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10.8 SIMULTANEOUS MULTICOMPONENT DIFFUSION OF GASES

10.8.1 Concepts Demonstrated

Application of the Stefan-Maxwell equations to describe the multicomponent
molecular diffusion of gases.

10.8.2 Numerical Methods Utilized

Numerical integration of a system of simultaneous ordinary differential equa-
tions with optimization of two parameters in order to match split boundary con-
ditions.

10.8.3 Problem Statement’

Gases A and B are diffusing through stagnant gas C at a temperature of 55 °C
and a pressure of 0.2 atmospheres. This process involves molecular diffusion
between two points, where the compositions are known, as summarized in Table
10-9. The distance between the points is 103 m.

(@) Use the Stefan Maxwell equations to calculate the molar fluxes of both
gases A and B from point 1 to point 2 Suggestion: An initial approxi-
mate solution can be determined by first considering the binary diffu-
sion of only A through component C and then separately considering
the binary diffusion of only B through component C.

(b) Plot the mole fractions of the gases as a function of distance from point
1 to point 2.

Table 10-9 Data for Multicomponent Diffusion (from
Geankoplis® with permission)

Point 1 Point 2 Diffusivities
Concentration Concentration at 0.2 atm
Component  kg-mol m3 kg-mol /n3 m?4
A 2229x 104 0 Dac= 1.075x 104
B 0 2701x 103 Dpe= 1.245x 1074
C 7.208x10°  4730x10°2  Dyp= 1.47x10°%

Additional Information and Data
The kinetic theory of gases can be used to derive the Stefan-Maxwell equations

" This problem is adapted from Geankop1155 with permission.
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in the zdirection as (see Bird et al.2or GeankoplisS)

n
Z_C -y Sl A (10-75)
z Djj
i=1
where C; represent the concentration of diffusing component i in kg-mol /3, x; is
the mole fraction of component 7, /V; is the molar flux of component 7 in kg-mol/
m?-s, nis the number of components, and D;;is the binary molecular diffusivity
for components i and jin m24.
Application of Equation (10-75) to a three-component mixture yields the
equations

dC, _ (x,Ng—x5N,) . (XANC—XCNA)

yE Do Do (10-76)
dC xgN ,—x,N xgN,-—x,N
dCp _ (xpNa=xaNp)  (XpNc—xcNp) (10-77)
dz Dyg Dge
dC XN 4—x, N x~Np—xgN,

c _ KcNa=xalNo)  (xcNp-xpNe) (10-78)

dz Dac Dpc

where the appropriate equalities for the binary molecular diffusivities have been
substituted for Dgs = Dyg Dea= Dac, and Deg = D

Typical boundary conditions for the preceding equations are dictated by the
physical or chemical process. For example, if the diffusion is to a catalyst surface
where the reaction rate is very fast, then the corresponding concentration of the
limiting reactant at the catalyst surface may be assumed to be zero. If the diffu-
sion process leads to a bulk stream, then the concentrations in the bulk stream
are usually assumed to be at the bulk stream concentrations and diffusing com-
ponents not in the bulk stream will have zero concentrations. Often the bound-
ary conditions involving concentrations are split between two locations.

If relationships are known between the fluxes due to reaction stoichiometry
or any of the fluxes are zero (stagnant component), then these relationships can
be substituted into the preceding equations or expressed separately.

10.8.4 Solution

For the three-component system of this problem, the differential equations of
Equations (10-76) to (10-78) directly apply. Since component C is stagnant, then
the flux of this component is zero. Thus /N = O. The problem solution requires
that the two fluxes N4 and Ng must be optimized until the boundary conditions
of the concentrations of Table 10-9 are satisfied. The initial conditions are the
known concentrations at point 1, and the final conditions are the known concen-
trations at point 2.
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(a) & (b) The POLYMATH Simultaneous Differential Equation Solver can
be used to solve the differential equations as a split boundary value problem
with the initial conditions at point 1. In order to converge on the values of fluxes
Ny and Np, error functions for the matching of the boundary conditions at point
2 can be defined by

e(Cp = 0-Cyl (10-79)

-3
e(Cp) = 2701 x10 ~ - 10-80
(Cp) 81,0001 ( )
Note that these error functions should go to zero when convergence is obtained.

