Multiple-Linear, Polynomial and Nonlinear Regression

Basic Concepts (1)

Let us assume that there is a set of *N* data points of a dependent variable y_i versus x_{1i} , x_{2i} , ... x_{ni} , where $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are n independent (explanatory) variables. A particular model to be fitted to the data is of the form

$$y_i = g(x_{1i}, x_{2i} \dots x_{ni}, \beta_0, \beta_1 \dots \beta_m)$$
 (1)

where $\beta_0, \beta_1...\beta_m$ are *m*+1 parameters of the model. The least-squares error approach is most often used to find the parameters of Equation (1).

The statistical assumption behind the least-squares error method for parameter estimation is that the measured value of the dependent variable has a deterministic and a stochastic part. The stochastic part is often denoted as an error, ε_i .

$$y_i = g(x_{1i}, x_{2i} \dots x_{ni}, \beta_0, \beta_1 \dots \beta_m) \pm \varepsilon_i$$
^(1a)

It is further assumed that the origin of ε_i is measurement error, which is randomly distributed.

Multiple-Linear, Polynomial and Nonlinear Regression

Basic Concepts (2)

An infinite number of measurements would be required to obtain the true values of the parameters $\beta_0, \beta_1...\beta_m$. Because a sample always contains a finite number of measurements, the calculated parameters are always approximations for the true values. They are denoted with a circumflex. Thus, $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_m$ are the calculated values of the parameters and \hat{y}_i is the calculated estimate for the dependent variable.

In the least-squares error approach, the estimates $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_m$ are found so that they minimize the following function:

$$F = \sum_{i=1}^{N} \left[y_i - g(x_{1i}, x_{2i} \dots x_{ni}, \beta_0, \beta_1 \dots \beta_m) \right]^2 \quad (2)$$

where *F* is the sum of squares of the errors. The particular mathematical technique of finding the set of the parameter values that minimizes the function *F* depends on the form of the function $g(\mathbf{x}_i, \boldsymbol{\beta})$. If the parameters appear in linear expressions in the function *g* (in multiple-linear and polynomial regressions, for example), the minimization can be carried out by solving a system of linear equations (the normal equations). Often models where the parameters appear in nonlinear expressions can be transformed to linear models by transformation of variables.

Graphic information for checking the quality of the fit .

An assessment of the quality of the fit of a particular model and comparison between different models is based on graphic and numeric information.

The measured (y_i) and the calculated (\hat{y}_i) values of the dependent variable can be plotted versus x_i (if there is a single independent variable) or versus i, the point number (if there are several independent variables). The distance between the experimental values and the calculated curve can serve as an indication for the quality of the fit. These distances are amplified using the "residual plot". In this plot the model error is plotted (usually versus y_i), where

$$\hat{\varepsilon}_i = y_i - \hat{y}_i \qquad (3)$$

A random distribution of the residuals around zero indicates that the model represents correctly the set of data. A definite trend or pattern in the residual plot may indicate either lack of fit of the model or that the assumed error distribution for the data (random error distribution in \mathbf{y}) is not correct.

Numeric information for checking the quality of the fit (1).

The most frequently used numeric indicator of the quality of the fit is the standard error of the estimate which represents the sample variance, and given by

$$s^{2} = \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{N - (m+1)}$$
(4)

Thus the sample variance is the sum of squares of errors divided by the degrees of freedom (where the number of parameters, m+1, is subtracted from the number of data points, N) and is a measure for the variability of the actual y_i values from the predicted \hat{y}_i values. Smaller variance means a better fir of the model to the data. It should be emphasized that when the sample variance is used for comparison of different models, the same independent variable (transformed or non-transformed) should be used in Equation (4) for all the models. The variance is an un-scaled variable which can take any value from zero to infinity. Consequently the variance alone cannot be used for judging the goodness of fit between the data and a respective model.

Numeric information for checking the quality of the fit (2).

The linear correlation coefficient (R^2) is often used to judge the quality of the fit between the regression model and the experimental data. The correlation coefficient represents the ratio between the sum of squares about the mean due to regression to the total sum of squares, and is obtained by

$$R^{2} = \frac{\sum_{i=1}^{N} \left(\hat{y}_{i} - \overline{y}\right)}{\sum_{i=1}^{N} \left(y_{i} - \overline{y}\right)^{2}}$$
(5)

where \overline{y} is the sample mean of the dependent variable. The value of *R* is bounded: $0 \le R \le 1$. If *R* is close to 1 there is a strong correlation between the variables, whereas a value close to zero indicates a weak or no correlation.

