No Title |POLVER05_0 |1 t(0) = 0.0001 # Starting time t(f) = 72000 # Final time (s) d(Np)/d(t) = (r1 - r2) * Vr0 / (1 - Epsd) # Mole balance for 2-octanone (P) Np(0) = 0 # Number of moles of 2-octanone (P) at t = t0 d(Nx)/d(t) = r2 * Vr0 / (1 - Epsd) # Mole balance for carboxylic acids (X) Nx(0) = 0 # Number of moles of carboxylic acids (X) at t = t0 r1 = k1 * CaOrg * CbAq * (1 - Epsd) # Reaction rate of a and b to p[kmol/m3/s] r2 = k2 * CpOrg * CbAq * (1 - Epsd) # Reaction rate of p and b to x[kmol/m3/s] Vr0 = 1.5 # Initial volume in a reactor [m3] Epsd = Vdos1 / (Vdos1 + Vr0) # Volume fraction of dispersed phase k1 = maA1 * exp(-E1perR / Tr - m1 * H) # Specific reaction rate 1 k2 = mpA2 * exp(-E2perR / Tr - m2 * H) # Specific reaction rate 2 CaOrg = (Theta * NaF - Np - Nx) / (Vdos1 * Theta) # Concentr of a in org phase [kmole/m3] CpOrg = Np / (Vdos1 * Theta) # Concentr. of (P) in org phase [kmol/m3] CbAq = (Np + Y * NaF) / Vr0 # Concentr. of (B) in aq. phase [kmole/m3] Vdos1 = 0.6 # Final volume of the dose [m3] maA1 = 10 ^ 5 # Pre-exponential factor reaction 1 [m3/kmol/s] mpA2 = 10 ^ 10 # Pre-exponential factor reaction 2[m3/kmol/s] E1perR = 11300 # Activation temperature reaction 1 [K] E2perR = 12000 # Activation tempetature reaction 2 [K] m1 = 6.6 # Hammett's reaction rate coeff. reaction 1 m2 = 2.2 # Hammett's reaction rate coeff. reaction 2 H = -0.6221 - 3.7214 * wt - 1.5714 * wt ^ 2 # Hammett's acidity function Theta = If (t <= tdos) Then (t / tdos) Else (1) # Dimensionless time up to t=tdos NaF = Vdos1 * RhoOctan / MwOctan # Total amount of 2-octanol (a) fed [kmol] Y = 0.035 # Initial concentr. of nitrosonium ion Y=Nb0/NaF wt = Nn * Mw / (Vr0 * RhoAcid) # Mass concentr. of nitric acid sol [%/100%] tdos = 36000 # dosing time [s], 10h RhoOctan = 820.7 # Density of 2-octanol [kg/m3] MwOctan = 130.23 # Molar mass of 2-octanol [kg/kmol] Nn = CnAq * Vr0 # Number of moles of HNO3 [kmol] Mw = 63 # Molar mass of HNO3 [kg/kmol] RhoAcid = 1500 # Density of pure nitric acid [kg/m3] CnAq = (NnO - Y * NaF - Np - 2 * Nx) / Vr0 # Concentr. of HNO3 in the aq. phase [kmol/m3] NnO = Vr0 * Percent * RhoAcid / Mw # Initial number of mole of HNO3 [kmole] Percent = 0.6 # Initial mass concentr of nitr. acid sol. [%] d(Tr)/d(t) = (Qr + Qdos + Qcool) / Gamma # Reactor energy balance (Tr in K) Tr(0) = 260 # Temp. in the reactor at t = t0 (K) Qr = Qnol + Qnone # Sum of the heat of reaction the reactions [W) Qdos = Phi * RhoCPdos * (Tdos - Tr) # Heat input due to reactant addition [W] Qcool = UAcool * (Tcool - Tr) # Heat removed by the cooling jacket [W] Gamma = Gamma0 + RhoCPdos * Phi * t # Total heat capacity of the system [J/K] Qnol = r1 * Vr0 * Hnol / (1 - Epsd) # Heat of reaction, 1 [W] Qnone = r2 * Vr0 * Hnone / (1 - Epsd) # Heat of reaction, 2 [W] Phi = Vdos1 / tdos # Volumetric flow rate of the feed [m3/s] RhoCPdos = 2 * 10 ^ 6 # Heat capacity of dose [J/m3/K] Tdos = 293.15 # Temperature of feed dose [K] UAcool = UA0 + (UA1 - UA0) * Theta # Cooling surface heat transfer coefficient [W/K] Gamma0 = 5.4 * 10 ^ 6 # Initial heat capacity of the system [J/K] Hnol = 160 * 10 ^ 6 # Specific heat of reaction 1 [J/kmol] Hnone = 520 * 10 ^ 6 # Specific heat of reaction 2 [J/kmole] UA0 = 1500 # Initial cool. surface heat trans. coeff.[W/K] UA1 = 2100 # Final cool. surface heat trans. coeff. [W/K] d(Tcool)/d(t) = (Fw * (Tcool_IN - Tcool) - Qcool / (RhoCoolant * CpCoolant)) / Vj # Jacket energy balance (T in K) Tcool(0) = 273.15 # Coolant exit temp. at t = t0 (K) Fw = 100 / 60 * 10 ^ (-3) # Flow rate of coolant [m3/s] Tcool_IN = 260 # Initial coolant temperature [K] RhoCoolant = 1000 # The density of coolant [kg/m3] CpCoolant = 4183 # Heat capacity of coolant [J/kg/K] Vj = 1.5 # Volume of the jacket [m3]