Multiple-Linear, Polynomial and Nonlinear Regression
Basic Concepts (1)
Let us assume that there is a set of N data points of a dependent variable y, versus x,,, X,, ...

X,,» where X, X,,... X, are n independent (explanatory) variables. A particular model to be

fitted to the data is of the form

Vi =8y Xy X, Bos B B) (D

where  B.B,..-B,  are m+1 parameters of the model. The least-squares error approach is

most often used to find the parameters of Equation (1).

The statistical assumption behind the least-squares error method for parameter estimation is
that the measured value of the dependent variable has a deterministic and a stochastic part.
The stochastic part is often denoted as an error, ¢, .

yi:g(‘xli’XZi""xni’IBO’IBl"'ﬂm)igi (13.)

It is further assumed that the origin of ¢, is measurement error, which is randomly distributed.

Multiple-Linear, Polynomial and Nonlinear Regression
Basic Concepts (2)

An infinite number of measurements would be required to obtain the true values of the
parameters SosB,--- B, Because a sample always contains a finite number of measurements,
the calculated parameters are always approximations for the true values. They are denoted
with a circumflex. Thus, ,30 ,,81 ,é
the calculated estimate for the dependent variable .

. are the calculated values of the parameters and ¥ is

N

In the least-squares error approach, the estimates ;. 3, ... 3, are found so that they
minimize the following function:
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where F is the sum &l squares of the errors.The particular mathematical technique of finding
the set of the parameter values that minimizes the function F depends on the form of the
function g(x;, B). If the parameters appear in linear expressions in the function g (in multiple-
linear and polynomial regressions, for example), the minimization can be carried out by
solving a system of linear equations (the normal equations). Often models where the
parameters appear in nonlinear expressions can be transformed to linear models by

transformation of variables.




Graphic information for checking the quality of the fit .

An assessment of the quality of the fit of a particular model and comparison between different

models is based on graphic and numeric information.

The measured (y,) and the calculated ( ;) values of the dependent variable can be plotted
versus x, (if there is a single independent variable) or versus i, the point number (if there are
several independent variables). The distance between the experimental values and the
calculated curve can serve as an indication for the quality of the fit. These distances are
amplified using the "residual plot". In this plot the model error is plotted (usually versus y,) ,

where

E=Yi—Y: 0

A random distribution of the residuals around zero indicates that the model represents
correctly the set of data. A definite trend or pattern in the residual plot may indicate either lack
of fit of the model or that the assumed error distribution for the data (random error distribution

in y) is not correct.

Numeric information for checking the quality of the fit (1).

The most frequently used numeric indicator of the quality of the fit is the standard error of the

estimate which represents the sample variance, and given by

N 2
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Thus the sample variance is the sum of squares of errors divided by the degrees of freedom
(where the number of parameters, m+1, is subtracted from the number of data points, N) and is
a measure for the variability of the actual y, values from the predicted J; values. Smaller
variance means a better fir of the model to the data. It should be emphasized that when the
sample variance is used for comparison of different models, the same independent variable
(transformed or non-transformed) should be used in Equation (4) for all the models. The
variance is an un-scaled variable which can take any value from zero to infinity. Consequently
the variance alone cannot be used for judging the goodness of fit between the data and a

respective model.




Numeric information for checking the quality of the fit (2).

The linear correlation coefficient (R?) is often used to judge the quality of the fit between the
regression model and the experimental data. The correlation coefficient represents the ratio
between the sum of squares about the mean due to regression to the total sum of squares, and is

obtained by

2 (5)

where yis the sample mean of the dependent variable. The value of R is bounded: 0 <R < 1.
If R is close to 1 there is a strong correlation between the variables, whereas a value close to

zero indicates a weak or no correlation.