Confidence intervals on the parameter values are very useful indicators of the fit between the model and the data. The discussion concerning the confidence intervals is postponed after discussing the solution techniques of the normal equation

Simple Linear Regression (1)

The simplest example of least squares approximation is fitting a straight line to a set of paired measurements (or observations), (x_1, y_1) , (x_2, y_2) ... (x_N, y_N) .

(8)

$$\hat{y}_i = \beta_0 + \beta_1 x_i \tag{7}$$

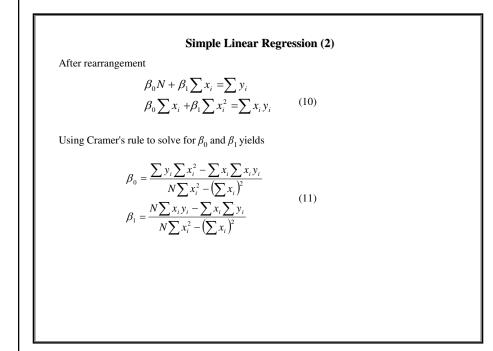
Introducing this model into Equation (2) yields

$$F = \sum_{i=1}^{N} \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$$

The criterion for optimality requires that $\frac{\partial F}{\partial \beta_0} = 0$ and $\frac{\partial F}{\partial \beta_1} = 0$ Thus,

$$\frac{\partial F}{\partial \beta_0} = \sum_{i=1}^{N} \left[y_i - (\beta_0 + \beta_1 x_i) \right] (-2) = 0$$

$$\frac{\partial F}{\partial \beta_1} = \sum_{i=1}^{N} \left[y_i - (\beta_0 + \beta_1 x_i) \right] (-2x_i) = 0$$
(9)



Example 1. Fi	tting a Straight Line to T	hermal Conductivity Data
mperature ranges, with	data of air shown in Table 1 a l.	ly well correlated, over small e). A linear equation should be fitted to nd the appropriateness of the linear
No.	Temperature	Thermal Conductivity*10 ⁶
	F°	cal/s•cm•°C
1	-40	50.09
2	-20	52.15
3	0	54.22
4	20	56.24
5	40	58.31
6	60	60.34
7	80	62.2
8	100	64.22
9	120	66.04

	Α	В	С	D	E
3	No.	x	У	X ²	ху
4	1	-40	50.09	=B4^2	=B4*C4
5	2	-20	52.15	=B5^2	=B5*C5
12	9	120	66.04	=B12^2	=B12*C12
13	sum	=SUM(B4:B12)	=SUM(C4:C12)	=SUM(D4:D12)	=SUM(E4:E1
14	β		=(C13*D13- B13*E13)/(A12*D13-B13^2)		
15	β ₁		=(A12*E13- B13*C13)/(A12*D13-B13^2)		

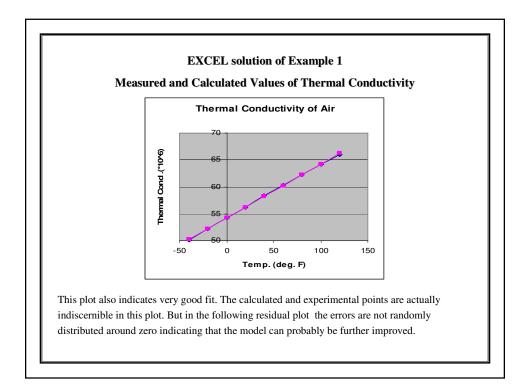
calculated in row 13. In cells C14 and C15 the various terms are introduced into Equation (11)in order to calculate β_0 and β_1 . The numerical results obtained are shown below.

