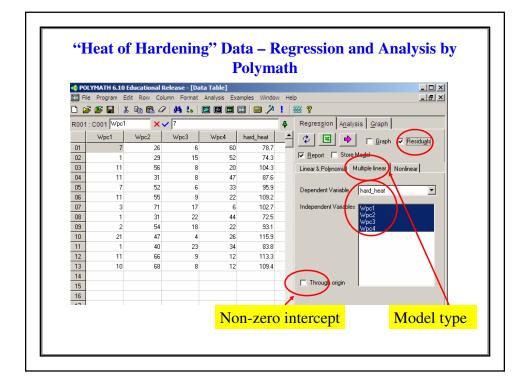
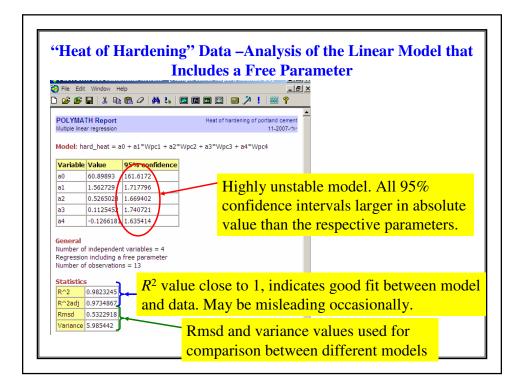
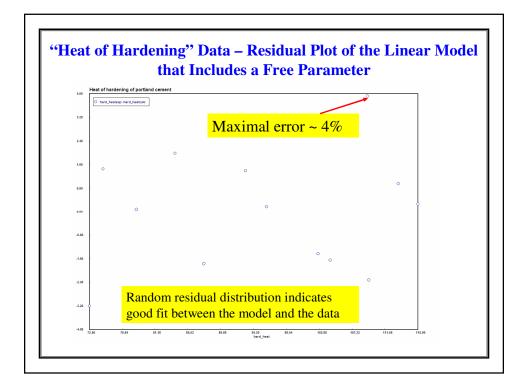


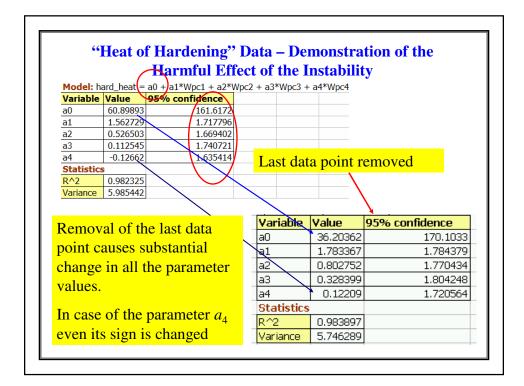

## Multiple Linear and Polynomial Regression with Statistical Analysis

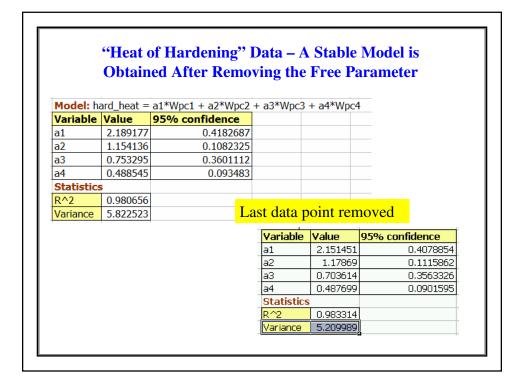
Typical examples of multiple linear and polynomial regressions include correlation of temperature dependent physical properties, correlation of heat transfer data using dimensionless groups, correlation of non-ideal phase equilibrium data and correlation of reaction rate data.


The software packages enable high precision correlation of the data, however statistical analysis is essential to determine the *quality of the fit* (how well the regression model fits the data) and the *stability of the model* (the level of dependence of the model parameters on the particular set of data).


The most important indicators for such studies are the *residual plot* (quality of the fit) and *95% confidence intervals* (stability of the model)