Confidence intervals on the parameter values are very useful indicators of the fit between the
model and the data. The discussion concerning the confidence intervals is postponed after

discussing the solution techniques of the normal equation

Simple Linear Regression (1)

The simplest example of least squares approximation is fitting a straight line to a set of paired

measurements (or observations), (x;, y,), (X, ¥,).-. (Xy, Yp)-

Vi =By + Bix, )

Introducing this model into Equation (2) yields
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Simple Linear Regression (2)
After rearrangement
BN + ﬂlzxi :Z Vi
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Using Cramer's rule to solve for 8, and 3, yields
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Example 1. Fitting a Straight Line to Thermal Conductivity Data

Thermal conductivity of low-pressure gases can be fairly well correlated, over small
temperature ranges, with a linear equation (straight line). A linear equation should be fitted to
the thermal conductivity data of air shown in Table 1 and the appropriateness of the linear

model should be assessed.

Table 1. Thermal conductivity of Air?

No. Temperature Thermal Conductivity*108
F° cal/sscm+°C
1 -40 50.09
2 -20 52.15
3 0 54.22
4 20 56.24
5 40 58.31
6 60 60.34
7 80 62.2
8 100 64.22
9 120 66.04




EXCEL solution of Example 1 (1).

A B C D E

3 | No. X y x2 Xy
4 1 -40 50.09 =B4"2 =B4*C4
5 2 -20 52.15 =B5"2 =B5*C5
12 9 120 66.04 =B12"2 =B12*C12
13 | sum |=SUM(B4:B12) =SUM(C4:C12) =SUM(D4:D12)=SUM(E4:E12
14| B =(C13*D13-

0 B13*E13)/(A12*D13-B13"2)
15 8 =(A12*E13-

1 B13*C13)/(A12*D13-B13"2)

The x; values are stored in column B, the Vi values are stored in column C, the )cl.2 values are

calculated in column D and the x;y, values are calculated in column E. The respective sums are
calculated in row 13. In cells C14 and C15 the various terms are introduced into Equation (11)
in order to calculate ) and §,. The numerical results obtained are shown below.

EXCEL solution of Example 1 (2)

A B C D E
3 No. X y x2 Xy
1 -40 50.09 1600 -2003.6
2 -20 52.15 400 -1043
12 9 120 66.04 14400 7924.8
13 sum 360 523.81 38400 23354
14 Bo 54.1988
15 B, 0.1001




To prepare a residual plot and to calculate the variance and the correlation coefficient additional

EXCEL solution of Example 1(3)

columns must be defined

A F G H : J
3 | No. Yicale) € g2 num den
_$C$14+$C$15 _ ., - —(F4. =(C4-
4 | 1 B4 =C4-F4 =G4"2  |=(F4-$C$16)"2 $C$16)"2
—$C$14+5C$15 - - =(C5-
5 2 “B5 =C5-F5 =G5"2 =(F5-$C$16)"2 $C$16)72
=$C$14+$C$15 _ ., _ =(F12- =(C12-
12| 9 “B1o C12Fi2 | =622 | scsiepe | scsie)pe
o2 oo =SUM(H4:H1 = =SUM(J4:J12
2) SUM(I4:112) )

In column F the estimated values ¥; are calculated. In column G the residuals (¢,) used for
preparing the residual plot are evaluated. In column H the residual values are squared to enable
calculation of the variance and in columns I and J the numerator (num) and the denominator

(den) of equation (5) are calculated.

EXCEL solution of Example 1(4)

The following additional expressions are needed to complete the calculations

A B C
16 Mean =AVERAGE(B4:B12) =AVERAGE(C4:C12)
17 Degrees of freedom =A12-2
18 Variance =H13/C17
19 Correlation Coeff. =[13/J13
A B C

16 Mean 40 58.20

17 Degrees of freedom 7

18 Variance 0.010601

19 Correlation Coeff. 0.9996913

It can be seen that the correlation coefficient, R2 is very close to one, thus it seems that the linear
model represents excellently the data. For further analysis let's look at the following plots.




EXCEL solution of Example 1

Measured and Calculated Values of Thermal Conductivity

Thermal Conductivity of Air
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This plot also indicates very good fit. The calculated and experimental points are actually
indiscernible in this plot. But in the following residual plot the errors are not randomly
distributed around zero indicating that the model can probably be further improved.

