s
hedule S0 and its underlyinggraph as follows. Let d; d0 be the lengths of the routestraversed by p; p0 in S, respe
tively.If p and p0 have the same destination in S, then we aredone. Otherwise, suppose �rst that d 6= d0, and assumew.l.o.g. that d > d0. We introdu
e a dire
ted path of lengthd� d0 outgoing from the old destination of p0, and set thenew destination of p to be the end of that path. Thus, wehen
eforth assume that d = d0.Finally, we 
onsider the 
ase that p; p0 have distin
t des-tinations, but d = d0. In this 
ase we introdu
e a new nodev, and dire
ted edges from the destinations of p; p0 to v. To
omplete the 
onstru
tion, we set v to be the destinationsof p; p0. Clearly, in the new s
hedule the total number ofdelays, all the sour
es, and all the destinations with thepossible ex
eptions of the destinations of p; p0 remain un-
hanged. It remains to show that the resulting s
heduleis a shortest-paths greedy s
hedule. The greedy nature ofthe s
hedule is obvious from the fa
t that all pa
kets retaintheir old s
hedule in the old portion of the graph, and pand p0 are not delayed in the new potion of the graph. Forthe shortest-paths property, �rst noti
e that the new edgeslead only to new nodes, so that no new routes to destina-tions of pa
kets other than p; p0 are introdu
ed. Finally,note that any path to a new destination 
an be 
omposedto a path to the old destination, followed by a path to thenew destination. Sin
e the new part is unique, and sin
ethe path taken to the old destination was shortest, the newroute is also shortest.We now prove Lemma 3.2.



Proof of Lemma 3.2: First, note that by indu
tive ap-pli
ation of Lemma 3.3, there exists a s
hedule S00 su
hthat for any two pa
kets with the same sour
e in S thereis a 
ommon destination in S00. Se
ondly, note that anyroute 
an be extended by a single edge outgoing from itsdestination without de
reasing the number of total delaysin the s
hedule. The resulting s
hedule is shortest-pathsand greedy for reasoning similar to the one in Lemma 3.3.We also use the following te
hni
al lemma, whi
h is avariant of the Cau
hy-S
hwarz inequality.Lemma 3.4 Let A be any real number, and 
onsider asequen
e of positive real numbersX = (x1; : : : ; xn) witha given sum K = Pni=1 xi. Then the sumPni=1 xi(A �xi) is maximized when xi = K=n for all 1 � i � n.To prove Lemma 3.4, we need the following result.Lemma 3.5 Let x; y and A be any real numbers. Theny(A� y) +x(A�x) � (y+ x)(A� y+x2 ), with equalityiff x = y.Proof: The inequalities in the following series are equiv-alent. (x � y)2 � 0y2 + x2 � 2xy�y2 � x2 � �(x+ y)22y(A� y) + x(A� x) � (y + x)�A� y + x2 � ;with equality if and only if x = y.Proof of Lemma 3.4: First, note that sin
e f(X) def=Pni=1 xi(A�xi) is 
on
ave, and hen
e it obtains a uniquemaximum within any 
losed domain. Let X0 be the se-quen
e of n positive numbers with sum K whi
h maxi-mizes f(X), and suppose, for 
ontradi
tion, that for twoelements x; y in X0 we have that x 6= y. Consider the se-quen
e X1 obtained from X0 by repla
ing x; y with twoinstan
es of x+y2 . Then we have by Lemma 3.5 thatf(X1)� f(X0) = (y + x)�A� y + x2 �� (y(A� y) + x(A� x))> 0 ;
ontradi
ting the maximality assumption forX0.We 
an now prove Theorem 3.1.Proof of Theorem 3.1: We bound the sum of delaysof pa
kets by summing separately for ea
h set of pa
kets

