Solution of a Partial Differential Equations using the Method of Lines

Differential equations where there are several independent variables, such as in the equation:

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

are called partial differential equations. To completely define a problem involving PDEs initial values and boundary conditions have to be specified, also.

The use of the "Method of Lines" for solving PDEs is demonstrated in this example.

iffusion and	l Rea	ction i	a Fallin	i g Lami	nar Liq	uid Film (
Finite Thi	ickne	ss - So	lution k	w the N	lethod o	of Lines
	POLYMATH	Report		'y the h	tethea o	
c	Ordinary Differ	ential Equations				
	C-laulatad	the of DEC				
	Variabl	Values of DEQ	Variables Minimal value	Maximal value	Final value	
	1 CA1		0.03	0.03	0.03	
	2 CA10	0.05	0.05	0.0001302	0.0001302	
	3 CA11	0	0	0.0001102	0.0001102	
	4 CA2	0	0	0.0202344	0.0202344	
	5 CA3	0	0	0.0121765	0.0121765	
	6 CA4	0	0	0.006606	0.006606	
	7 CA5	0	0	0.0032975	0.0032975	
	8 CA6	0	0	0.001558	0.001558	
	9 CA7	0	0	0.0007235	0.0007235	
	10 CA8	0	0	0.0003486	0.0003486	
	11 CA9	0	0	0.0001902	0.0001902	
	12 DAB	1.5E-09	1.5E-09	1.5E-09	1.5E-09	
	13 delta	0.0003	0.0003	0.0003	0.0003	
	14 deltax	3.0E-05	3.0E-05	3.0E-05	3.0E-05	
	15 kprime	0	0	0	0	
	16 vavg	0.4	0.4	0.4	0.4	
	17 vmax	0.6	0.6	0.6	0.6	
	18 z	0	0	1.	1.	

Balance on A Absorbed and A Exiting by Flow

For a film of height H in m and width W in m, the input is given by

$$M_A = NAavg H W$$

where M_A is in kg-mol/s

The output of A that exits the film of height H is

$$M_A = W \int_0^{\delta} v_z C_A dx$$

In which v_z and C_A are determined by the profile obtained from the numerical solution at height *H*.

To calculate the integral the values of C_A at 11 node location are entered into the data table of Polymath where the Analysis -> Integration options are used to carry out the integration