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MultipleMultiple--Linear, Polynomial and Nonlinear RegressionLinear, Polynomial and Nonlinear Regression

Basic Concepts (1)Basic Concepts (1)

Let us assume that there is a set of N data points of a dependent variable y
i
versus x

1i
,  x

2i
, …

x
ni

, where x
1
, x

2
,… x

n
are n independent (explanatory) variables. A particular model to be 

fitted to the data is of the form

(1)

where                        are m+1 parameters of the model. The least-squares error approach is 

most often used to find the parameters of Equation (1).

The statistical assumption behind the least-squares error method for parameter estimation is 

that the measured value of the dependent variable has a deterministic and a stochastic part. 

The stochastic part is often denoted as an error, ε
i
. 

(1a)

It is further assumed that the origin of ε
i
is measurement error, which is randomly distributed.
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Basic Concepts (2)Basic Concepts (2)

An infinite number of measurements would be required to obtain the true values of the 

parameters .Because a sample always contains a finite number of measurements, 

the calculated parameters are always approximations for the true values. They are denoted 

with a circumflex. Thus, are the calculated values of the parameters and    is 

the calculated estimate for the dependent variable .

In the least-squares error approach, the estimates  are found so that they 

minimize the following function:

(2)

where F is the sum of squares of the errors.The particular mathematical technique of finding 

the set of the parameter values that minimizes the function F depends on the form of the 

function g(x
i
, β). If the parameters appear in linear expressions in the function g (in multiple-

linear and polynomial regressions, for example), the minimization can be carried out by 

solving a system of linear equations (the normal equations). Often models where the 

parameters appear in nonlinear expressions can be transformed to linear models by 

transformation of variables. 
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Graphic information for checking the quality of the fitGraphic information for checking the quality of the fit .. 

An assessment of the quality of the fit of a particular model and comparison between different 

models is based on graphic and numeric information.

The measured (y
i
) and the calculated ( ) values of the dependent variable can be plotted 

versus x
i
(if there is a single independent variable) or versus i, the point number (if there are 

several independent variables). The distance between the experimental values and the 

calculated curve can serve as an indication for the quality of the fit. These distances are 

amplified using the "residual plot". In this plot the model error  is plotted (usually versus y
i
) , 

where  

(3)

A random distribution of the residuals around zero indicates that the model represents 

correctly the set of data. A definite trend or pattern in the residual plot may indicate either lack 

of fit of the model or that the assumed error distribution for the data (random error distribution 

in y) is not correct. 
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Numeric information for checking the quality of the fit (1).Numeric information for checking the quality of the fit (1).

The most frequently used numeric indicator of the quality of the fit is the standard error of the 

estimate which represents the sample variance, and given by 

(4)

Thus the sample variance is the sum of squares of errors divided by the degrees of freedom 

(where the number of parameters, m+1, is subtracted from the number of data points, N) and is 

a measure for the variability of the actual y
i

values from the predicted   values. Smaller 

variance means a better fir of the model to the data. It should be emphasized that when the 

sample variance is used for comparison of different models, the same independent variable 

(transformed or non-transformed) should be used in Equation (4) for all the models. The 

variance is an un-scaled variable which can take any value from zero to infinity. Consequently 

the variance alone cannot be used for judging the goodness of fit between the data and a 

respective model. 
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Numeric information for checking the quality of the fit (2).Numeric information for checking the quality of the fit (2).

The linear correlation coefficient (R2) is often used to judge the quality of the fit between the 

regression model and the experimental data. The correlation coefficient represents the ratio 

between the sum of squares about the mean due to regression to the total sum of squares, and is 

obtained by

(5)

where     is the sample mean of the dependent variable. The value of R is bounded:  0 ≤ R ≤ 1.     

If R is close to 1 there is a strong correlation between the variables, whereas a value close to 

zero indicates a weak or no correlation. 