with a 
ommon sour
e. Let v be any node, and let P (v) bethe set of pa
kets that v is their sour
e node. By Lemma3.2, we 
an assume w.l.o.g. that all pa
kets in P (v) gothrough the same last edge. From Theorem 2.1 we havethat any pa
ket, and in parti
ular the last pa
ket to rea
hits destination, 
annot have been delayed more than k� 1time units. Sin
e all pa
kets in P (v) start at the sametime, and sin
e all these pa
ket traverse the same numberof edges (be
ause their routes are shortest and have thesame sour
e and destination), it follows that the se
ond-to-last pa
ket of P (v) to rea
h its destination was delayedat most k � 2 time units, the one before it at most k � 3time units et
. It follows that if T (v) is the total numberof delays suffered by pa
kets in P (v), thenT (v) � (k � 1) + (k � 2) + � � �+ (k � jP (v)j)= jP (v)j(2k � 1� jP (v)j)2 :Therefore, we have that the total number of delays isXv2V T (v) � Xv2V jP (v)j(2k � 1� jP (v))j2� s � ks (2k � 1� ks )2 by Lemma 3.4= k�k � k2s � 12� :It follows that the average number of delays is at mostk � k2s � 12 , as required.3.2 A Lower BoundWe 
on
lude this se
tion with a lower bound on the av-erage number of delays whi
h nearly mat
hes the upperbound proved in Theorem 3.1.Theorem 3.6 For any s � 2 there are in�nitely manyk � s su
h that there exists a shortest-paths greedy s
hed-ule with s sour
e nodes and k pa
kets, and su
h that theaverage delay suffered by a pa
ket isk � 3k2s ��(s) :Proof: Consider a dire
ted ring with s nodes, where ea
hnode is the sour
e for z � 1 pa
kets, whose destinationis s � 1 edges away (i.e., if the ring is oriented 
ounter-
lo
kwise, then the destination of ea
h pa
ket is one edgeaway from its sour
e, 
lo
kwise). Note that the total num-ber of pa
kets is k = sz. Consider the greedy s
hedul-ing poli
y �furthest to go,� where pa
kets have priorityif they are further from their destinations, and ties arebroken arbitrarily. In this 
ase, in the �rst z steps ea
h



pa
ket progresses one edge, in the next z time steps ea
hpa
ket progresses another edge et
. In ea
h of the steps(s�2)z+1; : : : ; (s�1)z, s pa
kets arrive at their destina-tion. It follows that the average number of delays sufferedby a pa
ket in the s
hedule is(z � 1)(s� 2) + z � 12 = k�1� 32s�� s+ 32 :Note that for s = pk, the average number of delaysis more than k(1 � 52s ), very 
lose to the upper bound ofTheorem 3.1.4 Delay Ra
esOur main tool in analyzing the number of delays in s
hed-ules in leveled and a
y
li
 graphs is the 
on
ept of delayra
e. The idea is as follows. Ea
h time a pa
ket is de-layed, a delay token is 
reated. Delay tokens are 
hara
-terized by the identity of the pa
ket delayed and the timestep in whi
h the delay o

urred. The pa
ket whose delay
reated the token is 
alled the token generator. Delay to-kens move in the system piggy-ba
ked on pa
kets, or mayalso not move in some time steps, a

ording to 
ertainrules that will be explained shortly. It may be helpful tovisualize pa
kets as trains, and tokens as passengers thateither progress on a train, or wait for a train in a station.In our proofs, we 
ount the tokens in the system based ontheir lo
ations; sin
e ea
h delay 
reates a token, bound-ing the number of tokens allows us to bound the total (andhen
e the average) number of delays in a given s
hedule.We remark that delay ra
es resemble the 
on
epts oftime path [13℄, and time sequen
e [10℄, but there is an im-portant differen
e: delay ra
es 
an be 
omputed on-line,whi
h makes them usable in a
tual proto
ols, while timepaths and time sequen
es 
an be 
omputed only off-line,and thus they 
an be useful only for analysis. We do notexplore this dire
tion further in the 
urrent paper.The rules guiding delay tokens are as follows.� If a pa
ket p is delayed at time t, then a token Æ =(t; p) is 
reated. The pa
ket p is 
alled the generatorof Æ, denoted p(Æ), and the time step t is 
alled the
reation time of Æ, denoted t(Æ).� A token progresses on its next edge (see below) onlywhen a pa
ket is progressing on that edge. If a tokenÆ progresses on edge e at time t, the pa
ket that pro-gresses on e at t is 
alled the 
arrier of Æ, denoted
(Æ; t).� The next edge to be traversed by a token is the nextedge in the route of its latest 
arrier. The next edge ofa token Æ at time t is denoted ne(Æ; t). The next edge

