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10.15 DIFFUSION AND REACTION IN FALLING LAMINAR LIQUID FILM

OF FINITE THICKNESS

10.15.1 Concepts Demonstrated

Unsteady-state mass transfer with gas absorption, liquid-phase diffusion, andfirst-order reaction in a falling Newtonian fluid of finite thickness.
10.15.2 Numerical Methods Utilized

Application of the numerical method of lines to solve a partial differential equa-tion which can be expressed as a system of simultaneous ordinary differentialequations.
10.15.3 Problem Statement

Consider the absorption of CO2 gas into a falling liquid film of alkaline solutionin which there is a first-order irreversible reaction. A similar process withoutflow is discussed in Problem 10.14. The resulting concentration of the dissolvedCO2 in the film is quite small so that the viscosity of the liquid is not affected,and the mass transport in the liquid by bulk flow is negligible. The steady-statelaminar flow of a Newtonian fluid down a vertical wall results in a velocity dis-tribution, which is given by
(10-131)

as has been discussed in Problem 8.3.A steady-state material balance on a differential volume within the liquidfilm yields the partial differential equation given by
(10-132)

where vz is the velocity in m/s, CA is the concentration of dissolved CO2 in kg-mol/m3, DAB is the diffusivity of dissolved CO2 in the alkaline solution with unitsof m2/s, and  is a first-order reaction rate constant for the neutralization reac-tion in s−1. The numerical values of all variables are the same as in Problem10.14 except for . The film thickness is δ = 3 × 10−4 m,  = 0.6 m/s, andm/s.
The boundary condition for Equation (10-132) in the z direction is that CA iszero at the point where the film begins to flow down the wall. Thus

(10-133)
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The first boundary condition in the x direction is that CA is known at thesurface of the film, and this can be expressed as
(10-134)

which implies that the external mass transfer coefficient is very large. The sec-ond boundary condition in the x direction is that there is no mass transfer at thewall. Thus
 (10-135)

10.15.4 Solution (Partial)

(a) The numerical method of lines is introduced in Problem 6.8, and it isapplied in Problem 10.13 to unsteady-state diffusion in a finite slab with no reac-tion. However, this current problem is at steady state, with CA being a functionof depth within the film, designated as x, and the distance from the top of thefalling film, designated as z. The finite difference elements for this problem areshown in Figure 10–13, where the interior of the slab has been divided into N =10 intervals involving N + 1 = 11 nodes.
The method of lines allows ordinary differential equations to describe thevariation of CA with the z direction and can utilize finite elements to describe thevariation in the x direction. This treatment gives a working equation set from
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(a) Calculate the concentration of dissolved A at each node point withinthe liquid when there is no reaction and at z = 1 m. Utilize the numeri-cal method of lines with 11 nodes (10 intervals), as shown in Figure 10–13.  (b) Extend part (a) by calculating the average flux of A absorbed by thefilm in kg-mol/s to z = 1 m.  (c) Plot the concentration of A versus z at nodes 3, 5, 7, and 9 for part (a).  (d) Verify the results of part (a) by calculating the molar rate of A absorbedat the film surface and comparing this with the calculated molar rate ofA exiting in the liquid film at z = 1 m. Consider the film to be 1 m wide. (e) Repeat parts (a) and (c) for the case where a weak alkaline solutioncauses an irreversible first-order reaction of A with a rate constant of = 1 s−1.(f) What is the percentage increase in absorption of A from the gas phasebecause of the reaction in part (e) relative to that of part (a) that had noreaction?  
k'
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Equation (10-132) as
   for (2 ≤ n ≤ 10) (10-136)

where the second-order central difference approximation of Equation (A-9) isused for the second derivative.The velocity  in Equation (10-136) varies only with x, and this can be
expressed by writing Equation (10-131) as

for (2 ≤ n ≤ 10) (10-137)

Boundary ConditionsThe initial condition of Equation (10-133) applies to the CA in each of theinternal finite elements. Thus
at z = 0 for (2 ≤ n ≤ 10) (10-138)

The boundary condition given by Equation (10-134) applies to the first finite ele-ment, giving
 for (10-139)

Exposed Surface Boundary Condition:CA1 is constant at CAs(due to pure CO2)
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Figure 10–13  Mass Transfer with Reaction within a Falling Laminar Film
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Equation (10-135) involves the derivative of CA at the wall, which can beobtained using the second-order backward finite difference approximation ofEquation (A-7) for the derivative as
(10-140)

The preceding equation can be solved for  to yield
(10-141)

Sometimes numerical noise may enter into the preceding equation to yield nega-tive values. This can be handled by logic to keep CA11 at zero whenever a nega-tive value is calculated.Numerical SolutionThe general finite difference expression for Equation (10-132) with the velocityexpression from Equation (10-137) can be combined and written as
     

for (2 ≤ n ≤ 10) (10-142)