EXCEL solution of Example 1

Residual Plot
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Multiple Linear Regression (1)

Let us develop the equations to be solved for the case of two independent variables where a
linear model is to be fitted into a set of measurements (or observations), (x,,, Xy, ¥;)s (X;5, X,
¥y)-++ (X;n» Xops V). The linear model is

Vi =By + Bixy + Boxy, (12)
Introducing this model into Equation (2) yields

F= ﬁ[}’i _(ﬁo +ﬁ1xlx +ﬁ2x2i)]2 (49
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Multiple Linear Regression (2)
After rearrangement and bringing into matrix-vector form we get
N th szi ﬁo Zy:
an lezl leixzi B |= quy: (15)
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For the general case of m independent (explanatory) variables the matrix form of the normal
equations can be more easily obtained by defining the following matrices

1 x, ... x, 5 »

P 16

xo|! %ot | g Ay e
I Xy oo X,y Bm Yy

The normal equation is defined

X"Xp =X"Y "




Multiple Linear Regression (3)
Confidence Intervals

This is a system of linear equations is solved for the m+1 coefficients /3, , B... B, .

If there is no free parameter in the model (thus 5, = 0 ) then the first column of the numbers 1
(one) should be removed from the matrix X and the first element, f, should be removed from
the vector B. It should be emphasized that in such case the number of parameters in the model is

m (instead of m+1, when there is a free parameter).

Solution of the system of equations (17) provides estimates for the parameter values. The
uncertainty in these approximate parameter values can be estimates using the definition of the
confidence intervals

B, —ts\a, < B, < B +1s\fa; i=0]1...m (18)

where ¢ is the statistical 7-distribution value corresponding to the degrees of freedom and the %
confidence selected, § =1/ s> the standard deviation (square root of the variance) and a;; is
the i diagonal element of the X"X matrix. The 95% confidence intervals are used the most

often.

Confidence Intervals (2)

Confidence intervals are very useful indicators of the fit between the model and the data. A
better model fit and more precise data lead to narrow confidence intervals, while a poor model
fit and/or imprecise data cause wide confidence intervals. Furthermore, confidence intervals
which are larger (in absolute value) than the respective parameter values often indicate that the

model contains superfluous parameters/ explanatory variables.

Table 2. t-values corresponding to 95%confidence and v degrees of freedom

v t-value v t-value v t-value
1 12.7062 16 2.1199 31 2.0395
2 4.3027 17 2.1098 32 2.0369
14 2.1448 29 2.0452 44 2.0154
15 2.1315 30 2.0423 45 2.0141




Example 2. Heat Evolved During Hardening Of Portland Cement

Woods et al(1932) investigated the integral heat of hardening of cement as a function of
composition. The independent variables represent weight percent of the clinker compounds:
Xx,-tricalcium aluminate (3CaO -Al,O,), x,-tricalcium silicate (3Ca0 -Si0,), x;-tetracalcium
alumino-ferrite (4Ca0 -Al,05-Fe,0,), and x,- B-dicalcium silicate (3Ca0 -Si0,). The

dependent variable, y is the total heat evolved (in calories per gram cement) in a 180-day

period.
No. x1 x2 x3 x4 y
1 7 26 6 60 78.7
2 1 29 15 52 74.3
12 11 66 9 12 113.3
13 10 68 8 12 109.4

Calculate the coefficients of a linear model representation of y as function of x,, x,, x;, and x,,
calculate the variance and the correlation coefficient R? and the confidence intervals. Prepare a

residual plot.

Consider the cases when the model includes and does not include a free parameter.