of a newly generated token is the next edge of itsgenerator pa
ket, i.e., ne(Æ; t(Æ)) = ne(p(Æ); t(Æ)).If the last 
arrier of Æ has rea
hed its destination attime t, then ne(Æ; t0) is unde�ned for all t0 � t, and Ædoes not progress after t.� At ea
h time step, a pa
ket may be the 
arrier ofat most one delay token for ea
h generator, i.e., if
(Æ; t) = 
(Æ0; t) then p(Æ) 6= p(Æ0).� At ea
h time step, among the (possibly empty) set oftokens with the same generator and next edge (andhen
e the same lo
ation), only the token with thesmallest 
reation time progresses.It is 
onvenient to generalize to delay tokens some of thenotation originally introdu
ed for pa
kets.� v(Æ; t) is the lo
ation of a delay token Æ at time t.� The route traversed by Æ between a and b is denotedRÆ(a; b), where a and b are either both time points orboth nodes.We de�ne the following 
on
epts.De�nition 4.1 Let Æ be a delay token in a given s
hed-ule.� The rank of Æ isrank(Æ) def= j fÆ0 j p(Æ0) = p(Æ) and t(Æ0) � t(Æ)g j :� The number of delays suffered by Æ by time t isDÆ(t) def= t� t(Æ)� jRÆ([t(Æ); t℄)j :Note that the paths traversed by delay tokens are notne
essarily shortest paths. The following de�nition quan-ti�es by how mu
h does a token path deviate from theshortest path.De�nition 4.2 The length of the bypass done by a delaytoken Æ by time t isBÆ(t) def= jRÆ([t0; t℄)j � dist(v0; v) ;where t0 = t(Æ) is the 
reation time of Æ, v0 = v(Æ; t0)is the lo
ation of the 
reation of Æ, and v = v(Æ; t) is thelo
ation of Æ at time t.We now state a few simple properties we use later. Thefollowing lemma relates the number of delays and the by-pass length of a delay token.Lemma 4.1 Let Æ be a delay token with 
reation time t0.ThenBÆ(t) = t�t(Æ)�DÆ(t0; t)�dist(v(Æ; t0); v(Æ; t)) :Proof: Follows from the fa
t that jRÆ(t0; t)j = t� t(Æ)�DÆ(t0; t).The lemma below says that the bypass length is a mono-toni
ally in
reasing fun
tion of time.



Lemma 4.2 For all delay tokens Æ and all times t; t0, wehave that if t � t0 then BÆ(t) � BÆ(t0).Proof: Let t0 = t(Æ), and denote v0 = v(Æ; t0); v =v(Æ; t) and v0 = v(Æ; t0). Let R = RÆ(t0; t) and R0 =RÆ(t; t0). Then we haveBÆ(t0) = jRÆ(t0; t0)j � dist(v0; v0)� jRj+ jR0j � (dist(v0; v) + dist(v; v0))= BÆ(t) + (jR0j � dist(v; v0))� BÆ(t) :The following lemma expresses intermediate route lengthsin terms of distan
es and bypass lengths.Lemma 4.3 Let Æ be a any delay token, and denotet(Æ) = t0 and v(Æ; t0) = v0. For any times t � t0 � t0with v(Æ; t) = v and v(Æ; t0) = v0, we have jRÆ(t0; t)j =dist(v0; v) +BÆ(t)� dist(v0; v0)�BÆ(t0) :Proof: Follows from the fa
t that jRÆ(t0; t)j =jRÆ(t0; t)j � jRÆ(t0; t0)j, and Def. 4.2.5 Leveled GraphsIn this se
tion we 
onsider the 
ase where the set of routesindu
es a leveled graph, i.e., the nodes 
an be partitionedinto sets 
alled levels, and numbered 0; 1; 2; : : : su
h thata pa
ket always progresses from a node in level i to a nodein level i + 1 for some i. We prove that in this 
ase, theaverage number of delays is at most k�12 , just like the sim-plest 
ase, where the routes of all pa
kets is the same sin-gle edge.The main idea in the proof in this se
tion is that in a de-lay ra
e on a leveled graph, tokens are never delayed. Tofa
ilitate the proof, we �rst make the following simpli�
a-tion: we assume that all pa
kets arrive at their respe
tivedestinations at the same time t�. This assumption is justi-�ed by the following transformation: when a pa
ket p ar-rives at its destination node v and there is another pa
ketin the s
hedule not yet in its destination, we add a newnode u with an edge (v; u), and make u the new destina-tion of p. We apply this transformation indu
tively, result-ing in a larger graph, but preserving the leveled nature ofthe graph, the greedy nature of the s
hedule, and the totalnumber of delays.We start with the following lemma for greedy s
hedulesover leveled graphs. Let `x(t) be the level number of x attime t, where x is either a pa
ket or a delay token.Lemma 5.1 At any time t � t�, for any pa
ket p, thereis at most one delay token generated by p at ea
h levelgreater than `p(t). Moreover, ea
h token has a 
arrier.