The initial conditions are all zero from the boundary condition of Equation (10-138). These nine ordinary differential equations plus Equations (10-139) and (10-141) from the remaining boundary conditions allow the CA’s at the 11 nodes to becalculated as a function of z. Note that more accurate results could be obtainedby utilizing more node points.The POLYMATH Simultaneous Differential Equation Solver or any otherODE package can be used to solve this set of equations. The equation set forPOLYMATH is given in Table 10–17 where the capability of the full-screen edi-tor to duplicate an equation was used during problem entry of the repetitive dif-ferential equations so that only the node values needed to be changed:
Table 10–17  POLYMATH Program - File P10-15A.POL

Line Equation 

1 d(CA2)/d(z)=(DAB*(CA3-2*CA2+CA1)/deltax^2-kprime*CA2)/(vmax*(1-((2-1)*deltax/delta)^2))

2 d(CA4)/d(z)=(DAB*(CA5-2*CA4+CA3)/deltax^2-kprime*CA4)/(vmax*(1-((4-1)*deltax/delta)^2))

3 d(CA5)/d(z)=(DAB*(CA6-2*CA5+CA4)/deltax^2-kprime*CA5)/(vmax*(1-((5-1)*deltax/delta)^2))

4 d(CA3)/d(z)=(DAB*(CA4-2*CA3+CA2)/deltax^2-kprime*CA3)/(vmax*(1-((3-1)*deltax/delta)^2))

5 d(CA6)/d(z)=(DAB*(CA7-2*CA6+CA5)/deltax^2-kprime*CA6)/(vmax*(1-((6-1)*deltax/delta)^2))

6 d(CA7)/d(z)=(DAB*(CA8-2*CA7+CA6)/deltax^2-kprime*CA7)/(vmax*(1-((7-1)*deltax/delta)^2))

7 d(CA8)/d(z)=(DAB*(CA9-2*CA8+CA7)/deltax^2-kprime*CA8)/(vmax*(1-((8-1)*deltax/delta)^2))

8 d(CA9)/d(z)=(DAB*(CA10-2*CA9+CA8)/deltax^2-kprime*CA9)/(vmax*(1-((9-1)*deltax/delta)^2))

9 d(CA10)/d(z)=(DAB*(CA11-2*CA10+CA9)/deltax^2-kprime*CA10)/(vmax*(1-((10-1)*deltax/
delta)^2))
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The POLYMATH problem solution file for part (a) is found in directoryCHAPTER 10 with file named P10-15A.POL.
(b) The average flux of A to a liquid film of height H is given by

(10-143)

where  is the average flux of A transferred to the liquid film in kg-mol/
m2

·s and H is the film height in m. Equation (10-143) can be differentiated toyield

(10-144)

with an initial condition that  = 0 at z = 0. Integration of this equation to
any distance z yields the value of  over the film height.

10 DAB=1.5E-9

11 kprime=0

12 vmax=0.6

13 delta=3.E-4

14 CA1=0.03

15 CA11=if(4*CA10<CA9)then(0)else((4*CA10-CA9)/3)

16 deltax=0.1*delta

17 vavg=(2/3)*vmax

18 z(0)=0

19 CA2(0)=0

20 CA4(0)=0

21 CA5(0)=0

22 CA3(0)=0

23 CA6(0)=0

24 CA7(0)=0

25 CA8(0)=0

26 CA9(0)=0

27 CA10(0)=0

28 z(f)=1

Table 10–17  POLYMATH Program - File P10-15A.POL
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Equation (10-144) can be written using a second-order forward finite differ-ence approximation as
(10-145)

The integration of the preceding equation for H = 1 m simultaneously with theequation set from part (a) to a final value of z = 1 m allows the determination ofthe requested .
(d) An overall steady-state material balance on A within the film whenthere is no reaction requires that the A that is transferred at the film surfacemust equal the A that flows out with the film. For a film of height H in m andwidth W in m, the input is given by

(10-146)

where MA is in kg-mol/s.The output of A that exits the film at height H can be calculated from
(10-147)

in which vz varies with z according to Equation (10-131) and CA is the concentra-tion profile determined from the numerical solution in part (a) at height H.In order to evaluate Equation (10-147), the numerical values of CA at the 11node locations from the solution of part (a) can be used. The integral can be eval-uated by fitting the product of vzCA versus x with a cubic spline or polynomialand evaluating the integral with the POLYMATH Curve Fitting and RegressionProgram. The comparison of the calculations from Equations (10-146) and (10-147) should be made with H = W = 1 m.
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