Confidence intervals on the parameter values are very useful indicators of the fit between the 

model and the data. The discussion concerning the confidence intervals is postponed after 

discussing the solution techniques of the normal equation     
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Simple Linear Regression (1)Simple Linear Regression (1)

The simplest example of least squares approximation is fitting a straight line to a set of paired 

measurements (or observations), (x
1
, y

1
), (x

2
, y

2
)… (x

N
, y

N
).

(7)

Introducing this model into Equation (2) yields

(8)

The criterion for optimality requires that and Thus, 

(9)
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Simple Linear Regression (2)Simple Linear Regression (2)

After rearrangement

(10)

Using Cramer's rule to solve for β
0

and β
1 

yields

(11)
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Example 1. Fitting a Straight Line to Thermal Conductivity DataExample 1. Fitting a Straight Line to Thermal Conductivity Data

Thermal conductivity of low-pressure gases can be fairly well correlated, over small 

temperature ranges, with a linear equation (straight line). A linear equation should be fitted to 

the thermal conductivity data of air shown in Table 1 and the appropriateness of the linear 

model should be assessed.

Table 1. Thermal conductivity of Aira

66.041209

64.221008

62.2807

60.34606

58.31405

56.24204

54.2203

52.1520-2

50.0940-1

cal/s•cm•°C °F 

Thermal Conductivity*106TemperatureNo.
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EXCEL solution of Example 1 (1).EXCEL solution of Example 1 (1).

The x
i
values are stored in column B, the y

i
values are stored in column C, the x

i
2 values are 

calculated in column D and the x
i
y

i
values are calculated in column E.  The respective sums are 

calculated in row 13. In cells C14 and C15 the various terms are introduced into Equation (11) 

in order to calculate β
0

and β
1
. The numerical results obtained are shown below. 

  
 =(A12*E13-
B13*C13)/(A12*D13-B13^2)

 β115

  
 =(C13*D13-
B13*E13)/(A12*D13-B13^2)

 β014

=SUM(E4:E12)=SUM(D4:D12)=SUM(C4:C12)=SUM(B4:B12)sum13

=B12*C12=B12^266.04120912

    … 

=B5*C5=B5^252.15-2025

=B4*C4=B4^250.09-4014

xyx2yxNo.3

EDCBA 

EXCEL solution of Example 1 (2)EXCEL solution of Example 1 (2)

  0.1001 β115

  54.1988 β014

2335438400523.81360sum13

7924.81440066.04120912

    … 

-104340052.15-2025

-2003.6160050.09-4014

xyx2yxNo.3

EDCBA 
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EXCEL solution of Example 1(3)EXCEL solution of Example 1(3)

To prepare a residual plot and to calculate the variance and the correlation coefficient additional 

columns must be defined

In column F the estimated values      are calculated. In column G the residuals (ε
i
) used for 

preparing the residual plot are evaluated. In column H the residual values are squared to enable 

calculation of the variance and in columns I and J the numerator (num) and the denominator 

(den) of equation (5) are calculated. 

=SUM(J4:J12
)

=

SUM(I4:I12)

=SUM(H4:H1
2)

  sum13

=(C12-
$C$16)^2

 =(F12-
$C$16)^2

=G12^2=C12-F12
=$C$14+$C$15

*B12
 912

       …

=(C5-
$C$16)^2

=(F5-$C$16)^2=G5^2=C5-F5
=$C$14+$C$15

*B5
 25

=(C4-
$C$16)^2

=(F4-$C$16)^2=G4^2=C4-F4
=$C$14+$C$15

*B4
 14

dennumεεεε2222εεεεy(calc) No.3

JIHGF…A 

iŷ

EXCEL solution of Example 1(4)EXCEL solution of Example 1(4)

The following additional expressions are needed to complete the calculations

It can be seen that the correlation coefficient, R2 is very close to one, thus it seems that the linear 

model represents excellently the data. For further analysis let's look at the following plots.