We 
an now prove the main theorem of this se
tion.Theorem 5.2 The average number of delays suffered bya pa
ket in a leveled graph is at most k�12 .Proof: To prove the result, 
onsider the system at time t�.DenoteN(p) def= j fl > `p(t�)) j l = `q(t�) for some pa
ket qg j :In words,N(p) is the number of �populated� levels aheadof p at time t�. By Lemma 5.1 we have that the totalnumber of delay tokens, and hen
e the total number ofdelays suffered by a pa
ket p is at most N(p), sin
e ea
htoken must have a 
arrier, and there 
an be at most onetoken in ea
h level. It follows that the total number ofdelays over all pa
kets is at mostXp2P N(p) � 0 + 1 + 2 � � �+ k � 1 = �k2� :6 Dire
ted A
y
li
 GraphsIn this se
tion we 
onsider the 
ase where the routes tra-versed by the pa
kets indu
e a dire
ted a
y
li
 graph(DAG) on the network. We �rst prove, using the de-lay ra
e methodology, that the number of delays sufferedby an average pa
ket when traversing a DAG, under anygreedy s
hedule, is never more than k2 + O(1). The ad-ditive term depends only on the topology of the routes,and not on the number of pa
kets using them. As a 
on-sequen
e, the result does not depend on the paths beingshortest: a
y
l
ity suf�
es. This result is parti
ularlyinteresting in the 
ontext of dynami
 routing problems,where pa
kets are 
ontinuously generated and delivered,but the graph remains �xed. We then prove a lower boundon the average delay in a DAG, whi
h nearly mat
hes theupper bound; the lower bound applies even for shortest-paths routes.6.1 An Upper BoundWe prove the following theorem.Theorem 6.1 For any greedy s
hedule for k pa
ketswhose route set is a
y
li
 (but not ne
essarily shortestpaths), the average number of delays per pa
ket is at mostk2+ jV j(jLj+1)+ jEj, where L is the length of the longestpath in the network.To prove the theorem we use a delay ra
e, and splitthe delay tokens generated by ea
h pa
ket into two sets.One set of tokens will be 
ounted similarly to the 
aseof leveled graphs (Theorem 5.2), and the remainder will



be 
harged against elements of the graph topology. These
ond part is essential be
ause unlike the simple 
ase ofleveled graphs, in general DAGs it is possible for a delaytoken to be delayed.
Y� Y�Y�

