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10.15 DIFFusION AND REACTION IN FALLING LAMINAR LiQuiD FiLM
OF FINITE THICKNESS

10.15.1 Concepts Demonstrated

Unsteady-state mass transfer with gas absorption, liquid-phase diffusion, and
first-order reaction in a falling Newtonian fluid of finite thickness.

10.15.2 Numerical Methods Utilized

Application of the numerical method of lines to solve a partial differential equa-
tion which can be expressed as a system of simultaneous ordinary differential
equations.

10.15.3 Problem Statement

Consider the absorption of CO, gas into a falling liquid film of alkaline solution
in which there is a first-order irreversible reaction. A similar process without
flow is discussed in Problem 10. 14 The resulting concentration of the dissolved
COs in the film is quite small so that the viscosity of the liquid is not affected,
and the mass transport in the liquid by bulk flow is negligible. The steady-state
laminar flow of a Newtonian fluid down a vertical wall results in a velocity dis-
tribution, which is given by

v, = 95%?_2[1@2} - Vzmax[l’(m (10-131)

as has been discussed in Problem 83
A steady-state material balance on a differential volume within the liquid
film yields the partial differential equation given by

2
ICa _ D I Ca kK'C 10-132
Yz~ Pas gz KCa (10-132)

where v, is the velocity in m 4, C4 is the concentration of dissolved CO, in kg-
mol m3 D 4p is the diffusivity of dissolved CO,in the alkaline solution with units
of m?4, and k' is a first-order reaction rate constant for the neutralization reac-
tion in s~ L The numerical values of all variables are the same as in Problem
10. 14 except for k'. The film thickness is 6 = 3x 104 m, v, =06ms, and
Vi (2/3)v, = 04m4. max

Zav
The boundary condition for Equation (10-132) in the z direction is that C4 is
zero at the point where the film begins to flow down the wall. Thus

Cy =0 (10-133)
z=0
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The first boundary condition in the x direction is that C, is known at the
surface of the film, and this can be expressed as

c = Cye = 0.03 (10-134)

x=0,z>0

which implies that the external mass transfer coefficient is very large. The sec-
ond boundary condition in the x direction is that there is no mass transfer at the
wall. Thus

9Ca = 10-135
= -0 (10-135)

x=0,z20

/(a) Calculate the concentration of dissolved A at each node point wit}m
the liquid when there is no reaction and at z= 1 m. Utilize the numeri-
cal method of lines with 11nodes (10intervals), as shown in Figure 10-
13

(b) Extend part (a) by calculating the average flux of A absorbed by the
film in kg-mol 4 toz= 1m.

(© Plot the concentration of A versus z at nodes 3 5, 7, and 9for part (a).

(d) Verify the results of part (a) by calculating the molar rate of A absorbed
at the film surface and comparing this with the calculated molar rate of
Aexiting in the liquid film at z= 1m. Consider the film to be 1m wide.

() Repeat parts (@) and (c) for the case where a weak alkaline solution
causes arll irreversible first-order reaction of A with a rate constant of
k'=1s""

(f) VWhat is the percentage increase in absorption of A from the gas phase
because of the reaction in part (e) relative to that of part (a) that had no

\ reaction?

10.15.4 Solution (Partial)

(@) The numerical method of lines is introduced in Problem 6.8 and it is
applied in Problem 10. 13to unsteady-state diffusion in a finite slab with no reac-
tion. However, this current problem is at steady state, with C4 being a function
of depth within the film, designated as x, and the distance from the top of the
falling film, designated as z. The finite difference elements for this problem are
shown in Figure 10- 13 where the interior of the slab has been divided into NV =
10intervals involving N + 1= 11nodes.

The method of lines allows ordinary differential equations to describe the
variation of C4 with the z direction and can utilize finite elements to describe the
variation in the x direction. This treatment gives a working equation set from
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Figure 10-13 Mass Transfer with Reaction within a Falling Laminar Film

Equation (10-132) as

dCAn _ DAB ' <n< 10-1
- —2(CAH+172€AH+ CAn_l)kaAn /VZH for 2<n< 10 (10-136)

(Ax)

where the second-order central difference approximation of Equation (A-9) is
used for the second derivative.
The velocity v, in Equation (10-130) varies only with x, and this can be

expressed by writing Equation (10-131) as

v, - Vzmax[l f(@_‘_&lﬂi‘)z} for (2<n< 10) (10-137)

Boundary Conditions
The initial condition of Equation (10-133) applies to the Cy4 in each of the
internal finite elements. Thus

Cy, = 0 at z=Ofor 2<n< 10 (10-138)

The boundary condition given by Equation (10-134) applies to the first finite ele-
ment, giving

Cyy = 003 for 220 (10-139)
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Equation (10-135) involves the derivative of C4 at the wall, which can be
obtained using the second-order backward finite difference approximation of
Equation (A-7) for the derivative as

a_CAll 3Ca11—4Ca10 " Cag

=1 = S =0 (10-140)

The preceding equation can be solved for C,,, toyield

4C, - C

Cayy = y (10-141)
Sometimes numerical noise may enter into the preceding equation to yield nega-
tive values. This can be handled by logic to keep C41; at zero whenever a nega-
tive value is calculated.

