No Title |POLVER05_0 |1
t(0) = 0.0001 # Starting time
t(f) = 72000 # Final time (s)
d(Np)/d(t) = (r1 - r2) * Vr0 / (1 - Epsd) # Mole balance for 2-octanone (P)
Np(0) = 0 # Number of moles of 2-octanone (P) at t = t0
d(Nx)/d(t) = r2 * Vr0 / (1 - Epsd) # Mole balance for carboxylic acids (X)
Nx(0) = 0 # Number of moles of carboxylic acids (X) at t = t0
r1 = k1 * CaOrg * CbAq * (1 - Epsd) # Reaction rate of a and b to p[kmol/m3/s]
r2 = k2 * CpOrg * CbAq * (1 - Epsd) # Reaction rate of p and b to x[kmol/m3/s]
Vr0 = 1.5 # Initial volume in a reactor [m3]
Epsd = Vdos1 / (Vdos1 + Vr0) # Volume fraction of dispersed phase
k1 = maA1 * exp(-E1perR / Tr - m1 * H) # Specific reaction rate 1
k2 = mpA2 * exp(-E2perR / Tr - m2 * H) # Specific reaction rate 2
CaOrg = (Theta * NaF - Np - Nx) / (Vdos1 * Theta) # Concentr of a in org phase [kmole/m3]
CpOrg = Np / (Vdos1 * Theta) # Concentr. of (P) in org phase [kmol/m3]
CbAq = (Np + Y * NaF) / Vr0 # Concentr. of (B) in aq. phase [kmole/m3]
Vdos1 = 0.6 # Final volume of the dose [m3]
maA1 = 10 ^ 5 # Pre-exponential factor reaction 1 [m3/kmol/s]
mpA2 = 10 ^ 10 # Pre-exponential factor reaction 2[m3/kmol/s]
E1perR = 11300 # Activation temperature reaction 1 [K]
E2perR = 12000 # Activation tempetature reaction 2 [K]
m1 = 6.6 # Hammett's reaction rate coeff. reaction 1
m2 = 2.2 # Hammett's reaction rate coeff. reaction 2
H = -0.6221 - 3.7214 * wt - 1.5714 * wt ^ 2 # Hammett's acidity function
Theta = If (t <= tdos) Then (t / tdos) Else (1) # Dimensionless time up to t=tdos
NaF = Vdos1 * RhoOctan / MwOctan # Total amount of 2-octanol (a) fed [kmol]
Y = 0.035 # Initial concentr. of nitrosonium ion Y=Nb0/NaF
wt = Nn * Mw / (Vr0 * RhoAcid) # Mass concentr. of nitric acid sol [%/100%]
tdos = 36000 # dosing time [s], 10h
RhoOctan = 820.7 # Density of 2-octanol [kg/m3]
MwOctan = 130.23 # Molar mass of 2-octanol [kg/kmol]
Nn = CnAq * Vr0 # Number of moles of HNO3 [kmol]
Mw = 63 # Molar mass of HNO3 [kg/kmol]
RhoAcid = 1500 # Density of pure nitric acid [kg/m3]
CnAq = (NnO - Y * NaF - Np - 2 * Nx) / Vr0 # Concentr. of HNO3 in the aq. phase [kmol/m3]
NnO = Vr0 * Percent * RhoAcid / Mw # Initial number of mole of HNO3 [kmole]
Percent = 0.6 # Initial mass concentr of nitr. acid sol. [%]
d(Tr)/d(t) = (Qr + Qdos + Qcool) / Gamma # Reactor energy balance (Tr in K)
Tr(0) = 260 # Temp. in the reactor at t = t0 (K)
Qr = Qnol + Qnone # Sum of the heat of reaction the reactions [W)
Qdos = Phi * RhoCPdos * (Tdos - Tr) # Heat input due to reactant addition [W]
Qcool = UAcool * (Tcool - Tr) # Heat removed by the cooling jacket [W]
Gamma = Gamma0 + RhoCPdos * Phi * t # Total heat capacity of the system [J/K]
Qnol = r1 * Vr0 * Hnol / (1 - Epsd) # Heat of reaction, 1 [W]
Qnone = r2 * Vr0 * Hnone / (1 - Epsd) # Heat of reaction, 2 [W]
Phi = Vdos1 / tdos # Volumetric flow rate of the feed [m3/s]
RhoCPdos = 2 * 10 ^ 6 # Heat capacity of dose [J/m3/K]
Tdos = 293.15 # Temperature of feed dose [K]
UAcool = UA0 + (UA1 - UA0) * Theta # Cooling surface heat transfer coefficient [W/K]
Gamma0 = 5.4 * 10 ^ 6 # Initial heat capacity of the system [J/K]
Hnol = 160 * 10 ^ 6 # Specific heat of reaction 1 [J/kmol]
Hnone = 520 * 10 ^ 6 # Specific heat of reaction 2 [J/kmole]
UA0 = 1500 # Initial cool. surface heat trans. coeff.[W/K]
UA1 = 2100 # Final cool. surface heat trans. coeff. [W/K]
d(Tcool)/d(t) = (Fw * (Tcool_IN - Tcool) - Qcool / (RhoCoolant * CpCoolant)) / Vj # Jacket energy balance (T in K)
Tcool(0) = 273.15 # Coolant exit temp. at t = t0 (K)
Fw = 100 / 60 * 10 ^ (-3) # Flow rate of coolant [m3/s]
Tcool_IN = 260 # Initial coolant temperature [K]
RhoCoolant = 1000 # The density of coolant [kg/m3]
CpCoolant = 4183 # Heat capacity of coolant [J/kg/K]
Vj = 1.5 # Volume of the jacket [m3]