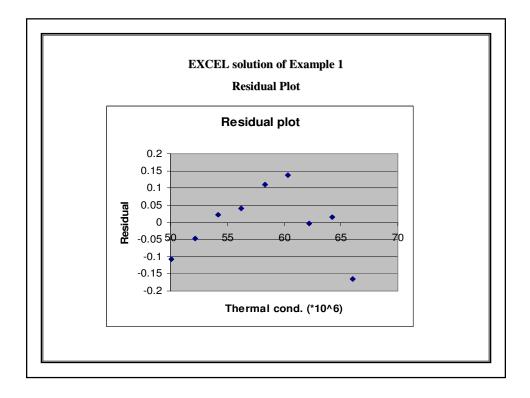
	A	В	C	D	E
3	No.	x	У	x ²	ху
4	1	-40	50.09	1600	-2003.6
5	2	-20	52.15	400	-1043
12	9	120	66.04	14400	7924.8
13	sum	360	523.81	38400	23354
14	β ₀		54.1988		
15	β ₁		0.1001		

1		EXC sidual plot and to c be defined		of Example 1 riance and the co		ent additional
	A	 F	G	н	I	J
3	No.	y _(calc)	3	ε ²	num	den
4	1	=\$C\$14+\$C\$15 *B4	=C4-F4	=G4^2	=(F4-\$C\$16)^2	=(C4- \$C\$16)^2
5	2	=\$C\$14+\$C\$15 *B5	=C5-F5	=G5^2	=(F5-\$C\$16)^2	=(C5- \$C\$16)^2
•••						
12	9	=\$C\$14+\$C\$15 *B12	=C12-F12	=G12^2	=(F12- \$C\$16)^2	=(C12- \$C\$16)^2
13	sum			=SUM(H4:H1 2)	= SUM(I4:I12)	=SUM(J4:J1)

In column F the estimated values \hat{y}_i are calculated. In column G the residuals (ε_i) used for preparing the residual plot are evaluated. In column H the residual values are squared to enable calculation of the variance and in columns I and J the numerator (num) and the denominator (den) of equation (5) are calculated.

		Α		В		С	
16	Mean		=AVEF	RAGE(B4:B1	2) =/	AVERAGE(C	C4:C12)
17	Degre	ees of freedom				=A12-2	2
18	Varia	nce				=H13/C1	7
19	Corre	lation Coeff.				=I13/J13	3
		Α		В		С	1
	16	Mean		40	5	8.20	
	17	Degrees of freed	om			7	
	18	Variance			0.0	10601	
	19	Correlation Coeff			0.9	996913	1





Multiple Linear Regression (1)

Let us develop the equations to be solved for the case of two independent variables where a linear model is to be fitted into a set of measurements (or observations), (x_{11}, x_{21}, y_1) , (x_{12}, x_{22}, y_2) ... (x_{1N}, x_{2N}, y_N) . The linear model is

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1i} + \hat{\beta}_{2}x_{2i}$$
(12)

Introducing this model into Equation (2) yields

$$F = \sum_{i=1}^{N} \left[y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}) \right]^2$$
(13)

The criterion for optimality requires that $\frac{\partial F}{\partial \beta_0} = 0$, $\frac{\partial F}{\partial \beta_1} = 0$ and $\frac{\partial F}{\partial \beta_2} = 0$. Thus,

$$\frac{\partial F}{\partial \beta_{0}} = \sum_{i=1}^{N} \left[y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{1i} + \hat{\beta}_{2}x_{2i}) \right] - 2) = 0$$

$$\frac{\partial F}{\partial \beta_{1}} = \sum_{i=1}^{N} \left[y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{1i} + \hat{\beta}_{2}x_{2i}) \right] - 2x_{1i}) = 0 \qquad (14)$$

$$\frac{\partial F}{\partial \beta_{2}} = \sum_{i=1}^{N} \left[y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{1i} + \hat{\beta}_{2}x_{2i}) \right] - 2x_{2i}) = 0$$

	Multiple Linear Regression (2)
After rearrai	agement and bringing into matrix-vector form we get
	$\begin{bmatrix} N & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^2 & \sum x_{1i}x_{2i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_{1i}y_i \\ \sum x_{2i}y_i \end{bmatrix} $ (15)
	ral case of m independent (explanatory) variables the matrix form of the normal n be more easily obtained by defining the following matrices
	$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{ml} \\ 1 & x_{12} & \dots & x_{m2} \\ \vdots & \vdots & & \vdots \\ 1 & x_{1N} & \dots & x_{mN} \end{bmatrix} \hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_0 \\ \hat{\boldsymbol{\beta}}_1 \\ \vdots \\ \hat{\boldsymbol{\beta}}_m \end{bmatrix} \mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} $ (16)
The normal	equation is defined
	$\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y} $ (17)

Multiple Linear Regression (3)

Confidence Intervals

This is a system of linear equations is solved for the m+1 coefficients $\hat{\beta}_0$, $\hat{\beta}_1$... $\hat{\beta}_m$.