Numerical Solution

The general finite difference expression for Equation (10-132) with the velocity
expression from Equation (10- 137) can be combined and written as

dCp, [ Dag (n-1)A%2
dz = (AX)Z(CAH+12CAH+CA11—1)kCAH:|/{VZmax|:1( 9 ) :|}

for 2<n< 10 (10-142)

The initial conditions are all zero from the boundary condition of Equation (10-
138). These nine ordinary differential equations plus Equations (10- 139) and (10-
141) from the remaining boundary conditions allow the C4’s at the 11nodes tobe

calculated as a function of z. Note that more accurate results could be obtained

by utilizing more node points.

The POLYMATH Simultaneous Differential Equation Solver or any other
ODE package can be used to solve this set of equations. The equation set for
POLYMATH is given in Table 10-17 where the capability of the full-screen edi-
tor to duplicate an equation was used during problem entry of the repetitive dif-
ferential equations so that only the node values needed to be changed:

Table 10-17 POLYMATH Program - File P10-15A.POL

Line | Equation
d(CA2)/d(z)
d(CA4)/d(z)
d(CA5)/d(z)
d(CA3)/d(z)
d(CAB)/d(z)

)

)

DA
Al
Al
DA

*(CA3-2*CA2+CA1)/deltax2-kprime*CA2)/(vmax*(1-((
*(CA5-2*CA4+CA3)/deltax2-kprime*CA4)/(vmax*(1-((
*(CAB-2*CA5+CA4)/deltax2-kprime*CAS)/(vmax*(1-((5-1)*deltax/delta)*

( ) ) )*deltax/delta)*2))
( ) ) ) )2))
( ) ) ) )"2))
*(CA4-2*CA3+CA2)/deltax 2-kprime*CA3)/(vmax*(1-((3-1)*deltax/delta)*2))
( ) ) ) )"2))
( ) ) ) )"2))

2))

*deltax/delta)®

OO

2-
4-
5-
3-

1
1
1
1
AB*(CA7-2*CAB6+CAS5)/deltax*2-kprime*CAB)/(vmax*(1-((6-1)*deltax/delta)*
d(CA7)/d(z)=(DAB*(CA8-2*CA7+CAB)/deltax"2-kprime*CA7)/(vmax*(1-((7-1)*deltax/delta)*
d(CA8)/d(z)=(DAB*(CA9-2*CA8+CAT7)/deltax"2-kprime*CA8)/(vmax*(1-((8-1)*deltax/delta)*

d(CA9)/d(z)=(DAB*(CA10-2*CA9+CA8)/deltax*2-kprime*CA9)/(vmax*(1-((9-1)*deltax/delta)*2))

d(CA10)/d(z)=(DAB*(CA11-2*CA10+CA9)/deltax*2-kprime*CA10)/(vmax*(1-((10-1)*deltax/
delta)*2))

0| 0| 0| OO| 0| @

0|0

©O| O N| OO B W N =
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Table 10-17 POLYMATH Program - File P10-15A.POL

Line | Equation
10 |DAB=1.5E-9

11 |kprime=0
12 |vmax=0.6
13 |delta=3.E-4
14 |CA1=0.03

15 |CA11=if(4*CA10<CA9)then(0)else((4*CA10-CA9)/3)
16 |deltax=0.1*delta
17  |vavg=(2/3)*vmax

18 [2(0)=0
19 |CA2(0)=0
20 |CA4(0)=0
21 |CA5(0)=0
22 |CA3(0)=0
23 |CA6(0)=0
24 |CA7(0)=0
25 | CA8(0)=0
26 | CA9(0)=0
27 | CA10(0)=0
28 |z(H=1

The POLYMATH problem solution file for part (a) is found in directory
@ CHAPTER 10with file named P 10- 15A.POL.

(b) The average flux of A to a liquid film of height H is given by

]dz
=2 X207 (10-143)

where N, is the average flux of A transferred to the liquid film in kg-mol/
avg

m2-s and H is the film height in m. Equation (10 143) can be differentiated to
yield

dNA _DABE x=0,z
T e _ ’ 10-144
dz H (10 )

with an initial condition that N, = Oat z= O Integration of this equation to
avg

any distance z yields the value of N Aug over the film height.
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Equation (10-144) can be written using a second-order forward finite differ-
ence approximation as

dNy Dpp(=3Cy +4C 0~ Cp3)

avg _

dz H 2Ax

(10-145)

The integration of the preceding equation for H = 1 m simultaneously with the
equation set from part (@) to a final value of z = 1m allows the determination of

the requested N, .
avg

(d) An overall steady-state material balance on A within the film when
there is no reaction requires that the A that is transferred at the film surface
must equal the A that flows out with the film. For a film of height H in m and
width Win m, the input is given by

My = Ny HW (10-146)

where M} is in kg-mol 4.
The output of A that exits the film at height H can be calculated from
0
My = W v,Cydx (10-147)
0
in which v, varies with z according to Equation (10-131) and Cy4 is the concentra-
tion profile determined from the numerical solution in part (a) at height H.

In order to evaluate Equation (10- 147), the numerical values of Cy4 at the 11
node locations from the solution of part (a) can be used. The integral can be eval-
uated by fitting the product of v,C, versus x with a cubic spline or polynomial
and evaluating the integral with the POLYMATH Curve Fitting and Regression
Program. The comparison of the calculations from Equations (10-146) and (10
147) should be made with H= W= 1m.