=I13/J13 Correlation Coeff.19

=H13/C17 Variance18

=A12-2 Degrees of freedom17

=AVERAGE(C4:C12)=AVERAGE(B4:B12)Mean16

CBA 

0.9996913 Correlation Coeff.19

0.010601 Variance18

7 Degrees of freedom17

58.2040Mean16

CBA 
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EXCEL solution of Example 1EXCEL solution of Example 1

Measured and Calculated Values of Thermal ConductivityMeasured and Calculated Values of Thermal Conductivity

This plot also indicates very good fit. The calculated and experimental points are actually 

indiscernible in this plot. But in the following residual plot  the errors are not randomly 

distributed around zero indicating that the model can probably be further improved.

Thermal Conductivity of Air
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EXCEL solution of Example 1EXCEL solution of Example 1

Residual PlotResidual Plot
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Multiple Linear Regression (1)Multiple Linear Regression (1)

Let us develop the equations to be solved for the case of two independent variables where a 

linear model is to be fitted into a set of measurements (or observations), (x
11

, x
21

, y
1
), (x

12
, x

22
, 

y
2
)… (x

1N
, x

2N
, y

N
). The linear model is

(12)

Introducing this model into Equation (2) yields

(13)

The criterion for optimality requires that , and . Thus,

(14)  
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Multiple Linear Regression (2)Multiple Linear Regression (2)

After rearrangement and bringing into matrix-vector form we get

(15)

For the general case of m independent (explanatory) variables the matrix form of the normal 

equations can be more easily obtained by defining the following matrices

(16)

The normal equation is defined 

(17)
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Multiple Linear Regression (3)Multiple Linear Regression (3)

Confidence IntervalsConfidence Intervals

This is a system of linear equations is solved for the m+1 coefficients       , … .

If there is no free parameter in the model (thus β
0

= 0 ) then the first column of the numbers 1 

(one) should be removed from the matrix X and the first element, β
0

should be removed from 

the vector β. It should be emphasized that in such case the number of parameters in the model is 

m (instead of m+1, when there is a free parameter).

Solution of the system of equations (17) provides estimates for the parameter values. The 

uncertainty in these approximate parameter values can be estimates using the definition of the 

confidence intervals

(18)

where t is the statistical t-distribution value corresponding to the degrees of freedom and the % 

confidence selected, the standard deviation (square root of the variance) and a
ii

is 

the ith diagonal element of the XTX matrix. The 95% confidence intervals are used the most 

often.  

0β̂ 1β̂ mβ̂

miatsats iiiiiii K1,0ˆˆ =+≤≤− βββ

2ss =

Confidence Intervals (2)Confidence Intervals (2)

Confidence intervals are very useful indicators of the fit between the model and the data. A 

better model fit and more precise data lead to narrow confidence intervals, while a poor model 

fit and/or imprecise data cause wide confidence intervals. Furthermore, confidence intervals 

which are larger (in absolute value) than the respective parameter values often indicate that the 

model contains superfluous parameters/ explanatory variables.

Table 2. t-values corresponding to 95%confidence and ν degrees of freedom

2.0141452.0423302.131515

2.0154442.0452292.144814

     �

2.0369322.1098174.30272

2.0395312.11991612.70621

t-valueνt-valueνt-valueν
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Example 2.  Heat Evolved During Hardening Of Portland CementExample 2.  Heat Evolved During Hardening Of Portland Cement

Woods et al(1932) investigated the  integral heat of hardening of cement as a function of 

composition.  The independent variables represent weight percent of the clinker compounds: 

x1-tricalcium aluminate (3CaO ·Al2O3), x2-tricalcium silicate (3CaO ·SiO2), x3-tetracalcium 

alumino-ferrite (4CaO ·Al2O3·Fe2O3), and x4- β-dicalcium silicate (3CaO ·SiO2).  The 

dependent variable,  y is the total heat evolved (in calories per gram cement) in a 180-day 

period.