If there is no free parameter in the model (thus $\beta_0 = 0$) then the first column of the numbers 1 (one) should be removed from the matrix **X** and the first element, β_0 should be removed from the vector **\beta**. It should be emphasized that in such case the number of parameters in the model is *m* (instead of m+1, when there is a free parameter).

Solution of the system of equations (17) provides estimates for the parameter values. The uncertainty in these approximate parameter values can be estimates using the definition of the confidence intervals

$$\hat{\beta}_i - ts\sqrt{a_{ii}} \le \beta_i \le \hat{\beta}_i + ts\sqrt{a_{ii}} \quad i = 0, \dots, m$$
(18)

where *t* is the statistical *t*-distribution value corresponding to the degrees of freedom and the % confidence selected, $s = \sqrt{s^2}$ the standard deviation (square root of the variance) and a_{ii} is the *i*th diagonal element of the **X**^{*T*}**X** matrix. The 95% confidence intervals are used the most often.

Confidence Intervals (2)

Confidence intervals are very useful indicators of the fit between the model and the data. A better model fit and more precise data lead to narrow confidence intervals, while a poor model fit and/or imprecise data cause wide confidence intervals. Furthermore, confidence intervals which are larger (in absolute value) than the respective parameter values often indicate that the model contains superfluous parameters/ explanatory variables.

Table 2. t-values corresponding to 95% confidence and v degrees of freedom

v	t-value	v	t-value	v	t-value
1	12.7062	16	2.1199	31	2.0395
2	4.3027	17	2.1098	32	2.0369
:					
14	2.1448	29	2.0452	44	2.0154
15	2.1315	30	2.0423	45	2.0141

Example 2. Heat Evolved During Hardening Of Portland Cement

Woods *et al*(1932) investigated the integral heat of hardening of cement as a function of composition. The independent variables represent weight percent of the clinker compounds: x_1 -tricalcium aluminate ($3CaO \cdot Al_2O_3$), x_2 -tricalcium silicate ($3CaO \cdot SiO_2$), x_3 -tetracalcium alumino-ferrite ($4CaO \cdot Al_2O_3 \cdot Fe_2O_3$), and x_4 - β -dicalcium silicate ($3CaO \cdot SiO_2$). The dependent variable, y is the total heat evolved (in calories per gram cement) in a 180-day period.

No	x1	x2	x3	x4	у
1	7	26	6	60	78.7
2	1	29	15	52	74.3
:					
12	11	66	9	12	113.3
13	10	68	8	12	109.4

Calculate the coefficients of a linear model representation of *y* as function of x_1 , x_2 , x_3 , and x_4 , calculate the variance and the correlation coefficient R^2 and the confidence intervals. Prepare a residual plot.

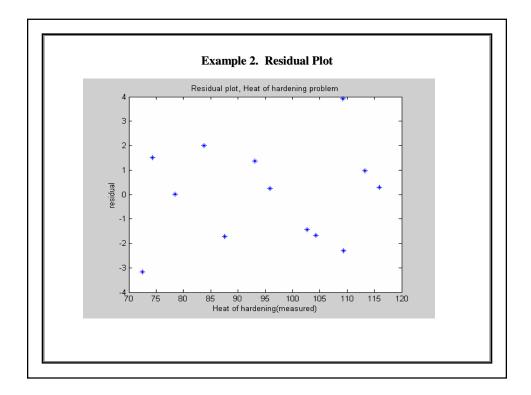
Consider the cases when the model includes and does not include a free parameter.

	Example 2. Matlab Solution	
	Data Input and Normal Matrix	
% filename heat_har	dening.m	
clear, clc, format sho	ort g, format compact	
X=[7 1 11 11 7 11 3	1 2 21 1 11 10	
26 29 56 31 52 55 71	1 31 54 47 40 66 68	
6 15 8 8 6 9 17 22 18	8 4 23 9 8	
60 52 20 47 33 22 6	44 22 26 34 12 12]';	
Y=[78.5 74.3 104.3	87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';	
Ymean=mean(Y);		
N=13; % No. of d	ata points	
npar=5; % No. of p	arameters - with a free parameter	
t_95=2.306; % t-val	ue for 95% confidence interval - with a free parameter	
%npar=4; % No. of	f parameters - no free parameter	
%t_95=2.2622; % t-	value for 95% confidence interval - no free parameter	
e=ones(N,1);		
X=[e X]; % Add	column of ones to the X matrix (with free parameter)	
A=X'*X;		