YC
Y�

G� G�GCSFigure 1: S
enario 
onsidered in the proof of Theorem6.1. All progress is from left to right.We �rst relate delayed delay tokens to the graph topol-ogy. Our main fo
us for this 
ase is the following s
enario(see Figure 1). A pa
ket p, originating from node v0, suf-fers is r1-st delay at time t1 in node v1, 
reating a delaytoken Æ1. It then suffers its r2-nd delay at time t2 > t1 innode v2, 
reating a delay token Æ2. The delay tokens latermeet at time t3 in node v3.We use the following additional notation.Notation 6.1�Æ2(Æ1; t3) def= rank(Æ2)�rank(Æ1)+BÆ2(t3)+DÆ2(t3) :Intuitively, �Æ2(Æ1; t3) measures �wasted steps:� �rst,of p between v1 and v2 (sin
e by de�nition, the differen
eof the ranks is exa
tly the number delays in the interval);and then, of Æ2 between v2 and v3.We �rst prove the following lemma.Lemma 6.2 Let Æ1; Æ2 be with the same generator p and
reation times t1 < t2 respe
tively. Suppose that Æ1 andÆ2 meet at time t3 at node v3. ThenjRÆ1(t1; t3)j � �Æ2(Æ1; t3) + dist(v1; v3)�DÆ1(t3) :Proof:jRÆ1(t1; t3)j = t3 � t1 �DÆ1(t3)= jRp(t1; t2)j+ r2 � r1 + jRÆ2(t2; t3)j+DÆ2(t3)�DÆ1(t3)= r2 � r1 +BÆ2(t3) +DÆ2(t3)�DÆ1(t3)+ jRp(t1; t2)j+ dist(v2; v3)� �Æ2(Æ1; t3)�DÆ1(t3) + dist(v1; v3) :Another property we prove is the following.

Lemma 6.3 Let Æ1; Æ2 be with the same generator p and
reation times t1 < t2 respe
tively. Suppose that Æ1 andÆ2 meet at time t3 at node v3. Then BÆ1(t3) +DÆ1(t3) ��Æ2(Æ1; t3):Proof: By Lemma 4.1, we have thatt3 � t1 = BÆ1(t3) +DÆ1(t3) + dist(v1; v3) : (1)On the other hand, 
onsider the path indu
ed by the routeof p from time t1 to time t2, followed by the route of Æ2from time t2 to time t3. For this path, we have thatt3 � t1 = r2 � r1 +BÆ2(t3) +DÆ2(t3) (2)+ jRp(v1; v2)j+ dist(v2; v3) :Equating the r.h.s. of Eq. (1) and the r.h.s. of Eq. (2), wegetBÆ1(t3) + DÆ1(t3)= r2 � r1 +BÆ2(t3) +DÆ2(t3) +jRp(v1; v2)j+ dist(v2; v3)� dist(v1; v3)� r2 � r1 +BÆ2(t3) +DÆ2(t3)= �Æ2(Æ1; t3) ;where the last inequality follows from the fa
t thatjRp(v1; v2)j+ dist(v2; v3) � dist(v1; v3).The following lemma provides the key argument in theproof of Theorem 6.1.Lemma 6.4 Let Æ1; Æ2 be with the same generator p and
reation times t1 < t2 respe
tively. Suppose that Æ1 andÆ2 meet at time t3 at node v3 as in Figure 1. Then thereexists a path of length at least rank(Æ2)� rank(Æ1).Proof: We prove the lemma by proving the followingstronger 
laim: There exists a path from v0 to v3 of lengthlength at least �Æ2(Æ1; t3) + dist(v0; v3).This 
laim is proved by indu
tion on the rank of Æ1:Assume �rst that rank(Æ1) = 1. In this 
ase Æ1 is neverdelayed in the time interval [t1; t3℄, and the 
laim followsfrom Lemma 6.2.For the indu
tive step, assume that the 
laim holds forr1 = l; we prove the 
laim for r1 = l + 1. If DÆ1(t3) =0, then we are done by Lemma 6.2. Otherwise, Æ1 wasdelayed in the time interval [t1; t3℄. Let Æ0 be the delaytoken whi
h is the last to delay Æ1 before t3. Let us denoteby t0 the time in whi
h Æ1 is delayed by Æ0, and let v0 =v(Æ1; t0) = v(Æ0; t0). With this notation, we have that bythe 
hoi
e of Æ0,DÆ1(t0) = DÆ1(t3)� 1 : (3)Also, sin
e Æ0 delays Æ1, we have thatrank(Æ0) � r1 � 1 : (4)