Example 2. Matlab Solution
Data Input and Normal Matrix

% filename heat_hardening.m

clear, clc, format short g, format compact
X=[7111117113122111110

262956 31 525571315447 40 66 68

615886917221842398

60522047 3322644222634 12 12]";

Y=[78.574.3104.3 87.6 95.9 109.2 102.7 72.593.1 115.9 83.8 113.3 109.4];
Ymean=mean(Y);

N=13; % No. of data points

npar=5; % No. of parameters - with a free parameter

t_95=2.306; % t-value for 95%confidence interval - with a free parameter
Yonpar=4; % No. of parameters - no free parameter

Jot_95=2.2622; % t-value for 95%confidence interval - no free parameter
e=ones(N,1);

X=[e X]; % Add column of ones to the X matrix (with free parameter)
A=X"#*X;

10



Example 2. Matlab Solution
Calculations and Residual Plot

Ainv=inv(A); %Calculate the inverse of the X'X matrix (for confidence interval calculation)
Beta=Ainv*X'*Y; % Solve the normal equation
Ycal=X*Beta; % Calculated dependent variable values
$2=((Y-Ycal)'*(Y-Ycal))/(N-npar); % variance
R2=(Ycal-Ymean)"*(Ycal-Ymean)/((Y-Ymean)'*(Y-Ymean)); %Correlation Coefficient
for i=1:npar

Conf_int(i,1)=t_95%*sqrt(s2*Ainv(i,i)); %confidence intervals
end
%
Yresidual plot
%
plot(Y,Y-Ycal,'*")
title('Residual plot, Heat of hardening problem')

xlabel('Heat of hardening(measured)")

ylabel('residual’)
Example 2. Numerical Results
With a free parameter No free parameter

Parameter No. Beta Conf_int |Parameter No. Beta Conf_int
0 62.405 161.58 0 2.193 0.41913
1 1.5511 1.7174 1 1.1533 0.10846
2 0.51017 1.6691 2 0.75851 0.36085
3 0.10191 1.7404 3 0.48632 0.093675

4 -0.14406 1.6351
Variance 5.983 Variance 5.8455
Correlation Coefficient 0.98238 Correlation Coefficient 0.98597

For the first case where the model includes a free parameter the value of the correlation
coefficient (R? = 0.98238) and the residual plot suggest that the model is appropriate. But all
the confidence intervals are larger in absolute value than the respective parameter values,
indicating that there are too many parameters (terms) in the model. In the model where there is
no free parameter all the confidence intervals are also satisfactory. Thus the linear model
without a free parameter is appropriate. Physical consideration lead also to the conclusion that

free parameter is not needed in this case.
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Example 2. Residual Plot

Residual plot, Heat of hardening problem
4 . . : . : . . e .

residual
o
T
.*.
L

70 75 80 85 a0 95 100 105 110 115 120
Heat of hardening(measured)

Generalized Multiple Linear Regression .
General models of the form

8, =B+ B0 Xy )+ Bofo sy ) B S0y ) (19

Can be brought into the form, which is appropriate for multiple linear regression
o A A, n A (20)
Vi=By+Bx+Bx . A BX

by transforming the variables 3'= g(9), x', = f,(x;,X,...) » x', = f,(x,,x,...)-etc.

The normal (16 and 17) can be solved for the coefficients ﬂo, s Lpees Bm, after the values of y' are
introduced into the vector Y and x'j introduced into the matrix X.

In polynomial regression the transformations: x'l =X, x'2 =x? and x'm = x" used.
In Riedel's equation log(P) = ﬁo + ﬁ] a/T)+ ﬁz log(T) + ﬁ3T2, for vapor pressure correlation
the transformations; y'=log(P) ,x',=1/T , x'2 = log(T) and X'3 =T 2 should be used.

12



Example 3. Fitting a 2" Order Polynomial Thermal Conductivity Data

A 2™ order polynomial should be fitted to the thermal conductivity data of air shown in Table 1

to which a straight line was fitted in Example 1 .

