function MultDiffusA clear, clc, format short g, format compact tspan = [0 0.001]; % Range for the independent variable y0 = [0.0002229; 0; 0.007208]; % Initial values for the dependent variables function %dYfuncvecdz = ODEfun(z,Yfuncvec); disp(' Variable values at the initial point '); disp([' t = ' num2str(tspan(1))]); disp(' y dy/dt '); disp([y0 ODEfun(tspan(1),y0)]); [t,y]=ode45(@ODEfun,tspan,y0); for i=1:size(y,2) disp([' Solution for dependent variable y' int2str(i)]); disp([' t y' int2str(i)]); disp([t y(:,i)]); plot(t,y(:,i)); title([' Plot of dependent variable y' int2str(i)]); xlabel(' Independent variable (t)'); ylabel([' Dependent variable y' int2str(i)]); pause end function dYfuncvecdz = ODEfun(z,Yfuncvec); CA = Yfuncvec(1); CB = Yfuncvec(2); CC = Yfuncvec(3); NB = -.0003363; % Molal flux of component B (kg-mol/m^2*s) NA = .00002396; % Molal flux of component A (kg-mol/m^2*s) DAB = .000147; % Diffusivity of A through B (m^2/s) NC = 0; % Molal flux of stagnant component A (kg-mol/m^2*s) DAC = .0001075; % Diffusivity of A through C (m^2/s) DBC = .0001245; % Diffusivity of B through C (m^2/s) CT = .2 / (.082057 * 328);% Gas concentration g-mol/L xA = CA / CT; % Mole fraction of A xB = CB / CT; % Mole fraction of B xC = CC / CT; % Mole fraction of C dCAdz = (xA * NB - (xB * NA)) / DAB + (xA * NC - (xC * NA)) / DAC; % Concentration of A (g-mol/L) dCBdz = (xB * NA - (xA * NB)) / DAB + (xB * NC - (xC * NB)) / DBC; % Concentration of B (g-mol/L) dCCdz = (xC * NA - (xA * NC)) / DAC + (xC * NB - (xB * NC)) / DBC; % Concentration of C (g-mol/L) dYfuncvecdz = [dCAdz; dCBdz; dCCdz];