Combining Eq. (3) and Eq. (4), we getrank(Æ1)� rank(Æ0) +DÆ1(t0) � DÆ1(t3) : (5)We use this fa
t later.Now, the indu
tion hypothesis, applied to Æ0 and Æ1, im-plies that there exists a path R from v0 to v0 of lengthat least �Æ1(Æ0; t0) + dist(v0; v0). Consider now the pathR �RÆ1(v0; v3) obtained from 
on
atenatingR to the pathtraversed by Æ1 from v0 to v3. By Lemma 4.3, we havethat jRÆ1(v0; v3)j = dist(v0; v3)�dist(v0; v0)+BÆ1 (t3)�BÆ1(t0). Hen
e we getjR �RÆ1(v0; v3)j � �Æ1(Æ0; t0) + dist(v0; v0)+ dist(v0; v3)� dist(v0; v0)+BÆ1(t3)�BÆ1(t0)= rank(Æ1)� rank(Æ0) +DÆ1(t0)+ dist(v0; v3) +BÆ1(t3)� BÆ1(t3) +DÆ1(t3) + dist(v0; v3)� �Æ2(Æ1; t3) + dist(v0; v3) :The se
ond to last inequality follows from Eq. (5), and thelast inequality follows from Lemma 6.3.We 
an now prove the upper bound for DAGs.Proof of Theorem 6.1: We bound the total number ofdelay tokens in the s
hedule by bounding the total numberof delay tokens generated by ea
h pa
ket. Let p be anypa
ket, and suppose that it rea
hed its destination at timet. Clearly, no more tokens will be generated by p aftertime t. We partition the tokens generated by p into twosets. Tokens of the �rst kind are the tokens generated byp that stopped progressing by time t, i.e., their last 
arrierhas rea
hed its own destination by that time. Tokens ofthe se
ond kind are all the rest, i.e., tokens whi
h haven'trea
hed the destination of their last 
arrier. We denote byF(p) the set of tokens of the �rst kind generated by p.By the de�nition of delay ra
e, when a pa
ket rea
hes itsdestination, it may be the 
arrier of at most one token forea
h possible generator. Hen
e, if pa
ket p is the i-th torea
h its destination, then jF(p)j � i � 1 + jEj, sin
e attime t at most jEj pa
kets 
an rea
h their destinations. Itfollows that Xp2P jF(p)j � �k2�+ kjEj ; (6)and hen
e the 
ontribution of tokens of the �rst kind to theaverage delay is k2 + jEj.To deal with tokens of the se
ond kind, we use Lemma6.4 as follows. We 
ount the number of tokens in ea
hnode separately. Consider any node v. Let the set oftokens generated by p stored at v at time t be denoted

by Gp(v). We show that jGp(v)j � L + 1, where L isthe length of the longest path in the DAG indu
ed by theroute set. If jGp(v)j < 2, we are done. Otherwise, letÆ1; Æ2 be the tokens with the smallest and largest rank inGp(v), respe
tively. By the de�nition of rank, it followsthat jGp(v)j � rank(Æ2) � rank(Æ1) + 1. On the otherhand, by Lemma 6.4, we have that there exists a path inthe graph of length at least rank(Æ2) � rank(Æ1). Sin
eany path in the graph has length at most L, it follows thatjGp(v)j � L+1. To 
on
lude the proof, note that the totalnumber of delays 
ontributed by tokens of the se
ond kindfor ea
h pa
ket is therefore at most jV j(L+ 1).6.2 A Lower boundWe now prove that the average number of delays in a DAGis quite 
lose to the upper bound proved in Theorem 6.1,even if the paths traversed are shortest.Theorem 6.5 There exists shortest-paths greedy s
hed-ules for k pa
kets with a
y
li
 route set su
h that the av-erage number of delays per pa
ket is at k2 +
(jEj).
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Figure 2: DAGs used in the proof of Theorem 6.5. Top:basi
 graph. Bottom: 
as
aded graph. Pa
ket 1 goes overthe dotted arrows, pa
ket 2; : : : ; k � 1 go over the bold-fa
ed arrows, and pa
ket k; : : : ; k + N � 1 go over thedouble arrows (see text for details).Proof:We 
onstru
t a graph 
onsisting of many 
opies ofa small graph. Consider �rst the graph depi
ted in on theleft side of Figure 2.� Pa
kets 2; : : : ; k� 1 share the same horizontal route:v1;1 ! v1;2 ! v1;3 ! v1;4 ! v1;5 ! v1;6 ! v1;7.