Calculate the coefficients of a linear model representation of y as function of x1, x2, x3, and x4, 

calculate the variance and the correlation coefficient R2 and the confidence intervals. Prepare a 

residual plot.

Consider the cases when the model includes and does not include a free parameter. 

109.4128681013

113.3129661112

     :

74.352152912

78.76062671

yx4x3x2x1No.

Example 2.  Example 2.  MatlabMatlab SolutionSolution

Data Input and Normal Matrix Data Input and Normal Matrix 

% filename heat_hardening.m

clear, clc, format short g, format compact

X=[7 1 11 11 7 11 3 1 2 21 1 11 10

26 29 56 31 52 55 71 31 54 47 40 66 68

6 15 8 8 6 9 17 22 18 4 23 9 8

60 52 20 47 33 22 6 44 22 26 34 12 12]';

Y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';

Ymean=mean(Y);

N=13;     % No. of data points

npar=5;   % No. of parameters - with a free parameter

t_95=2.306;  % t-value for 95%confidence interval - with a free parameter

%npar=4;   % No. of parameters - no free parameter

%t_95=2.2622; % t-value for 95%confidence interval - no free parameter

e=ones(N,1);

X=[e X]; % Add column of ones to the X matrix (with free parameter)

A=X'*X;
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Example 2.  Example 2.  MatlabMatlab SolutionSolution

Calculations and Residual Plot Calculations and Residual Plot 

Ainv=inv(A); %Calculate the inverse of the X'X matrix (for confidence interval calculation)

Beta=Ainv*X'*Y;  % Solve the normal equation

Ycal=X*Beta; % Calculated dependent variable values

s2=((Y-Ycal)'*(Y-Ycal))/(N-npar); % variance

R2=(Ycal-Ymean)'*(Ycal-Ymean)/((Y-Ymean)'*(Y-Ymean));    %Correlation Coefficient

for i=1:npar

Conf_int(i,1)=t_95*sqrt(s2*Ainv(i,i)); %confidence intervals

end

%

%residual plot

%

plot(Y,Y-Ycal,'*')

title('Residual plot, Heat of hardening problem')

xlabel('Heat of hardening(measured)')

ylabel('residual')

Example 2.  Numerical Results Example 2.  Numerical Results 

For the first case where the model includes a free parameter the value of the correlation 

coefficient (R2 = 0.98238) and the residual plot suggest that the model is appropriate. But all 

the confidence intervals are larger in absolute value than the respective parameter values, 

indicating that there are too many parameters (terms) in the model. In the model where there is 

no free parameter all the confidence intervals are also satisfactory. Thus the linear model 

without a free parameter is appropriate. Physical consideration lead also to the conclusion that 

free parameter is not needed in this case. 

0.98597Correlation Coefficient 0.98238Correlation Coefficient 

5.8455   Variance 5.983   Variance

   1.6351-0.144064

0.0936750.4863231.74040.101913

0.360850.7585121.66910.510172

0.108461.153311.71741.55111

0.419132.1930161.5862.4050

Conf_intBetaParameter No.Conf_intBetaParameter No.

No free parameterWith a free parameter



12

Example 2. Example 2. Residual Plot Residual Plot 

Generalized Multiple Linear Regression .Generalized Multiple Linear Regression .

General models of the form

(19)

Can be brought into the form, which is appropriate for multiple linear regression 

(20)

by transforming the variables , , …etc.

The normal (16 and 17) can be solved for the coefficients β0, β1,… βm, after the values of y' are 

introduced into the vector Y and x'
j
introduced into the matrix X.

In polynomial regression the transformations: , and used. 

In Riedel's equation , for vapor pressure correlation 

the transformations; , , and should be used.

),(ˆ),(ˆ),(ˆˆ)ˆ( 21212221110 KKKK iimmiiiii xxfxxfxxfyg ββββ ++=

mimiii xxxy 'ˆ'ˆ'ˆˆ'ˆ 22110 ββββ +++= K
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xx =1'
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Example 3. Fitting a 2nd Order Polynomial Thermal Conductivity Data

A 2nd order polynomial should be fitted to the thermal conductivity data of air shown in Table 1 

to which a straight line was fitted in Example 1 .