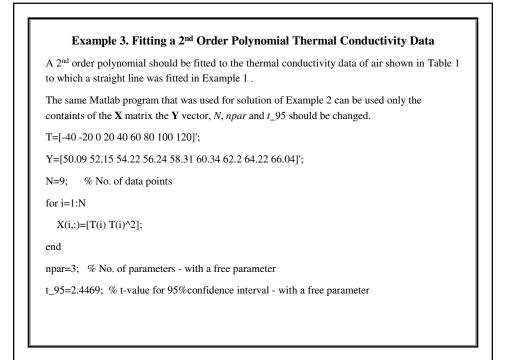
Example 2. Matlab Solution		
	Calculations and Residual Plot	
Ainv=inv(A)	; %Calculate the inverse of the X'X matrix (for confidence interval calculation)	
Beta=Ainv*2	X'*Y; % Solve the normal equation	
Ycal=X*Bet	a; % Calculated dependent variable values	
s2=((Y-Ycal)'*(Y-Ycal))/(N-npar); % variance	
R2=(Ycal-Y	mean)'*(Ycal-Ymean)/((Y-Ymean)'*(Y-Ymean)); %Correlation Coefficient	
for i=1:npar		
С	onf_int(i,1)=t_95*sqrt(s2*Ainv(i,i)); %confidence intervals	
end		
%		
%residual pl	ot	
%		
plot(Y,Y-Yc	al,'*')	
title('Residua	l plot, Heat of hardening problem')	
xlabel('Heat	of hardening(measured)')	
ylabel('residu	ıal')	

With	a free param	eter	No	free parame	ter
Parameter No.	Beta	Conf_int	Parameter No.	Beta	Conf_int
0	62.405	161.58	0	2.193	0.41913
1	1.5511	1.7174	1	1.1533	0.10846
2	0.51017	1.6691	2	0.75851	0.36085
3	0.10191	1.7404	3	0.48632	0.093675
4	-0.14406	1.6351			
Variance		5.983	Variance		5.8455
Correlation C	Coefficient	0.98238	Correlation (Coefficient	0.98597

coefficient ($R^2 = 0.98238$) and the residual plot suggest that the model is appropriate. But all the confidence intervals are larger in absolute value than the respective parameter values, indicating that there are too many parameters (terms) in the model. In the model where there is no free parameter all the confidence intervals are also satisfactory. Thus the linear model without a free parameter is appropriate. Physical consideration lead also to the conclusion that free parameter is not needed in this case.