|                                      | No.                                      | xı                                 | x2                                        | X3                                | X4                            | y                                               |                                |                                            |
|--------------------------------------|------------------------------------------|------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------|-------------------------------------------------|--------------------------------|--------------------------------------------|
|                                      | 1                                        | 7                                  | 26                                        | 6                                 | 60                            | 78.7                                            |                                |                                            |
|                                      | 2                                        | 1                                  | 29                                        | 15                                | 52                            | 74.3                                            |                                |                                            |
|                                      | 3                                        | 11                                 | 56                                        | 8                                 | 20                            | 104.3                                           |                                |                                            |
|                                      | 4                                        | 11                                 | 31                                        | 8                                 | 47                            | 87.6                                            |                                |                                            |
|                                      | 5                                        | 7                                  | 52                                        | 6                                 | 33                            | 95.9                                            |                                |                                            |
|                                      | 6                                        | 11                                 | 55                                        | 9                                 | 22                            | 109.2                                           |                                |                                            |
|                                      | 7                                        | 3                                  | 71                                        | 17                                | 6                             | 102.7                                           |                                |                                            |
|                                      | 8                                        | 1                                  | 31                                        | 22                                | 44                            | 72.5                                            |                                |                                            |
|                                      | 9                                        | 2                                  | 54                                        | 18                                | 22                            | 93.1                                            |                                |                                            |
|                                      | 10                                       | 21                                 | 47                                        | 4                                 | 26                            | 115.9                                           |                                |                                            |
|                                      | 11                                       | 1                                  | 40                                        | 23                                | 34                            | 83.8                                            |                                |                                            |
|                                      | 12                                       | 11                                 | 66                                        | 9                                 | 12                            | 113.3                                           |                                |                                            |
|                                      | 13                                       | 10                                 | 68                                        | 8                                 | 12                            | 109.4                                           |                                |                                            |
|                                      |                                          |                                    |                                           |                                   |                               |                                                 |                                |                                            |
| unction of the clir                  | of compo<br>lker comp                    | sition.<br>pounds                  | The inc<br>$x_1$ -tric                    | lepende<br>alcium                 | ent vari<br>alumin            | at of harde<br>ables repre<br>ate (3 <i>CaO</i> | esent we<br>·Al2O3             | eight pero<br>3), x <sub>2</sub> -         |
| inction of<br>f the clir<br>icalcium | of compo<br>lker compo<br>liker silicate | sition.<br>pounds<br>(3 <i>CaO</i> | The inc<br>$x_1$ -tric<br>$\cdot SiO2$ ), | depende<br>alcium<br>$x_3$ -tetra | ent vari<br>alumin<br>acalciu | at of harde<br>ables repre                      | esent we<br>·Al2O3<br>-ferrite | eight per<br>3), x <sub>2</sub> -<br>(4CaO |


Г


| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |        | No.                 | xı                         | x <sub>2</sub>             | X3                  | X4               | у                           |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|----------------------------|----------------------------|---------------------|------------------|-----------------------------|--------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |        | 1                   | 7                          | 26                         | 6                   | 60               | 78.7                        |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |        | 2                   | 1                          | 29                         | 15                  | 52               | 74.3                        |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |        | 3                   | 11                         | 56                         | 8                   | 20               | 104.3                       |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |        | 4                   | 11                         | 31                         | 8                   | 47               | 87.6                        |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |        | 5                   | 7                          | 52                         | 6                   | 33               | 95.9                        |              |
| $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                 |        | 6                   | 11                         | 55                         | 9                   | 22               | 109.2                       |              |
| $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                 |        | 7                   | 3                          | 71                         | 17                  | 6                | 102.7                       |              |
| the coefficients of a linear model representation of $x_1, x_2, x_3$ , and $x_4$ , calculate the variance and the elation coefficient $R^2$ and the 95% confidence intervals.                         |        | 8                   | 1                          | 31                         | 22                  | 44               | 72.5                        |              |
| culate the coefficients of a linear model representation of $x_1, x_2, x_3$ , and $x_4$ , calculate the variance and the elation coefficient $R^2$ and the 95% confidence intervals.                  |        | 9                   | 2                          | 54                         | 18                  | 22               | 93.1                        |              |
| culate the coefficients of a linear model representation of anction of $x_1, x_2, x_3$ , and $x_4$ , calculate the variance and the elation coefficient $R^2$ and the 95% confidence intervals.       |        |                     | 21                         |                            |                     |                  |                             |              |
| culate the coefficients of a linear model representation of inction of $x_1, x_2, x_3$ , and $x_4$ , calculate the variance and the elation coefficient $R^2$ and the 95% confidence intervals.       |        |                     | 1                          | 10                         |                     |                  |                             |              |
| culate the coefficients of a linear model representation of inction of $x_1$ , $x_2$ , $x_3$ , and $x_4$ , calculate the variance and the elation coefficient $R^2$ and the 95% confidence intervals. |        |                     |                            |                            |                     |                  |                             |              |
| unction of $x_1$ , $x_2$ , $x_3$ , and $x_4$ , calculate the variance and the elation coefficient $R^2$ and the 95% confidence intervals.                                                             |        | 13                  | 10                         | 68                         | 8                   | 12               | 109.4                       |              |
|                                                                                                                                                                                                       | uncti  | e the co<br>on of x | Deffici<br>$x_1, x_2, x_3$ | ents of $c_3$ , and        | f a line $x_4$ , ca | ear mo<br>lculat | odel represe<br>e the varia | nce and the  |
| pare a residual plot.                                                                                                                                                                                 | relati | on coef             | ficien                     | t <i>R</i> <sup>2</sup> ar | nd the              | 95%              | confidence                  | e intervals. |
| pare a residual plot.                                                                                                                                                                                 |        | • 1                 | 1 1                        |                            |                     |                  |                             |              |
|                                                                                                                                                                                                       |        |                     |                            | <b>.</b> t                 |                     |                  |                             |              |
| sider the cases when the model includes and does not                                                                                                                                                  |        |                     | -                          |                            |                     |                  |                             |              |