The same Matlab program that was used for solution of Example 2 can be used only the 

containts of the X matrix the Y vector, N, npar and t_95 should be changed. 

T=[-40 -20 0 20 40 60 80 100 120]';

Y=[50.09 52.15 54.22 56.24 58.31 60.34 62.2 64.22 66.04]';

N=9;      % No. of data points

for i=1:N

X(i,:)=[T(i) T(i)^2];

end

npar=3;   % No. of parameters - with a free parameter

t_95=2.4469;  % t-value for 95%confidence interval - with a free parameter 

Example 3. MATLAB resultsExample 3. MATLAB results

From the solution it can be seen that the residual plot of the 2nd order polynomial representation 

is randomly distributed the variance and the confidence intervals for the polynomial 

representation are smaller than for the straight line and R2 is closer to one. Thus, the polynomial 

represents the data correctly.

0.9996913Correlation Coefficient 0.99995Correlation Coefficient 

0.010601   Variance 0.001908   Variance

   1.52E-05-3.57E-052

0.0015720.100110.00140.102911

0.1026554.198800.04789754.2370

Conf_intBeta
Parameter 

No.
Conf_intBeta

Parameter 
No.

Straight line2nd order polynomial
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Example 3. Residual PlotExample 3. Residual Plot

Physical Properties CorrelationPhysical Properties Correlation
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Physical Properties CorrelationPhysical Properties Correlation

Temperature 

(K)

Ideal Gas 

Heat 

Capacity 

Temperature 

(K)

Ideal Gas 

Heat 

Capacity 
100 3.5698E+04 300 5.2692E+04
110 3.6249E+04 310 5.3926E+04
120 3.6817E+04 320 5.5178E+04

130 3.7401E+04 330 5.6446E+04
140 3.8003E+04 340 5.7727E+04
150 3.8628E+04 350 5.9017E+04

160 3.9279E+04 360 6.0313E+04
170 3.9961E+04 370 6.1612E+04
180 4.0680E+04 380 6.2913E+04

190 4.1439E+04 390 6.4212E+04
200 4.2243E+04 400 6.5507E+04
210 4.3092E+04 410 6.6798E+04
220 4.3989E+04 420 6.8082E+04

230 4.4934E+04 430 6.9357E+04
240 4.5924E+04 440 7.0624E+04
250 4.6959E+04 450 7.1880E+04

260 4.8036E+04 460 7.3126E+04
270 4.9151E+04 470 7.4360E+04
280 5.0302E+04 480 7.5582E+04

290 5.1484E+04 490 7.6791E+04

500 7.7987E+04

Ingham, H.; Friend, D.G.; Ely, 
J.F.; "Thermophysical 
Properties of Ethane"; J. Phys. 

Ref. Data 1991, 20, 275

Physical Properties CorrelationPhysical Properties Correlation

Temperature 

 (K)

Vapor Pressure 

(Pa)

1 92 1.7 Critical Temperature (K) 3.0532E+02

2 94 2.8 Critical Pressure (Pa) 4.8720E+06

3 96 4.6 Triple Pt Temperature (K) 9.0352E+01
4 98 7.2

5 100 11
6 102 17

7 104 25
8 106 37

9 108 53

10 110 75
11 112 100

12 114 140
13 116 200

14 118 270

15 120 350
16 122 470

17 124 610
18 126 790

 Ingham, H.; Friend, D.G.; Ely, 

J.F.; "Thermophysical Properties 
of Ethane"; J. Phys. Ref. Data 

1991, 20, 275.   



16

Nonlinear RegressionNonlinear Regression

If one or more of the parameters of the model are included in nonlinear expressions the 

estimation of the parameters cannot be carried out by solving a system of linear equations. The 

most general approach to solving a nonlinear regression problem is by using optimization 

programs to minimize F (Equation 2) numerically while changing the parameters β
0
, β

1
… β

m
. 