Utilizing the preceding error functions and adding definitions for the mole
fractions of the three components, one can write an initial POLYMATH equation
set as given in Table 10-10.

Table 10-10 POLYMATH Program - File P10-08AB1.POL

Line | Equation
d(CA)/d(z)=(xA*NB-xB*NA)/DAB+(xA*NC-xC*NA)/DAC
d(CB)/d(z)=(xB*NA-xA*NB)/DAB+(xB*NC-xC*NB)/DBC
d(CC)/d(z)=(xC*NA-xA*NC)/DAC+(xC*NB-xB*NC)/DBC
NA=2.396E-5

NB=-3.363E-4

DAB=1.47E-4

NC=0

DBC=1.245E-4

DAC=1.075E-4

10 |CT=0.2/(82.057E-3*328)

11 |errA=CA-0

12 |errB=CB-2.701E-3

13 |xB=CB/CT

O N[O| O »| W N =

©

14 [xA=CAICT
15 [xC=CCICT

16 |z(0)=0

17 |CA(0)=0.0002229
18 |CB(0)=0

19 |CC(0)=0.007208
20 |z(f)=0.001

Note that the initial estimate for /N4 in the preceding POLYMATH equation
set is obtained from an application of Fick's law for just simple binary diffusion
of A in C while the other diffusional transport is neglected. Thus the initial esti-
mate for N, is

(Cal. = Cal) 4
‘2 ‘1 =71.075><10_4(0_2'229X10 )

-5
- Dy—2t L = 2.396x 10 (10-81
ACT(2),-7]) (0.001-0) ( )

Ny
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Similarly, for Ng the initial estimate is

(CB —CB ) -3
’2 ‘1 145 104270110 " —0)

-4
Dp————— = -3.363 x 10 "(10-82
BC (2], 2])) (0.001-0) ( )

Ng =

The POLYMATH problem solution file for the initial solution is found in
@ directory CHAPTER 10 with file named P 10008AB 1.POL.

Optimization of N4 and Np
A simple way to optimize these two fluxes is first to hold Np fixed and then to
converge upon an improved value of N4 by minimizing the error calculated in
Equation (10-79). This iterative shooting method solution can be easily accom-
plished by trial and error or by the secant method, as discussed in Problem 6.5.
Then the improved value of N4 can be held fixed, and an improved value of Ng
can be obtained by minimizing the error calculated by Equation (10-80). Note
that this simple optimization technique really involves searching along each
parameter until a local minimum is obtained in an objective function, and then
searching in turn along the other parameter to satisfy another objective function.

Typical progress in the solution for these local searches of this problem is
summarized in Table 10-11. Note that the initial optimization holds Ng and
searches for the value of N4. Then the next step involves holding N4 and search-
ing for an improved value of N Convergence is obtained with just two searches
for each flux, and the resulting values are found to be N, = 212x107° kg-mol/
m?-s and Np=—-414x104 kg—molenz-s. The resulting mole fraction profiles are
nonlinear, as shown in Figure 10-7, and the final result is significantly different
from the initial solution calculated from binary diffusion consideration only.

Table 10-11 Iterative Search for Fluxes N, and Ng

Search Ny e(Cy) Np e(Cp)

Start 2396x10° —1.692x 10° -3.363x 104 -4.170x 104
1 2.174x10° 4224x 108 -3363x 104 -4196x 104

2.174x10° —4309x 108 -4.141x10% 6325x10°8

2.115x107° 9811x10°0 —4141x10% -7.510x 1077

SOOI \V]

2115x10° —1.017x 108 -4.143x107% 2.827x1077