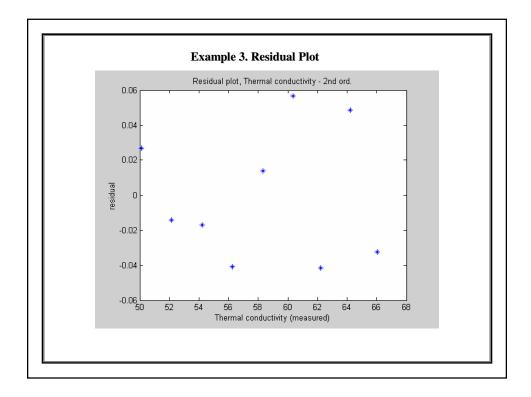


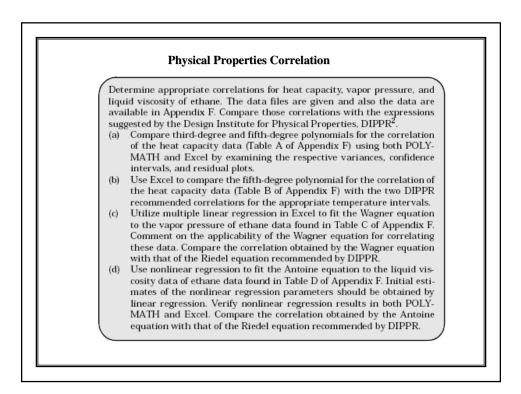
$g(\hat{y})_i = \hat{\beta}_0 + \hat{\beta}_1 f_1(x_{1i}, x_{2i} \dots) + \hat{\beta}_2 f_2(x_{1i}, x_{2i} \dots) \dots \hat{\beta}_m f_m(x_{1i})$ Can be brought into the form, which is appropriate for multiple linea	(x_{2i}) (19)
Can be brought into the form, which is appropriate for manipie med	r regression
$\hat{y}'_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} x'_{1i} + \hat{\beta}_{2} x'_{2i} \dots + \hat{\beta}_{m} x'_{mi}$	(20)
by transforming the variables $\hat{y}' = g(\hat{y})$, $x'_1 = f_1(x_1, x_2 \dots)$, x'_2	$= f_2(x_1, x_2 \dots) \dots etc$
The normal (16 and 17) can be solved for the coefficients $\beta_0, \beta_1, \dots, \beta_n$ introduced into the vector Y and x'_j introduced into the matrix X .	y_{m} , after the values of y' and
In polynomial regression the transformations: $x'_1 = x$, $x'_2 = x^2$	and $x'_m = x^m$ used.
In Riedel's equation $\log(P) = \hat{\beta}_0 + \hat{\beta}_1(1/T) + \hat{\beta}_2 \log(T) + \hat{\beta}_3 T^2$, for	vapor pressure correlation
the transformations; $y' = \log(P)$, $x'_1 = 1/T$, $x'_2 = \log(T)$ and $x'_1 = \log(T)$	$T_3 = T^2$ should be used



	E	xample 3. MA	ATLAB resul	ts	
2 nd	order polyno	mial		Straight line)
Parameter No.	Beta	Conf_int	Parameter No.	Beta	Conf_int
0	54.237	0.047897	0	54.1988	0.10265
1	0.10291	0.0014	1	0.1001	0.001572
2	-3.57E-05	1.52E-05			
Variance		0.001908	Variance		0.010601
Correlation	Coefficient	0.99995	Correlation	Coefficient	0.9996913

From the solution it can be seen that the residual plot of the 2nd order polynomial representation is randomly distributed the variance and the confidence intervals for the polynomial representation are smaller than for the straight line and R2 is closer to one. Thus, the polynomial represents the data correctly.





Phys	sical Proper	rties Correla	ation	
Ingham, H.; Fri J.F.; "Thermop Properties of E Ref. Data 1991	hysical thane"; J. Phys.			
	Ideal Gas		Ideal Gas	
Temperature	Heat	Temperature	Heat	
(K)	Capacity	(K)	Capacity	
100	3.5698E+04	300	5.2692E+04	
110	3.6249E+04	310	5.3926E+04	
120	3.6817E+04	320	5.5178E+04	
130	3.7401E+04	330	5.6446E+04	
140	3.8003E+04	340	5.7727E+04	
150	3.8628E+04	350	5.9017E+04	
160	3.9279E+04	360	6.0313E+04	
170	3.9961E+04	370	6.1612E+04	
180	4.0680E+04	380	6.2913E+04	
190	4.1439E+04	390	6.4212E+04	
200	4.2243E+04	400	6.5507E+04	
210	4.3092E+04	410	6.6798E+04	
220	4.3989E+04	420	6.8082E+04	
230	4.4934E+04	430	6.9357E+04	
240	4.5924E+04	440	7.0624E+04	
250	4.6959E+04	450	7.1880E+04	
260	4.8036E+04	460	7.3126E+04	
270	4.9151E+04	470	7.4360E+04	
280	5.0302E+04	480	7.5582E+04	
290	5.1484E+04	490 500	7.6791E+04 7.7987E+04	

		Physical Properties	Correlation	
J. of	F.; "Thermoph	end, D.G.; Ely, ysical Properties hys. Ref. Data		
Т	emperature	Vapor Pressure		
	(K)	(Pa)		
1	92	1.7	Critical Temperature (K)	3.0532E+02
2	94	2.8	Critical Pressure (Pa)	4.8720E+06
3	96	4.6	Triple Pt Temperature (F	9.0352E+0
4	98	7.2		
5	100	11		
6	102	17		
7	104	25		
8	106	37		
9	108	53		
10	110	75		
11	112	100		
12	114	140		
13	116	200		
14	118	270		
15	120	350		
16	122	470		
17	124	610		
18	126	790		

Nonlinear Regression

If one or more of the parameters of the model are included in nonlinear expressions the estimation of the parameters cannot be carried out by solving a system of linear equations. The most general approach to solving a nonlinear regression problem is by using optimization programs to minimize *F* (Equation 2) numerically while changing the parameters β_0 , $\beta_1 \dots \beta_m$. For individual cases, more specific simpler techniques can be used.