� Pa
ket 1 uses a partly �parallel� route:v1;1 ! v1;2 ! v2;3 ! v2;4 ! v2;5 ! v1;6 ! v1;7.� Pa
ket k uses a �
ross� route:v4;3 ! v3;3 ! v2;3 ! v2;4 ! v1;4 ! v1;5 ! v0;5.Clearly, all routes are shortest paths.Next, we de�ne the s
hedule. All pa
kets start together.Pa
kets 
ross the edge (v1;1; v1;2), ordered by their num-ber (
ontributing �k�12 � total delays). Pa
ket k delayspa
ket 1 on the edge (v2;3; v2;4), and is then delayed byea
h pa
ket of 2; : : : ; k � 1 on the edge (v1;4; v1;5) (thuspa
ket k is involved in k � 1 additional delays). Finally,on the edge (v1;6; v1;7), pa
ket 1 delays pa
ket 2, pa
ket2 then delays pa
ket 3 et
. (adding k � 2 delays). It fol-lows that the total number of delays in this s
hedule is�k�12 �+ 2k � 3.Next, based on the basi
 graph (depi
ted on the left ofFigure 2) and the s
hedule des
ribed above, we de�ne an-other graph and s
hedule (see Figure 2 right). The newgraph is obtained by 
as
ading a series of N 
opies ofthe original graph, where we identify node v1;7 in 
opy jwith node v1;1 is 
opy j + 1, for j = 1; : : : ; N � 1. Wenow de�ne the pa
kets in the new graph and the s
hedule.Pa
kets 1; : : : ; k � 1 are as before: when they rea
h nodev1;1 in any 
opy, their original route is repli
ated in this
opy. To keep the s
hedule the same, we add a new �ver-ti
al� pa
ket for ea
h 
opy, i.e., a pa
ket whi
h traversesthe same route in the lo
al 
opy as pa
ket k traverses in theoriginal 
opy; we �x the start times of the verti
al pa
ketsso that they will delay pa
ket 1 on their 
opy of the edge(v2;3; v2;4). This will guarantee that all delays of the �rst
opy, ex
ept for the delays on edge (v1;1; v1;2), are repli-
ated on all 
opies. It is straightforward to see that in thenew s
hedule,� the size of the new graph is jV j+ jEj = �(N),� the total number of pa
kets in this setting is K =k +N � 1, and� the total number of delays is �k�12 �+N(2k � 3).Therefore, 
hoosing N = k=2 (and hen
e the number ofpa
kets is K = 3k=2), we get that the average number ofdelays for a pa
ket is�k�12 �+ k2 (2k � 3)3k2 � 1 > 2� (k�1)(k�2)2 + k2 � 3k2 �3k= k + 23k � 2> 2K3 � 2 :Sin
e K = �(N), we have that the average number ofdelays is K2 +
(jEj).

There is a gap between the upper bound of Theorem 6.1and the lower bound of Theorem 6.5. We 
onje
ture thatthe upper bound 
an be improved.7 Con
lusionIn this work we have showed that the average number ofdelay 
an get arbitrarily 
lose to k � 1. On the positiveside, we show that very simple means suf�
e to keep theaverage number of delays mu
h lower, e.g., stri
t-prioritys
heduling, or a
y
li
 routes. Shortest paths do not ensurelow average delay, however. It seems interesting to 
ap-ture the relation between average number of delays andsize of the queues. It may also be interesting to investi-gate ways to exploit delay tokens by routing proto
ols.
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