The same Matlab program that was used for solution of Example 2 can be used only the

containts of the X matrix the Y vector, N, npar and ¢_95 should be changed.
T=[-40 -20 020 40 60 80 100 120];
Y=[50.09 52.15 54.22 56.24 58.31 60.34 62.2 64.22 66.04]';
N=9; % No. of data points
for i=1:N
X(1,)=[T(@) TM)"2];
end
npar=3; % No. of parameters - with a free parameter

t_95=2.4469; % t-value for 95%confidence interval - with a free parameter

Example 3. MATLAB results

2nd order polynomial Straight line
Parilrg.eter Beta Conf_int Parﬁgeter Beta Conf_int
0 54.237 0.047897 0 54.1988 0.10265
1 0.10291 0.0014 1 0.1001 0.001572
2 -3.57E-05 1.52E-05
Variance 0.001908 Variance 0.010601
Correlation Coefficient 0.99995 Correlation Coefficient 0.9996913

From the solution it can be seen that the residual plot of the 2" order polynomial representation
is randomly distributed the variance and the confidence intervals for the polynomial
representation are smaller than for the straight line and R2 is closer to one. Thus, the polynomial

represents the data correctly.

13
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Example 3. Residual Plot

Residual plot, Thermal conductivity - 2nd ard.

*
*

Thermal conductivity (measured)

Physical Properties Correlation

/E)etermine appropriate correlations for heat capacity, vapor pressure, anc;\\
lquid viscosity of ethane. The data files are given and also the data are
available in Appendix F. Compare those correlations with the expressions
suggested by the Design Institute for Physical Properties, DIPPR=.

(a)

(b)

()

{d)

Compare third-degree and fifth-degree polynomials for the correlation
of the heat capacity data (Table A of Appendix F) using both POLY-
MATH and Excel by examining the respective variances, confidence
intervals, and residual plots.

Use Excel to compare the fifth-degree polynomial for the correlation of
the heat capacity data (Table B of Appendix F) with the two DIPPR
recommended correlations for the appropriate temperature intervals,
Utilize multiple linear regression in Excel to fit the Wagner equation
to the vapor pressure of ethane data found in Table C of Appendix F.
Comment on the applicability of the Wagner equation for correlating
these data. Compare the correlation obtained by the Wagner equation
with that of the Riedel equation recommended by DIPPR.

Use nonlinear regression to fit the Antoine equation to the liquid vis-
cosity data of ethane data found in Table D of Appendix F. Initial esti-
mates of the nonlinear regression parameters should be obtained by
linear regression. Verify nonlinear regression results in both POLY-
MATH and Excel. Compare the correlation obtained by the Antoine

equation with that of the Riedel equation recommended by DIPPR. —/
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Physical Properties Correlation

Ingham, H.; Friend, D.G.; Ely,
J.F.; "Thermophysical
Properties of Ethane"; J. Phys.
Ref. Data 1991, 20, 275

Temperature

(K)
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

Ideal Gas
Heat
Capacity
3.5698E+04
3.6249E+04
3.6817E+04
3.7401E+04
3.8003E+04
3.8628E+04
3.9279E+04
3.9961E+04
4.0680E+04
4.1439E+04
4.2243E+04
4.3092E+04
4.3989E+04
4.4934E+04
4.5924E+04
4.6959E+04
4.8036E+04
4.9151E+04
5.0302E+04
5.1484E+04

Temperature
(K)
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

Ideal Gas
Heat
Capacity
5.2692E+04
5.3926E+04
5.5178E+04
5.6446E+04
5.7727E+04
5.9017E+04
6.0313E+04
6.1612E+04
6.2913E+04
6.4212E+04
6.5507E+04
6.6798E+04
6.8082E+04
6.9357E+04
7.0624E+04
7.1880E+04
7.3126E+04
7.4360E+04
7.5582E+04
7.6791E+04
7.7987E+04

ONOOOA,WON =

Physical Properties Correlation

Ingham, H.; Friend, D.G.; Ely,
J.F.; "Thermophysical Properties
of Ethane"; J. Phys. Ref. Data

1991, 20, 275.

Temperature Vapor Pressure

(K)
92

(Pa)

270
350
470
610
790

Critical Temperature (K)
Critical Pressure (Pa)
Triple Pt Temperature (¢

3.0532E+02
4.8720E+06
9.0352E+01
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Nonlinear Regression

If one or more of the parameters of the model are included in nonlinear expressions the
estimation of the parameters cannot be carried out by solving a system of linear equations. The
most general approach to solving a nonlinear regression problem is by using optimization
programs to minimize F' (Equation 2) numerically while changing the parameters §, f,... ...
For individual cases, more specific simpler techniques can be used.

