Combining HAZOP with Dynamic Process Model Development for Safety Analysis

Shimon Eisenberg^a, Mordechai Shacham^a and Neima Brauner^b

> ^aDept. Chem. Eng., Ben-Gurion University Beer-Sheva, Israel ^bSchool of Engineering, Tel-Aviv University Tel-Aviv, Israel

The Needs

≻Process hazards analysis is an essential part of the process design activity. In the US OSHA (Occupational Health and Safety Administration) regulations require that major chemical plants perform process hazards analysis on a regular basis.

>HAZOP (Hazard and Operability Analysis) is a widely used procedure for process hazards analysis. It is carried out by a multidisciplinary team of experts in a *qualitative* manner.

➢ HAZOP is often followed by a detailed hazard analysis (HAZAN) where the *probability* for the occurrence of catastrophic events is evaluated.

The Needs

>HAZOP and HAZAN cannot provide *quantitative* answers regarding the *magnitude* of the deviations that will lead to severe consequences, nor the *time it takes* to reach a "no return" stage of an accident after the deviation has occurred, or the *action* that can be taken in order *to prevent* the accident.

>Dynamic simulation in emergency conditions can provide quantitative assessment of the consequences of abnormal operating conditions.

≻HAZAN and Dynamic Simulation are compatible as both require *division of the process into small sections*.

Format (1)					
	No. Equation	Explanation			
Equations are	1 t(0) = 0.0001	Starting time			
Equations are	2 $t(f) = 72000$	Final time (s)			
entered in order	$3 \frac{d(Np)}{d(t)} = (r1 - r2) * Vr0 / (1 - Epsd)$	Mole balance for 2-octanone (P)			
and format most	4 Np(0) = 0	Number of moles of 2-octanone (P) at $t = t0$			
	$5 \frac{d(Nx)}{d(t)} = r2 * Vr0 / (1 - Epsd)$	Mole balance for carboxylic acids (X)			
appropriate for	6 Nx(0) = 0	Number of moles of carboxylic acids (X) at $t = t0$			
documentation	7 r1 = k1 * CaOrg * CbAq * (1 - Epsd)	Reaction rate of a and b to p[kmol/m3/s]			
documentation	8 r2 = k2 * CpOrg * CbAq * (1 - Epsd)	Reaction rate of p and b to x[kmol/m3/s]			
purposes	9 Vr0 = 1.5	Initial volume in a reactor [m3]			
	10 Epsd = Vdos1 / (Vdos1 + Vr0)	Volume fraction of dispersed phase			
	11 $k1 = maA1 * exp(-E1perR / Tr - m1 * H)$	Specific reaction rate 1			
The program is	12 $k2 = mpA2 * exp(-E2perR / Tr - m2 * H)$	Specific reaction rate 2			
The program is	13 CaOrg = (Theta * NaF - Np - Nx) / (Vdos1 * Theta)	Concentr of a in org phase [kmole/m3]			
also used as	14 $CpOrg = Np / (Vdos1 * Theta)$	Concentr. of (P) in org phase [kmol/m3]			
model	15 $CbAq = (Np + Y * NaF) / Vr0$	Concentr. of (B) in aq. phase [kmole/m3]			
	16 Vdos1 = 0.6	Final volume of the dose [m3]			
documentation	17 maA1 = 10 ^ 5	Pre-exponential factor reaction 1 [m3/kmol/s]			
	18 mpA2 = 10 ^ 10	Pre-exponential factor reaction 2[m3/kmol/s]			
	19 E1perR = 11300	Activation temperature reaction 1 [K]			
	20 $E2perR = 12000$	Activation tempetature reaction 2 [K]			
	21 m1 = 6.6	Hammett's reaction rate coeff. reaction 1			
	22 m2 = 2.2	Hammett's reaction rate coeff. reaction 2			
	23 H =6221 - 3.7214 * wt - 1.5714 * wt ^ 2	Hammett's acidity function			
	24 Theta = If (t <= tdos) Then (t / tdos) Else (1)	Dimensionless time up to t=tdos			
	25 NaF = Vdos1 * RhoOctan / MwOctan	Total amount of 2-octanol (a) fed [kmol]			