Example 4. Fitting Parameters to the Antoine equation

The following table presents data of vapor pressure versus temperature for benzene. Correlate the data using the Antoine equation.

No.	Temperature, T	Pressure, P	
	°C	Mm Hg	
1	-36.7	1	
2	-19.6	5	
:			
9	60.6	400	
10	80.1	760	

Example 4. Solution (1)

The Antoine equation is a widely used vapor pressure correlation that utilizes the parameters A, B, and C. It can be expressed by

$$\log(P) = A + \frac{B}{T+C}$$
(22)

Defining and introducing Equation (22) into Equation (2) gives

$$F = \sum_{i=1}^{n} \left[y_i - \left(A + \frac{B}{T_i + C} \right) \right]^2$$
(23)

Example 4. Solution (2)

Differentiating F with respect to A, B, and C and equating to zero, yield

$$\frac{\partial F}{\partial A} = \sum_{i=1}^{n} \left[y_i - \left(A + \frac{B}{T_i + C} \right) \right] (-2) = 0$$

$$\frac{\partial F}{\partial B} = \sum_{i=1}^{n} \left[y_i - \left(A + \frac{B}{T_i + C} \right) \right] (\frac{-2}{T_i + C}) = 0$$

$$\frac{\partial F}{\partial C} = \sum_{i=1}^{n} \left[y_i - \left(A + \frac{B}{T_i + C} \right) \right] \left[\frac{2}{(T_i + C)^2} \right] = 0$$
(24)

This is a system of three nonlinear algebraic equations with three unknowns. The MATLAB function to be used when solving this problem as a system of three equations follows.

MATLAB function for solving Example 4 as a system of three nonlinear equations filename fun_antoine %Solving for Antoine equation parameters as a system of equations function f=fun_antoine(x) A=x(1); B=x(2); C=x(3); T=[-36.7 -19.6 -11.5 -2.6 7.6 15.4 26.1 42.2 60.6 80.1]'; P=[1 5 10 20 40 60 100 200 400 760]'; Y = log10(P);f1=0; f2=0; f3=0; for i=1:10 f1=f1+(-Y(i)+A+B/(T(i)+C));f2=f2-(Y(i)-A-B/(T(i)+C))/(T(i)+C); $f3=f3+(Y(i)-A-B/(T(i)+C))*B/(T(i)+C)^2;$ end f(1,1) = f1; f(2,1) = f2; f(3,1) = f3;

MATLAB function for solving Example 4

This function can be used with a main program which apply, for example, the multidimensional Newton-Raphson method (see the main program of Example 3 in the previous chapter of systems of nonlinear algebraic equations). Starting from the initial estimate A = 6, B = -700, and C = 150 the program converges to the solution: A = 5.7673, B = -677.09, and C = 153.89.

It should be mentioned that when solving this problem as a system of nonlinear equations, good initial estimates for the parameters should be provided otherwise most solution methods will diverge. An alternative approach which does not require close initial estimates involves conversion of the problem to a single nonlinear equation. For a specified value of *C*, the first two equations of the system (24) are linear and can be solved for *A* and *B*. Then the third equation of this system is used for calculating f(C). The MATLAB function for carrying out this calculation follows.

MATLAB function for solving Example 4 as a single nonlinear equation

%filename fun_antoine2 %Solving for Antoine equation parameters as a single nonlinear equation function fC=fun_antoine(C) T=[-36.7 -19.6 -11.5 -2.6 7.6 15.4 26.1 42.2 60.6 80.1]'; P=[1 5 10 20 40 60 100 200 400 760]'; Y=log10(P); x(:,1)=[1./(T+C)]; den=10*(x'*x)-sum(x)^2; A=(sum(Y)*(x'*x)-sum(x)*(x'*Y))/den; $B=(10^{*}(x'^{*}Y)-sum(x)^{*}sum(Y))/den;$ fC=0; for i=1:10 $fC=fC+(Y(i)-A-B/(T(i)+C))*B/(T(i)+C)^2;$ end This function can be used in conjunction with the main programs for solving single nonlinear equations that are provided in the first chapter. Using the bisection method for example (main program of Example 3 in Chapter 1) starting from $C_{01} = 50$ and $C_{02} = 350$, it converges to the

solution C = 153.93 in 12 iterations.