For individual cases, more specific simpler techniques can be used. 

Example 4. Fitting Parameters to the Antoine equation

The following table presents data of vapor pressure versus temperature for benzene. Correlate 

the data using the Antoine equation.

76080.110

40060.69

  :

5-19.62

1-36.71

Mm Hg °C 

Pressure, PTemperature, TNo.

Example 4. Solution (1)Example 4. Solution (1)

The Antoine equation is a widely used vapor pressure correlation that utilizes the parameters A, 

B, and C. It can be expressed by

(22)

Defining  and introducing Equation (22) into Equation (2) gives 

(23)
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Example 4. Solution (2)Example 4. Solution (2)

Differentiating F with respect to A, B, and C and equating to zero, yield

(24)

This is a system of three nonlinear algebraic equations with three unknowns. The MATLAB 

function to be used when solving this problem as a system of three equations follows.
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MATLAB function for solving Example 4 as a system of three nonliMATLAB function for solving Example 4 as a system of three nonlinear near 

equationsequations

filename fun_antoine

%Solving for Antoine equation parameters as a system of equations

function f=fun_antoine(x)

A=x(1); B=x(2); C=x(3);

T=[-36.7 -19.6 -11.5 -2.6 7.6 15.4 26.1 42.2 60.6 80.1]';

P=[1 5 10 20 40 60 100 200 400 760]';

Y=log10(P);

f1=0; f2=0; f3=0;

for i=1:10

f1=f1+(-Y(i)+A+B/(T(i)+C));

f2=f2-(Y(i)-A-B/(T(i)+C))/(T(i)+C);

f3=f3+(Y(i)-A-B/(T(i)+C))*B/(T(i)+C)^2;

end

f(1,1) = f1 ; f(2,1) = f2 ; f(3,1) = f3 ;
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MATLAB function for solving Example 4MATLAB function for solving Example 4

This function can be used with a main program which apply, for example, the multi-

dimensional Newton-Raphson method (see the main program of Example 3 in the previous 

chapter of systems of nonlinear algebraic equations). Starting from the initial estimate A = 6, B

= -700, and C = 150 the program converges to the solution: A = 5.7673, B = -677.09, and C = 

153.89. 

It should be mentioned that when solving this problem as a system of nonlinear equations, good 

initial estimates for the parameters should be provided otherwise most solution methods will 

diverge. An alternative approach which does not require close initial estimates involves 

conversion of the problem to a single nonlinear equation. For a specified value of C, the first 

two equations of the system (24) are linear and can be solved for A and B. Then the third 

equation of this system is used for calculating f(C). The MATLAB function for carrying out 

this calculation follows. 

MATLAB function for solving Example 4 as a single nonlinear equaMATLAB function for solving Example 4 as a single nonlinear equationtion

%filename fun_antoine2

%Solving for Antoine equation parameters as a single nonlinear equation

function fC=fun_antoine(C)

T=[-36.7 -19.6 -11.5 -2.6 7.6 15.4 26.1 42.2 60.6 80.1]';

P=[1 5 10 20 40 60 100 200 400 760]';

Y=log10(P);

x(:,1)=[1./(T+C)];

den=10*(x'*x)-sum(x)^2;

A=(sum(Y)*(x'*x)-sum(x)*(x'*Y))/den;

B=(10*(x'*Y)-sum(x)*sum(Y))/den;

fC=0;

for i=1:10

fC=fC+(Y(i)-A-B/(T(i)+C))*B/(T(i)+C)^2;

end

This function can be used in conjunction with the main programs for solving single nonlinear 

equations that are provided in the first chapter. Using the bisection method for example (main 

program of Example 3 in Chapter 1) starting from C
01

= 50 and C
02 

= 350, it converges to the 

solution C = 153.93 in 12 iterations. 