Example 4. Fitting Parameters to the Antoine equation

The following table presents data of vapor pressure versus temperature for benzene. Correlate

the data using the Antoine equation.

No. Temperature, T Pressure, P
°C Mm Hg
-36.7 1
2 -19.6 5
9 60.6 400
10 80.1 760

Example 4. Solution (1)

The Antoine equation is a widely used vapor pressure correlation that utilizes the parameters A,
B, and C. It can be expressed by

B (22)
log(P)=A+
og(P) T+C

Defining and introducing Equation (22) into Equation (2) gives

2
- B (23)
F= A ——
; Y ( T+CJ

i
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Example 4. Solution (2)

Differentiating F" with respect to A, B, and C and equating to zero, yield

oF [y, B
0A i=l |

6—F—Z y,—| A+ B
0B 1

T, +C

T,+C

a—F: y,—| A+ B
oc |

This is a system of three nonlinear algebraic equations with three unknowns. The MATLAB

function to be used when solving this problem as a system of three equations follows.

T, +C

(-2)=0

1 -2
_(T,.+C)7O
e
L@, +c)

24

MATLARB function for solving Example 4 as a system of three nonlinear
equations

filename fun_antoine

function f=fun_antoine(x)
A=x(1); B=x(2); C=x(3);
T=[-36.7-19.6 -11.5-2.6 7.6 15.4 26.1 42.2 60.6 80.1]";
P=[15 102040 60 100 200 400 760]";
Y=logl0(P);

f1=0; £2=0; f3=0;

for i=1:10

f1=f1+(-Y (i)+A+B/(T()+C));
2=12-(Y(i)-A-B/(T(i)+C))/(T({)+C);
£3=3+(Y(i)-A-B/(T(i)+C))*B/(T({)+C)"2;

end

f(1,1)=11;12,1)=12; f3,1) =13 ;

%Solving for Antoine equation parameters as a system of equations

17



MATLAB function for solving Example 4

This function can be used with a main program which apply, for example, the multi-
dimensional Newton-Raphson method (see the main program of Example 3 in the previous
chapter of systems of nonlinear algebraic equations). Starting from the initial estimate A = 6, B
=-700, and C = 150 the program converges to the solution: A = 5.7673, B = -677.09, and C =
153.89.

It should be mentioned that when solving this problem as a system of nonlinear equations, good
initial estimates for the parameters should be provided otherwise most solution methods will
diverge. An alternative approach which does not require close initial estimates involves
conversion of the problem to a single nonlinear equation. For a specified value of C, the first
two equations of the system (24) are linear and can be solved for A and B. Then the third
equation of this system is used for calculating f{C). The MATLAB function for carrying out

this calculation follows.

MATLAB function for solving Example 4 as a single nonlinear equation

%filename fun_antoine2
%Solving for Antoine equation parameters as a single nonlinear equation
function fC=fun_antoine(C)
T=[-36.7-19.6 -11.5 -2.6 7.6 15.4 26.1 42.2 60.6 80.1]"
P=[15 1020 40 60 100 200 400 760]";
Y=logl0(P);
x(:, D=[1LAT+O)];
den=10*(x"*x)-sum(x)"2;
A=(sum(Y)*(x"*x)-sum(x)*(x'*Y))/den;
B=(10*(x"*Y)-sum(x)*sum(Y))/den;
fC=0;
fori=1:10

fC=fC+(Y(1)-A-B/(T(1)+C))*B/(T({)+C)"2;
end

This function can be used in conjunction with the main programs for solving single nonlinear
equations that are provided in the first chapter. Using the bisection method for example (main
program of Example 3 in Chapter 1) starting from C,; = 50 and C,, = 350, it converges to the
solution C =153.93 in 12 iterations.
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