	Format (2)				
No.	Equation	Explanation			
26	Y = 0.035	Initial concentr. of nitrosonium ion Y=Nb0/Na			
27	wt = Nn * Mw / (Vr0 * RhoAcid)	Mass concentr. of nitric acid sol [%/100%]			
28	tdos = 36000	dosing time [s], 10h			
29	RhoOctan = 820.7	Density of 2-octanol [kg/m3]			
30	MwOctan = 130.23	Molar mass of 2-octanol [kg/kmol]			
31	Nn = CnAq * Vr0	Number of moles of HNO3 [kmol]			
32	Mw = 63	Molar mass of HNO3 [kg/kmol]			
33	RhoAcid = 1500	Density of pure nitric acid [kg/m3]			
34	CnAq = (NnO - Y * NaF - Np - 2 * Nx) / Vr0	Concentr. of HNO3 in the aq. phase [kmol/m3			
35	NnO = Vr0 * Percent * RhoAcid / Mw	Initial number of mole of HNO3 [kmole]			
36	Percent = 0.6	Initial mass concentr of nitr. acid sol. [%]			
37	d(Tr)/d(t) = (Qr + Qdos + Qcool) / Gamma	Reactor energy balance (Tr in K)			
38	Tr(0) = 260	Temp. in the reactor at $t = t0$ (K)			
- 39	Qr = Qnol + Qnone	Sum of the heat of reaction the reactions [W)			
40	Qdos = Phi * RhoCPdos * (Tdos - Tr)	Heat input due to reactant addition [W]			
41	Qcool = UAcool * (Tcool - Tr)	Heat removed by the cooling jacket [W]			
42	Gamma = Gamma0 + RhoCPdos * Phi * t	Total heat capacity of the system [J/K]			
43	Qnol = r1 * Vr0 * Hnol / (1 - Epsd)	Heat of reaction, 1 [W]			
44	Qnone = r2 * Vr0 * Hnone / (1 - Epsd)	Heat of reaction, 2 [W]			
45	Phi = Vdos1 / tdos	Volumetric flow rate of the feed [m3/s]			
46	RhoCPdos = 2 * 10 ^ 6	Heat capacity of dose [J/m3/K]			
47	Tdos = 293.15	Temperature of feed dose [K]			
48	UAcool = UA0 + (UA1 - UA0) * Theta	Cooling surface heat transfer coefficient [W/K			

		Initial	Minimal	Maximal	Final
	Variable	value	value	value	value
1	t	0.0001	0.0001	7.20E+04	7.20E+04
2	Np	0	0	3.122345	3.122345
3	Nx	0	0	0.252869	0.252069
4	Tr	260	260	274.57	261.6412
5	Teool	272 10	260 2020		
	Tcool	273.15 IN = 265 I	260.3828 X (instead	273.15 l of 260 K	260.3828
	Tcool	Initial	Z60.3828 X (instead Minimal	273.15 l of 260 K Maximal))
	Tcool_	Initial value	X (instead	of 260 K Maximal value) Final value
1	Tcool_ Variable	Initial value 0.0001	X (instead	273.15 l of 260 K Maximal value 7.20E+04	260.3828) Final value 7.20E+04
1	Tcool_ Variable t Np	Initial value 0.0001	260.3828 X (instead Minimal value 0.0001 0	273.15 of 260 K Maximal value 7.20E+04 1.368575	260.3828) Final value 7.20E+04 0.335306
1	Tcool_ Tcool_ Variable t Np Nx	Initial value 0.0001	260.3828 X (instead Minimal value 0.0001 0 0 0	273.15 of 260 K Maximal value 7.20E+04 1.368575 2.404981	260.3828 Final value 7.20E+04 0.335306 2.404981
1 2 3 4	Tcool_ Tcool_ Variable t Np Nx Tr	Initial value 0.0001 0 260	260.3828 X (instead Minimal value 0.0001 0 0 260	273.15 of 260 K Maximal value 7.20E+04 1.368575 2.40498 410.159	260.3828 Final value 7.20E+04 0.335306 2.404981 265.6675

			_			
effective heat transfer rate	100%	90%	81%	80%	70%	60%
n_P [kmol]	3.16	3.08	0.05	0.14	0.3	0.38
$n_{\rm x}$ [kmol]	0.26	0.33	3.71	3.3	2.63	2.64
Tand mar [°C]	-10.4	-10.2	8.88	6.42	0.3	2.37
T _{reactor} max [°C]	1.31	3.9	195	177	147	128
Reduc	ction of (the Flov	v Rate	of the C	ooling N	ledia
$F_w[l/\min]$	600	30	0	200	100	70
$n_{\rm p}[kmol]$	3.18	3.1	.7	3.16	3.07	0.01
$n_{\rm x}[kmol]$	0.21	0.2	3	0.26	0.36	3.78
$T_{\rm cool,max}[^{\circ}C]$	-11.5	-11	.0	-10.4	-8.40	39.0
	-0.15	-0.5	55	1 31	4 38	196

Reactor					
Guide Word	Deviation	Normal Value	Limit		
None	No flow in the cooling jacket				
Less of	Lower cooling media flowrate	600 liter/m	less than 70 liter/m		
Less of	Smaller heat transfer area	<mark>100%</mark>	less than 81%		
More of	Higher Cooling Media Temp.	<mark>-15 ⁰C</mark>	more than -6 °C		
Less	Shorter dosing time	<mark>20 h</mark>	less than 7.5 h		
More of	Larger dosing volume	<mark>0.6 m³</mark>	more than 0.81 m ³		
More of	Higher nitric acid concentration	<mark>59%</mark>	more than 64%		

Conclusions

- Quantitative aspects have been added to the HAZOP analysis by defining the *threshold value* for a deviation from normal operating conditions which may lead to catastrophic events.
- It was demonstrated that dividing the process into *smaller independent sections* reduces considerably the level of complexity associated with the dynamic simulation of a process in emergency conditions.
- The model of the process can be easily converted to a Simulator (for educational applications and operator training) by using the *Polymath MATLAB conversion* utility and the *MATLAB GUI* utility